Skip to main content

A comprehensive investigation of the variable overcontact system EH Cancri


Precise multi-color CCD-derived photometric data were obtained from EH Cnc at two sites during 2010, 2014 and 2018 wherein each epoch used a different instrument. This has provided a unique opportunity to investigate parameter uncertainty following Roche modeling of light curves optimized by differential corrections using the Wilson–Devinney code. Furthermore, new radial velocity data from EH Cnc presented in this study for the first time has produced absolute physical and geometric parameters for this A-subtype W UMa-type variable. Analysis of eclipse timing data confirms the presence of sinusoidal-like excursions in the eclipse timing residuals. We address whether these are due to magnetic activity cycles, the so-called “Applegate effect”, or related to a light-time effect (LiTE) resulting from the presence of a third gravitationally bound cool low mass white dwarf. A model using the PAdova & TRieste Stellar Evolution Code (PARSEC) has provided valuable insight about the evolutionary history of EH Cnc as a trinary system.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12


  1. 1.

  2. 2.

  3. 3.

  4. 4.

  5. 5.

    An unnecessary factor \(\omega \) appears in the formula for AML rate in the latter paper. Equation (16) gives the correct expression.


  1. Abubekerov M. K., Gostev N. Y., Cherepashchuk A. M. 2008, Astron. Rep. 52(2), 99,

    ADS  Article  Google Scholar 

  2. Abubekerov M. K., Gostev N. Y., Cherepashchuk A. M. 2009, Astron. Rep. 53(8), 722,

    ADS  Article  Google Scholar 

  3. Alton K. B. 2019, J. Am. Assoc. Variable Star Obs. 47, 7

    ADS  Google Scholar 

  4. Alton K. B., Nelson R. H. 2018, Mon. Not. R. Astron. Soc. 479(3), 3197,

    ADS  Article  Google Scholar 

  5. Andrae R., Fouesneau M., Creevey O., Ordenovic C., Mary N., Burlacu A., Chaoul L., Jean-Antoine-Piccolo A., Kordopatis G., Korn A., Lebreton Y., Panem C., Pichon B., Thévenin F., Walmsley G., Bailer-Jones C. A. L. 2018, Astron. Astrophys. 616, 8,

    ADS  Article  Google Scholar 

  6. Applegate J. H. 1992, Astrophys. J. 385, 621,

    ADS  Article  Google Scholar 

  7. Bailer-Jones C. A. L. 2015, Publ. Astron. Soc. Pac. 127(956), 994,

    ADS  Article  Google Scholar 

  8. Berry R., Burnell J. 2005, The Handbook of Astronomical Image Processing. Willmann-Bell, Inc., Richmond, VA,

  9. Binnendijk L. 1970, Vistas Astron. 12, 217,

    ADS  Article  Google Scholar 

  10. Bradstreet D. H. 2005, Society for Astronomical Sciences Annual Symposium, Volume 24, p. 23

    ADS  Google Scholar 

  11. Bradstreet D. H., Steelman D. P. 2002, in American Astronomical Society Meeting Abstracts. Bulletin of the American Astronomical Society, Volume 34, p. 1224,

  12. Brát L., Zejda M., Svoboda P. 2007, Open Eur. J. Variable Stars 74, 1

    ADS  Google Scholar 

  13. Brát, L., Šmelcer, L., Kučáková, H., Ehrenberger, R., Kocián, R., Lomoz, F., Urbančok, L., Svoboda, P., Trnka, J., Marek, P., Dřevěný, R., Uhlář, R., Poddaný, S., Zasche, P., Skarka, M., 2008, Open Eur. J. Variable Stars 94, 1

    ADS  Google Scholar 

  14. Brát, L., Trnka, J., Lehký, M., Šmelcer, L., Kučáková, H., Ehrenberger, R., Dřevěný, R., Lomoz, F., Marek, P., Kocián, R., Svoboda, P., Přibík, V., Urbančok, L., Poddaný, S., Dubovský, P. A., Uhlář, R., Horálek, P., Hanžl, D., Brož, M., Kalisch, T. Macek, O., Exnerová, M., Vítek, M., 2009, Open Eur. J. Variable Stars 107, 1

