Skip to main content
Log in

A near-infrared camera for iRobo-AO on the IUCAA 2-m telescope

  • Published:
Journal of Astrophysics and Astronomy Aims and scope Submit manuscript

Abstract

The effect of atmospheric turbulence is gentler at infrared wavelengths than in visible regime. Hence adaptive optics (AO) delivers better performance in the infrared regime. Robotic Adaptive Optics (Robo-AO) is an AO system for medium-sized telescopes jointly built by Caltech, USA and IUCAA, India. It works with minimal overheads and provides good sky coverage in both visible and infrared regime. The first version of Robo-AO does not have a high-quality NIR camera. For the second version called iRobo-AO, an NIR camera was developed at IUCAA to accommodate AO-corrected \(1.0^{\prime }\) field-of-view in near-infrared bands. It can be used as a science camera as well as a tip-tilt camera. Here we describe the salient features of the NIR camera like optics, optomechanical design, detector control system etc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Notes

  1. It is an H2RG detector with \(2\ \hbox {k} \times 2\ \hbox {k}\) pixels, out of which only \(1\ \hbox {k} \times 1\ \hbox {k}\) is science grade. Teledyne does not make 1 k x 1 k sensors routinely anymore, and a special order would have long lead time for delivery.

References

  • Arsenault R., Madec P.-Y., Paufique J. et al. 2014, Proceedings of SPIE, 9148, 914802

  • Babcock H. W. 1953, PASP, 65, 229

    Article  ADS  Google Scholar 

  • Baranec C., Riddle R., Law N. M. et al. 2013, J. Vibration Engineering, vol. 72, https://doi.org/10.3991/5002/

  • Baranec C., Dekany R., Kulkarni S. R. et al. 2009, astro2010: The Astronomy and Astrophysics Decadal Survey, 2010

  • Burse M., Chattopadhyay S., Ramaprakash A. N. et al. 2016a, Proceedings of SPIE, 9915, 991520

    Article  Google Scholar 

  • Burse M., Ramaprakash A. N., Chordia P. et al. 2016b, Proceedings of SPIE, 9915, 991526

    Article  Google Scholar 

  • Goodman J. W. 1996, Introduction to Fourier Optics, McGraw-Hill

    Google Scholar 

  • Hardy J. W. (ed.) 1998, Adaptive Optics for Astronomical Telescopes, Oxford University Press

  • Hayano Y., Takami H., Guyon O. et al. 2008, Proceedings of SPIE, 7015, 701510

    Article  Google Scholar 

  • Jensen-Clem R., Duev D. A., Riddle R. et al. 2018, AJ, 155, 32

    Article  ADS  Google Scholar 

  • Law N. M. 2007, The Observatory, 127, 71

    ADS  Google Scholar 

  • Linnik V. P. 1994, European Southern Observatory Conference and Workshop Proceedings, vol. 48, p. 535 - translated in English; published 1957

  • Nasibov A., Kholmatov A., Nasibov H., Hacizade F. 2011, Investigation of a CCD modulation transfer function using the speckle method at different laser wavelengths and sub-windowing options, Int. J. Metrol. Qual. Eng., vol. 2(1), 25–30

    Article  Google Scholar 

  • Neichel B., Rigaut F., Vidal F. et al. 2014, MNRAS, 440, 1002

    Article  ADS  Google Scholar 

  • Nieto J.-L., Thouvenot E. 1991, A&A, 241, 663

    ADS  Google Scholar 

  • Paul J., Das H. K., Ramaprakash A. N., Burse M., Chordia P., Chillal K., Datir G., Joshi B., Khodade P., Kohok A., Mestry V., Punnadi S., Rajarshi C., Shekhar C. 2019, Design and development of an adaptive optics system in visible and near-infrared for Inter-University Centre for Astronomy and Astrophysics 2-meter telescope, J. Astron. Telesc. Instrum. Syst., 5(3), 039002, https://doi.org/10.1117/1.JATIS.5.3.039002

    Article  Google Scholar 

  • Paul J., Ramaprakash A. N., Das H. et al. 2018, Adaptive Optics Systems VI, 10703, 1070368, (SPIE) Conference Series

  • Plesseria J. Y., Henrist M., Doyle D. 2001, Fourth International Symposium Environmental Testing for Space Programmes, 467, 129

    ADS  Google Scholar 

  • Ramaprakash A., Burse M., Chordia P. et al. 2010, Proceedings of SPIE, 7742, 77422I

    Article  Google Scholar 

  • Raskin G., Morren J., Pessemier W., Perez Padilla J., Vandersteen J. 2013, arXiv:1311.0685

  • Riddle R. L., Burse M. P., Law N. M. et al. 2012, Proceedings of SPIE, 8447, 84472O

    Article  Google Scholar 

  • Salama M., Baranec C., Jensen-Clem R. et al. 2016, Proceedings of SPIE, 9909, 99091A

    ADS  Google Scholar 

  • Wizinowich P., Dekany R., Gavel D. et al. 2008, Proceedings of SPIE, 7015, 701511

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jyotirmay Paul.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paul, J., Ramaprakash, A.N., Das, H.K. et al. A near-infrared camera for iRobo-AO on the IUCAA 2-m telescope. J Astrophys Astron 40, 28 (2019). https://doi.org/10.1007/s12036-019-9595-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12036-019-9595-0

Keywords

Navigation