Recurrent novae: Single degenerate progenitors of Type Ia supernovae

Abstract

Type Ia supernovae are the result of explosive thermonuclear burning in CO white dwarfs. The progenitors of the Ia supernovae are white dwarfs in an interacting binary system. The donor companion is either a degenerate star (white dwarf) or a non-degenerate star (e.g. red giant). Recurrent novae are interacting binaries with a massive white dwarf accreting from either a main sequence, slightly evolved, or a red giant star. The white dwarf in these systems is a massive, hot white dwarf, accreting at a high rate. Recurrent novae are thought to be the most promising single degenerate progenitors of Type Ia supernovae. Presented here are the properties of a few recurrent novae based on recent outbursts. The elemental abundances and their distribution in the ejected shell are discussed.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

References

  1. Anupama, G. C. 2008, ASP Conf. Ser., 401, 31

    ADS  Google Scholar 

  2. Anupama, G. C. 2013, in IAU Symp. 281, Binary Paths to Type Ia Supernovae Explosions, Cambridge Univ. Press, Cambridge, 154

  3. Anupama, G. C., Dewangan, G. C. 2000, AJ, 119, 1359

    ADS  Google Scholar 

  4. Anupama G. C., Kamath U. S., Ramaprakash A. N., et al., 2013, A&A, 559, A121

    ADS  Google Scholar 

  5. Barlow, M. J., Brodie, J. P., Brunt, C. C., et al. 1981, MNRAS, 195, 61

    ADS  Google Scholar 

  6. Bode M. F. et al., 2006, ApJ, 652, 629

    ADS  Google Scholar 

  7. Cao Y., et al., 2015, Nature, 521, 328

    ADS  Google Scholar 

  8. Darnley, M. J., Henze, M., Steele, I. A., et al. 2015, A&A, 580, A45

    ADS  Google Scholar 

  9. Darnley, M. J., Henze, M., Bode, M. F., et al. 2016, ApJ, 833, 149

    ADS  Google Scholar 

  10. Diaz, M. P., Williams, R. E., Luna, G. J., Moraes, M., Takeda L. 2010, AJ, 140, 1860

    ADS  Google Scholar 

  11. Dilday B., et al., 2012, Science, 337, 942

    ADS  Google Scholar 

  12. Evans, A., Krautter, J., Vanzi, L., Starrfield, S. 2001, A&A, 378, 132

    ADS  Google Scholar 

  13. Ferland, G. J., Chatzikos, M., Guzmán, F., et al. 2017, Revista Mexicana de Astronoma y Astrofsica, 53, 385

    ADS  Google Scholar 

  14. Godon, P., Sion, E., Williams, R., Starrfield, S. 2018, AJ, 862, 89

    ADS  Google Scholar 

  15. Henze, M., Ness, J.-U., Darnley, M. J., et al. 2015, A&A, 580, A46

    ADS  Google Scholar 

  16. Henze, M., Darnley, M. J., Williams, S. C., et al. 2018, ApJ, 857, 68

    ADS  Google Scholar 

  17. Iijima, T. 2002, A&A, 387, 1013

    ADS  Google Scholar 

  18. Izzo, L., Ederoclite, A., Della Valle, M., et al. 2012, Mem. Soc. Astron. It., 83, 830

    ADS  Google Scholar 

  19. Joshi, V., Banerjee, D. P. K., Ashok, N. M. 2014, MNRAS, 443, 559

    ADS  Google Scholar 

  20. Kafka, S., Williams, R. 2011, A&A, 526, A83

    ADS  Google Scholar 

  21. Kantharia N. G., Anupama G. C., Prabhu T. P., Ramya S., Bode M. F., Eyres S. P. S., O’Brien T. J., 2007, ApJ, 667, L171

    ADS  Google Scholar 

  22. Kasen D., 2010, ApJ, 708, 1025

    ADS  Google Scholar 

  23. Khokhlov A. M., 1991, A&A, 245, 114

    ADS  Google Scholar 

  24. Maoz, D., & Graur, O. 2017, ApJ, 848, 25

    ADS  Google Scholar 

  25. Maxwell, M. P., Rushton, M. T., Darnley, M. J., et al. 2012, MNRAS, 419, 1465

    ADS  Google Scholar 

  26. Mondal, A., Anupama, G. C., Kamath, U. S., et al. 2018, MNRAS, 474, 4211

    ADS  Google Scholar 

  27. Mondal, A., Das, R., Anupama, G. C., Mondal, S. 2020, MNRAS, 492, 2326

    ADS  Google Scholar 

  28. Morisset, C. 2013, pyCloudy: Tools to manage astronomical Cloudy photoionization code, Astrophysics Source Code Library