    ADS  Google Scholar 

  15. Brát, L., Trnka, J., Šmelcer, L., Lehký, M., Kučáková, H., Lomoz, F., Hanžl, D., Vrašťák, M., Corfini, G., Přibík, V., Dřevěný, R., Ehrenberger, R., Kocián, R., Mašek , M., Polák, J., Starzomski, J., Marchi, F., Poddany, S., Zejda, M., Cagaš, P., Klos, M., Garofalo, R., Klimentová, J., Kliment, P., Speil, J., Magris, M., Hladík, B., Hoňková, K., Juryšek, J., Smyčka, T., Moudrá, M., Naves, R., Ruocco, N., Zahajský, J., Audejean, M., Pejcha, O., Uhlář, R., Vieira, J., Zasche, P., Zambelli, R., 2011, Open Eur. J. Variable Stars, 137, 1

    ADS  Google Scholar 

  16. Bressan A., Marigo P., Girardi L., Salasnich B., Cero C. D., Rubele S., Nanni A. 2012, Mon. Not. R. Astron. Soc. 427(1), 127,

    ADS  Article  Google Scholar 

  17. Brown A. G. A., Vallenari A., Prusti T., de Bruijne J. H. J., Babusiaux C., Bailer-Jones C. A. L., Biermann M., Evans D. W., Eyer L., Jansen F., Jordi C., Klioner S. A. 2018, Astron. Astrophys. 616, 1,

    Article  Google Scholar 

  18. Diethelm R. 2003, Inf. Bull. Variable Stars 5438

  19. Diethelm R. 2009, Inf. Bull. Variable Stars 5871

  20. Diethelm R. 2011, Inf. Bull. Variable Stars 5992

  21. Diethelm R. 2012, Inf. Bull. Variable Stars 6029

  22. Eggleton P. P. 1983, Astrophys. J. 268, 368,

    ADS  Article  Google Scholar 

  23. Eggleton P. P., Kisseleva-Eggleton L. 2006, Astrophys. Space Sci. 304(1–4), 75,

    ADS  Article  Google Scholar 

  24. Everett M. E., Howell S. B. 2001, Publ. Astron. Soc. Pac. 113(789), 1428,

    ADS  Article  Google Scholar 

  25. Figer A. 1983, GEOS Circular on Eclipsing Binaries 8

  26. Figer A., Le Borgne J. F., Dumont M. 1985, Inf. Bull. Variable Stars 2755

  27. Gazeas K., Stȩpień K. 2008, Mon. Not. R. Astron. Soc,

  28. Hansen B. M. S., Liebert J. 2003, Annu. Rev. Astron. Astrophys. 41(1), 465,

    ADS  Article  Google Scholar 

  29. Henden A. A., Welch D. L., Terrell D., Levine S. E. 2009, in: American Astronomical Society Meeting Abstracts #214. American Astronomical Society Meeting Abstracts, Volume 214, p. 669. 2009AAS...21440702H

  30. Henden A. A., Terrell D., Welch D., Smith T. C. 2010, in: American Astronomical Society Meeting Abstracts #215. Bulletin of the American Astronomical Society, Volume 42, p. 515. 2010AAS...21547011H

  31. Henden A. A., Levine S. E., Terrell D., Smith T. C., Welch D. L. 2011, in: American Astronomical Society Meeting Abstracts #218. Bulletin of the American Astronomical Society, Volume 43, p. 126. 2011AAS...21812601H

