Hypersurface-homogeneous modified holographic Ricci dark energy cosmological model by hybrid expansion law in Saez–Ballester theory of gravitation

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The main motive of this investigation is to study the behavior of cosmological model in the presence of matter and a modified holographic Ricci dark energy for homogeneous hypersurface in the scalar tensor theory of gravitation, proposed by Saez–Ballester (Phys. Lett. A, 113, 467 (1986)). The hybrid expansion law (Akarsu et al., JCAP, 01, 022 (2014)) has been used to get a determinate solution. The physical condition that is shear scalar proportional to the expansion scalar is used to obtain the solution of the field equations. The various physical and geometrical aspects of the model are also discussed.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. Adhav K. S., Bokey V. D., Bansod A. S., Munde S. L. 2015, Amravati University Research Journal, Special Issue: International Conference on General Relativity, 25 November

  2. Agrawal P. K., Pawar D. D. 2017, J. Astrophys. Astr., 38, 2

    ADS  Google Scholar 

  3. Akarsu O., Kumar S., Myrzakulov R., Sami M., Xu L. 2014, JCAP, 01, 022

    ADS  Google Scholar 

  4. Akarsu O., Kumar S., Xu L., Dereli T. 2014, Eur. Phys. J. Plus, 129 (2), 1

    Google Scholar 

  5. Alam U., Sahni V., Saini T. D., Starobinsky A. A. 2003, Mon. Not. R. Astron. Soc., 344, 1057, arXiv:astro-ph/0303009

    ADS  Google Scholar 

  6. Alam U., Sahni V., Saini T. D., Starobinsky A. A. 2004a, Mon. Not. R. Astron. Soc., 354, 275

    ADS  Google Scholar 

  7. Alam U., Sahni V., Starobinsky A. A. 2004b, J. Cosmol. Astropart. Phys., 06, 008

    ADS  Google Scholar 

  8. Barber G. A. 1985, Gen. Relativ. Gravit., 14, 117

    ADS  Google Scholar 

  9. Bennett C. L. et al. 2013, arXiv:1212.5225v3 [astro-ph.CO]

  10. Blandford R. D. et al. 2004, arXiv:astro-ph/0408279

  11. Brans C. H., Dicke R. H. 1961, Phys. Rev. A, 124, 925

    ADS  Google Scholar 

  12. Chang Z., Wu F., Zhang X. 2006, Phys. Lett. B, 633, 14

    ADS  Google Scholar 

  13. Chen S., Jing J. 2009, Phys. Lett. B, 679, 144

    ADS  Google Scholar 

  14. Chiba T., Nakamura T. 1998, Prog. Theor. Phys., 100,1077

    ADS  Google Scholar 

  15. Cohen A. et al. 1999, Phys. Rev. Lett., 82, 4971

    ADS  MathSciNet  Google Scholar 

  16. Collins C. B. 1977, J. Math. Phys., 18, 2116

    ADS  Google Scholar 

  17. Collins C. B., Glass E. N., Wilkisons D. A. 1980, Gen. Relativ. Gravit., 12, 805

    ADS  Google Scholar 

  18. Das K., Sultana T. 2015, Astrophys. Space Sci., 360, 4

    ADS  Google Scholar 

  19. Debnath U. 2008, Class. Quantum Gravit., 25, Article ID 205019

  20. Dunn K. A. 1974, J. Math. Phys., 15, 2229

    ADS  Google Scholar 

  21. Feng B., Wang X. L., Zhang X. M. 2005, Phys. Lett. B, 607, 35

    ADS  Google Scholar 

  22. Feng C.-J. 2008, Phys. Lett. B, 670, 231

    ADS  Google Scholar 

  23. Gao C. et al. 2009, Phys. Rev. D, 79, 043511

    ADS  Google Scholar 

  24. Garnavich P. M. et al. 1998a, Astrophys. J., 493, L53

    ADS  Google Scholar 

  25. Garnavich P. M. et al. 1998b, Astrophys. J., 509, 74

    ADS  Google Scholar 

  26. Ghate H. R., Patil Y. D. 2016, Int. J. Sci. & Engg. Res., 7(2)

  27. Ghate H. R., Sontakke A. S. 2014, Int. J. Astron. Astrophys., 4, 181

    Google Scholar 