  29. Munari, U., Zwitter, T., Tomov, T., et al. 1999, A&A, 347, L39

    ADS  Google Scholar 

  30. Narumi H., Hirosawa K., Kanai K., Renz W., Pereira A., Nakano S., Nakamura Y., Pojmanski G., 2006, IAU Circ., 8671, 1

    ADS  Google Scholar 

  31. Nishiyama, K. & Kabashima, F. 2008, CBATIAU, http://www.cbat.eps.harvard.edu/iau/CBAT_M31.html#2008-12a

  32. Orio, M., Drake, J, Ness, J.-U., et al., 2020, ApJ, 895, 80

  33. Patat F., Chugai N. N., Podsiadlowski P., Mason E., Melo C., Pasquini L., 2011, A&A, 530, A63

    ADS  Google Scholar 

  34. Pavana, M., Anche, R. M., Anupama, G. C., Ramaprakash, A. N., & Selvakumar, G. 2019, A&A, 622, A126

    ADS  Google Scholar 

  35. Pavana, M. et al., 2020, [under preparation]

  36. Phillips M. M., 1993, ApJ, 413, L105

    ADS  Google Scholar 

  37. Schaefer, B. E. 2010, ApJS, 187, 275

    ADS  Google Scholar 

  38. Sekiguchi, K., Feast, M. W., Whitelock, P. A., et al. 1988, MNRAS, 234, 281

    ADS  Google Scholar 

  39. Selvelli, P., Cassatella, A., Gilmozzi, R., & Gonzlez-Riestra, R. 2008, A&A, 492, 787

    ADS  Google Scholar 

  40. Shore, S. N., Schwarz, G. J., De Gennaro Aquino, I., et al. 2013, A&A, 549, A140

    ADS  Google Scholar 

  41. Singh, K. P., Grish, V., Pavana. M., Noss, J-U., Anupama, G. C., Odam, M., 2020, MNRAS (in press)

  42. Skopal A. et al., 2008, in Evans A., Bode M. F., O’Brien T. J., Darnley M. J., eds, ASP Conf. Ser. Vol. 401, RS Ophiuchi (2006) and the Recurrent Nova Phenomenon, Astron. Soc. Pac., San Francisco, p. 227

  43. Sokoloski J. L., Luna G. J. M., Mukai K., Kenyon S. J., 2006, Nature, 442, 276

    ADS  Google Scholar 

  44. Starrfield, S., Iliadis, C., Timmes, F. X., et al. 2012, BASI, 40, 419

    ADS  Google Scholar 

  45. Starrfield S., Bose M., Iliadis C., Hix W. R., Woodward C. E.,Wagner R. M., 2020, ApJ, 895, 70

    ADS  Google Scholar 

  46. Surina, F., Hounsell, R. A., Bode, M. F., et al. 2014, AJ, 147, 107

    ADS  Google Scholar 

  47. Tang, S., Bildsten, L., Wolf, W. M., et al. 2014, ApJ, 786, 61

    ADS  Google Scholar 

  48. Woosley S. E., Weaver T. A., 1994, ApJ, 423, 371

    ADS  Google Scholar 

  49. Williams, R. E., Sparks, W. M., Gallagher, J. S., et al. 1981, ApJ, 251, 221

    ADS  Google Scholar 

  50. Yamanaka, M., Uemura, M., Kawabata, K. S., et al. 2010, PASJ, 62, L37

    ADS  Google Scholar 

Download references

Acknowledgements

The support of the staff at IAO, CREST and VBO during observations is acknowledged.

Author information

Affiliations

Authors

Corresponding author

Correspondence to G. C. Anupama.

Additional information

This article is part of the Topical Collection: Chemical elements in the Universe: Origin and evolution.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Anupama, G.C., Pavana, M. Recurrent novae: Single degenerate progenitors of Type Ia supernovae. J Astrophys Astron 41, 43 (2020). https://doi.org/10.1007/s12036-020-09661-8

Download citation

Keywords

  • Type Ia supernovae
  • recurrent novae
  • abundances