  32. Hoňková, K., Juryšek, J., Lehký, M., Šmelcer, L., Trnka, J., Mašek, M., Urbaník, M., Auer, R., Vrašták, M., Kučáková, H., Ruocco, N., Magris, M., Polák, J., Brát, L., Audejean, M., Banfi, M., Moudrá, M., Lomoz, F., Přibík, V., Dřevěný, R., Scaggiante, F., Kocián, R., Cagaš, P., Poddaný, S., Zíbar, M., Jacobsen, J., Marek, P., Colazo, C., Zardin, D., Sobotka, P., Starzomski, J., Hladík, B., Vincenzi, M., Skarka, M., Walter, F., Chapman, A., Díaz, N. D., Aceti, P., Singh, P., Kalista, L., Kamenec, M., Zejda, M., Marchi, F., Bílek, R., Guzzo, P., Corfini, G., Onderková, K., Hečko, A., Mina, F., Vítek, M., Barsa, R., Quinones, C., Taormina, M., Melia, R., Schneiter, M., Scavuzzo, A., Marcionni, N., Ehrenberger, R., Tapia, L., Fasseta, G., Suarez, N., Scaggiante, D., Artusi, E., Garcia, R., Grnja, J., Fišer, A., Hynek, T., Vilášek, M., Rozehnal, J., Kalisch, T., Lang, K., Gorková, S., Novysedlák, R., Salvaggio, F., Smyčka, T., Spurný, M., Wikander, T., Mravik, J., Šuchaň, J., Čaloud, J., 2013, Open Eur. J. Variable Stars 160, 1

    ADS  Google Scholar 

  33. Hu S. M., Li K., Guo D.-F., Jiang Y., Gao D., Chen X. 2015, Publ. Astron. Soc. Jpn. 67(5), 100,

    ADS  Article  Google Scholar 

  34. Hübscher J. 2007, Inf. Bull. Variable Stars 5802

  35. Hübscher J. 2017, Inf. Bull. Variable Stars (6196),

  36. Hübscher J., Lehmann P. B. 2012, Inf. Bull. Variable Stars 6026

  37. Hübscher J., Lehmann P. B. 2013, Inf. Bull. Variable Stars 6070

  38. Hübscher J., Lehmann P. B. 2015, Inf. Bull. Variable Stars 6149

  39. Hübscher J., Lehmann P. B., Walter F. 2012, Inf. Bull. Variable Stars 6010

  40. Hübscher J., Steinbach H.-M., Walter F. 2009, Inf. Bull. Variable Stars 5874

  41. Irwin J. B. 1959, Astron. J. 64, 149,

    ADS  Article  Google Scholar 

  42. Kallrath J., Milone E. F., eds, 1999, Eclipsing Binary Stars: Modeling and Analysis. 1999ebs..conf.....K

  43. Kulikovski P. G. 1934, Perem. Zvezdy 4, 294

    Google Scholar 

  44. Kurucz R. L. 2002, Baltic Astron. 11, 101

    ADS  Google Scholar 

  45. Kwee K. K., van Woerden H. 1956, Bull. Astron. Inst. Neth. 12, 327

    ADS  Google Scholar 

  46. Lee J. W., Park J.-H. 2018, Publ. Astron. Soc. Pac. 130(985), 034201,

    ADS  Article  Google Scholar 

  47. Leggett S. K., Ruiz, M. T., Bergeron, P. 1998, Astrophys. J. 497(1), 294,

    ADS  Article  Google Scholar 

  48. Lucy L. B. 1967, Z. Astrophys. 65, 89

    ADS  Google Scholar 

  49. Maraziti A. 1987, BBSAG Bull. 85, 2

    Google Scholar 

  50. Martignoni M. 1994, BBSAG Bull. 107, 3

    Google Scholar 

  51. Nelson R. H. 2004, Inf. Bull. Variable Stars 5493

  52. Nelson R. H. 2006, Inf. Bull. Variable Stars 5672

  53. Nelson R. H. 2008, Inf. Bull. Variable Stars 5820

  54. Nelson R. H. 2009,

  55. Nelson R. H. 2010a, Inf. Bull. Variable Stars 5929

  56. Nelson R. H. 2010b,

  57. Nelson R. H. 2010c, Spectroscopy for Eclipsing Binary Analysis in The Alt-az Initiative, Collins Foundation Press, Santa Margarita, CA

    Google Scholar 

  58. Nelson R. H. 2013, Inf. Bull. Variable Stars 6050

  59. Nelson R. H. 2015, Inf. Bull. Variable Stars 6131

  60. Nelson R. H. 2016, Inf. Bull. Variable Stars 6164

  61. Nelson R. H. 2017, Inf. Bull. Variable Stars 6195,

  62. Nelson R. H. 2018, Inf. Bull. Variable Stars 6234,

  63. Nelson R. H., Şenavci H. V., Baştrk Bahar E. 2014, New Astron. 29, 57,

    ADS  Article  Google Scholar 

  64. Pagel L. 2018, Inf. Bull. Variable Stars 6244,

  65. Parimucha S., Dubovský P., Vanko M. 2013, Inf. Bull. Variable Stars 6044

  66. Parimucha S., Dubovský P., Baludansky D., Pribulla T., Hambalek L., Vanko M., Ogloza W. 2009, Inf. Bull. Variable Stars 5898

  67. Parimucha S., Dubovský P., Vanko M., Pribulla T., Kudzej I., Barsa R. 2011, Inf. Bull. Variable Stars 5980

  68. Parimucha S., Dubovský P., Kudak V., Perig V. 2016, Inf. Bull. Variable Stars 6167, arXiv: 1604.03337

  69. Paunzen E., Vanmunster T. 2016, Astron. Nachr. 337(3), 239,

    ADS  Article  Google Scholar 

  70. Pecaut M. J., Mamajek E. E. 2013, Astrophys. J. Suppl. Ser. 208(1), 9,

    ADS  Article  Google Scholar 

  71. Pribulla T., Chochol D., Vittone A. A. 2003, Chin. J. Astron. Astrophys. 3(S1), 361,

    ADS  Article  Google Scholar 

  72. Pribulla T., Ruciński S. M. 2006, Astron. J. 131(6), 2986,

    ADS  Article  Google Scholar 

  73. Prša A., Zwitter T. 2005, Astrophys. J. 628, 426, arXiv: astro-ph/0503361.

  74. Randich S., Schmitt J. H. M. M., Prosser C. F., Stauffer J. R. 1996, Astron. Astrophys. 305, 785

    ADS  Google Scholar 

  75. Ruciński S. M. 1969, Acta Astron. 19, 245

    ADS  Google Scholar 

  76. Ruciński S. M. 1992, Astron. J. 104, 1968,

    ADS  Article  Google Scholar 

  77. Ruciński S. M. 2002, Astron. J. 124(3), 1746,

    ADS  Article  Google Scholar 

  78. Ruciński S. M. 2004, in: Maeder A., Eenens P., eds, Stellar Rotation. IAU Symposium, Volume 215, p. 17,

  79. Samolyk G. 2011, J. Am. Assoc. Variable Star Obs. (JAAVSO) 39, 94

    ADS  Google Scholar 

  80. Samus N. N., Pastukhova E. N., Durlevich O. V., Kazarovets E. V. 2018, Res. Astron. Astrophys. 18(7), 083,

    ADS  Article  Google Scholar 

  81. Schlafly E. F., Finkbeiner D. P. 2011, Astrophys. J. 737(2), 103,

    ADS  Article  Google Scholar 

  82. Shakhovski N. M. 1955, Astron. Tsirk. 165, 14

    Google Scholar 

  83. Smith T. C., Henden A. A., Starkey D. R. 2011, Society for Astronomical Sciences Annual Symposium, Volume 30, p. 121

    ADS  Google Scholar 

  84. Stȩpień K. 2006a, Acta Astron. 56, 199, arXiv: astro-ph/0510464

    ADS  Google Scholar 

  85. Stȩpień K. 2006b, Acta Astron. 56, 347, arXiv: astro-ph/0701529

    ADS  Google Scholar 

  86. Stȩpień K. 2011, Astron. Astrophys. 531, 18, arXiv: 1105.2627.

  87. Stȩpień K., Kiraga M. 2013, Acta Astron. 63, 239, arXiv: 1403.2302

    ADS  Google Scholar 

  88. Stȩpień K., Kiraga M. 2015, Astron. Astrophys. 577, 117,

    ADS  Article  Google Scholar 

  89. Stȩpień K., Pamyatnykh A. A., Rozyczka M. 2017, Astron. Astrophys. 597, 87,

    ADS  Article  Google Scholar 

  90. Terrell D., Wilson R. E. 2005, Astrophys. Space Sci. 296(1–4), 221,

    ADS  Article  Google Scholar 

  91. Terrell D., Gross J., Cooney W. R. 2012, Astron. J. 143(4), 99,

    ADS  Article  Google Scholar 

  92. Tian X.-M., Zhu L.-Y., Qian S.-B., Li L.-J., Jiang L.-Q. 2018, Res. Astron. Astrophys. 18(2), 020,

    ADS  Article  Google Scholar 

  93. Tian Y. P., Xiang F. Y., Tao X. 2009, Astrophys. Space Sci. 319(2–4), 119,

    ADS  Article  Google Scholar 

  94. van Hamme W. 1993, Astron. J. 106, 2096,

    ADS  Article  Google Scholar 

  95. Vandenbroere J., Dedoch A. 1996, BBSAG Bull. 112, 4

    Google Scholar 

  96. Völschow M., Schleicher D. R. G., Perdelwitz V., Banerjee, R. 2016, Astron. Astrophys. 587, 34,

    ADS  Article  Google Scholar 

  97. Šafř J. 2002, B.R.N.O. Contrib. 32, 1

    Google Scholar 

  98. Šafř J., Zejda M. 2000, Inf. Bull. Variable Stars 4888

  99. Šafř J., Zejda M. 2002, Inf. Bull. Variable Stars 5263

  100. Wilson R. E. 1979, Astrophys. J. 234, 1054,

    ADS  Article  Google Scholar 

  101. Wilson R. E. 1990, Astrophys. J. 356, 613,

    ADS  Article  Google Scholar 

  102. Wilson R. E., Van Hamme W. 2016,

  103. Wilson R. E., Devinney E. J. 1971, Astrophys. J. 166, 605,

    ADS  Article  Google Scholar 

  104. Yang Y.-G., Shao Z.-Y., Pan H.-J., Yin X.-G. 2011, Publ. Astron. Soc. Pac. 123(906), 895,

    ADS  Article  Google Scholar 

  105. Zasche P., Liakos A., Niarchos P., Wolf M., Manimanis V., Gazeas K. 2009, New Astron. 14(2), 121,

    ADS  Article  Google Scholar 

  106. Zejda M. 1995, Contributions of the Nicholas Copernicus Observatory and Planetarium in Brno No. 31 (31)

  107. Zejda M. 2004, Inf. Bull. Variable Stars 5583

Download references


This research has made use of the SIMBAD database and VizieR services operated at Centre de Donnes astronomiques de Strasbourg, France. Time-of-minima data tabulated in the Variable Star Section of Czech Astronomical Society (B.R.N.O.) website proved invaluable to the assessment of potential period changes experienced by this variable star. The diligence and dedication shown by all associated with these organizations is very much appreciated. This work also presents results from the European Space Agency (ESA) space mission Gaia. Gaia data are being processed by the Gaia Data Processing and Analysis Consortium (DPAC). Funding for the DPAC is provided by national institutions, in particular the institutions participating in the Gaia MultiLateral Agreement (MLA). The Gaia mission website is while the Gaia archive website is This work has also made use of data from the European Space Agency (ESA) mission Gaia. R.H.N. wishes to thank the staff members at the DAO (Dmitry Monin, David Bohlender) for their usual splendid help and assistance. Special thanks to Prof. Petr Zasche for sharing his simplex code used to obtain LiTE solutions from eclipse timings. Many thanks to the anonymous referee for taking time to critically review and provide very helpful commentary to improve this manuscript.

Author information



Corresponding author

Correspondence to Kevin B. Alton.



Appendix A: RV error analyses

The error estimate for a given fitted quantity (such as \(K_{1}\), \(K_{2}\), or a derived quantity such as mass) was determined as follows: Let \(Q = f (y_{1}, y_{2},\ldots , y_{n}\)), where \(Q = K_{1}, K_{2},\ldots , y_{i}\) are the individual RV points, and f is a function not known explicitly but recoverable from the Solver fit. If we increase quantity \(y_{i}\) by its estimated error \(\delta y_{i}\) and reapply Solver we obtain a new value, \(Q_{i}^{\prime} = f (y_{1}, y_{2}, \ldots, y_{i} + \delta y_{i},\ldots , y_{n})\). The resulting difference, \(\mid Q_{i}^{\prime} - Q\mid \) may be taken as \(\delta Q_{i}\), a value due to error in point \(y_{i}\). Then, assuming statistical independence, the error in Q is given by the standard formula:

$$\begin{aligned} \delta Q = \sqrt{\delta Q_{1}^2 + \delta Q_{2}^2 +\cdots +\delta Q_{n}^2}. \end{aligned}$$

In this case, the number of data points was sufficiently small so that values for all the \(\delta Q_{i}\) were computed. This procedure has been used in other circumstances where the number of points, n, was too many for all values \(\delta Q_{i}\) to be evaluated. In this case, a random sample of points, \(y_{i}\), was taken and results scaled up.

Appendix B: Derivation of phase-smearing correction (R. H. Nelson)

Let \(I(\lambda ,t)\) equal the instantaneous spectrum, and compute the RVs by a broadening function routine such that

$$\begin{aligned} V(t)=B\cdot [I(\lambda ,t)], \end{aligned}$$

where B is some undefined function. (If the procedures and parameters of the broadening function process are fixed, B will return a unique value for a given input, and is therefore a function.) But, since instantaneous spectra cannot be taken, we need to integrate over some time interval:

$$\begin{aligned} \Delta t = t_{2}-t_{1}=T. \end{aligned}$$

At the mid-time, \(t_{m}\), we compute

$$\begin{aligned} \tilde{V}(t_{m}) = B\cdot \left[ \frac{1}{T}\int _{t_{m}-\frac{T}{2}}^{t_{m} +\frac{T}{2}}I(\lambda ,t)\,{\mathrm{d}}t \right] . \end{aligned}$$

It follows that since function B is linear (Ruciński 1992; Nelson 2010c),

$$\begin{aligned} \tilde{V}(t_{m}) = \frac{1}{T}\int _{t_{m}-\frac{T}{2}}^{t_{m}+\frac{T}{2}} B\cdot [I(\lambda ,t)]\,{\mathrm{d}}t = \frac{1}{T}\int _{t_{m}-\frac{T}{2}}^{t_{m}+\frac{T}{2}} V(t)\,{\mathrm{d}}t. \end{aligned}$$

If the orbit is circular, and outside of eclipse then

$$\begin{aligned} V(t)= K\sin (\omega t), \end{aligned}$$

where \(\omega =2\pi /P\), K is the amplitude, and P is the period. Then

$$\begin{aligned} \tilde{V}(t_{m}) = \frac{-K}{\omega T}\left[ \cos \left( \omega t_{m}+\frac{\omega T}{2}\right) -\cos \left( \omega t_{m}-\frac{\omega T}{2}\right) \right] =\frac{2K}{\omega T}\sin \left( \frac{\omega T}{2}\right) \cdot \sin (\omega t_{m}). \end{aligned}$$


$$\begin{aligned} x=\frac{\omega T}{2}=\frac{\pi T}{P}=\frac{\pi (t_{2}-t_{1})}{P}. \end{aligned}$$


$$\begin{aligned} V(t) =\frac{\sin (x)}{x}\cdot K\sin (\omega t_{m})= f\cdot V_{m}, \end{aligned}$$

where \(f=\frac{\sin (x)}{x}\). Typical values of f are 0.95, 0.97, etc. Note that this correction affects only the scale of the RV plots, and cannot change the computed mass ratio. Therefore, the “true” value

$$\begin{aligned} V_{m}=\frac{\tilde{V}(t_{m})}{f}. \end{aligned}$$

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Alton, K.B., Nelson, R.H. & Stȩpień, K. A comprehensive investigation of the variable overcontact system EH Cancri. J Astrophys Astron 41, 26 (2020).

Download citation


  • CCD photometry
  • Roche modeling
  • radial velocity spectroscopy
  • period analysis
  • light-time effect
  • Applegate mechanism
  • Wilson–Devinney code