  28. Granda L. N., Oliveros A. 2008, Phys. Lett. B, 669, 275

    ADS  Google Scholar 

  29. Hajj-Boutros J. 1985, J. Math. Phys., 28, 2297

    ADS  MathSciNet  Google Scholar 

  30. Hinshaw G. et al. (WMAP Collaboration) 2009, Astrophys. J. Suppl., 180, 225

  31. Hinshaw G. et al. 2013, arXiv:1212.5226v3 [astro-ph.CO]

  32. Hsu S. D. H. 2014, Phys. Lett., 594, 13

    Google Scholar 

  33. Huang Q. G., Li M. 2004, JCAP, 2004, 013

    Google Scholar 

  34. Huterer D., Cooray A. 2005, Phys. Rev. D, 71, 023506

    ADS  Google Scholar 

  35. Jamil M., Ali S., Momeni D., Myrzakulov R. 2012, Eur. Phys. J., C72, 1998

    ADS  Google Scholar 

  36. Katore S. D., Adhav K. S., Shaikh A. Y., Sancheti M. M. 2011, Astrophys. Space Sci., 333, 333

    ADS  Google Scholar 

  37. Katore S. D., Adhav K. S., Shaikh A. Y., Sarkate N. K. 2010, Int. J. Theor. Phys., 49, 2558

    Google Scholar 

  38. Katore S. D., Shaikh A. Y. 2012a, Prespacetime J., 3(11), 1087

    Google Scholar 

  39. Katore S. D., Shaikh A. Y. 2012b, Bul. J. Phys., 39, 241

    Google Scholar 

  40. Katore S. D., Shaikh A. Y. 2014a, Afr. Rev. Phys., 9, 0035

    Google Scholar 

  41. Katore S. D., Shaikh A. Y. 2014b, Rom. J. Phys., 59(7–8), 715

    Google Scholar 

  42. Katore S. D., Shaikh A. Y. 2015a, Astrophys. Space Sci., 357(1), 27

    ADS  Google Scholar 

  43. Katore S. D., Shaikh A. Y. 2015b, Bulg. J. Phys., 41, 274

    Google Scholar 

  44. Katore S. D., Shaikh A. Y., Bhaskar S. 2014, Bulgarian J. Phys., 41(1)

  45. Katore S. D., Shaikh A. Y., Kapse D. V., Bhaskar S. A. 2011, Int. J. Theor. Phys., 50, 2644

    Google Scholar 

  46. Katore S. D., Shaikh A. Y. 2012c, Int. J. Theor. Phys., 51, 1881

    Google Scholar 

  47. Katore S. D., Shaikh A. Y. 2012d, Afr. Rev. Phys., 7, 0004

    Google Scholar 

  48. Katore S. D., Shaikh A. Y. 2012e, Afr. Rev. Phys., 7, 0054

    Google Scholar 

  49. Kiran M. et al. 2014b, Astrophys. Space Sci., 354, 2099

    Google Scholar 

  50. Kiran M., Reddy D. R. K., Rao V. U. M. 2014a, Astrophys. Space Sci., 354, 577

    ADS  Google Scholar 

  51. Knop R. K. et al. 2003, Astrophys. J., 598, 102

    ADS  Google Scholar 

  52. Komatsu E. et al. 2009, Astrophys. J. Suppl., 180, 330

    ADS  Google Scholar 

  53. Kumar S., Akarsu O. 2012, arXiv:1110.2408

  54. La D., Steinhardt P. J. 1991, Phys. Rev. Lett., 62, 376

    ADS  Google Scholar 

  55. Lyra G. 1951, Math. Z., 54, 52

    MathSciNet  Google Scholar 

  56. Mahanta C. R., Sarma N. 2017, New Astron., 57, 70

    ADS  Google Scholar 

  57. Mishra B., Tripathy S. K. 2015, Mod. Phys. Lett. A, 30, 36, 1550175

    ADS  Google Scholar 

  58. Mohanty G., Sahu S. K. 2003, Astrophys. Space Sci., 288, 509

    Google Scholar 

  59. Mohanty G., Sahu S. K. 2004, Astrophys. Space Sci., 291, 75

    ADS  Google Scholar 

  60. Moraes P. H. R. S., Sahoo P. K. 2017, arXiv:1707.01360v1 [gr-qc] 3 Jul 2017.

  61. Nordverdt K. 1970, Astrophys. J., 161, 1059

    ADS  MathSciNet  Google Scholar 

  62. Panotopoulos G. 2008, arXiv:0812.3987 [hep-ph]

  63. Perlmutter S. et al. 1997, Astrophys. J., 483, 565

    ADS  Google Scholar 

  64. Perlmutter S. et al. 1998, Nature, 391, 51

    ADS  Google Scholar 

  65. Perlmutter S. et al. 1999, Astrophys. J., 517, 565

    ADS  Google Scholar 

  66. Pradhan A., Amirhashchi H. 2011, Mod. Phy. Lett. A, 26(30), 2261

    ADS  Google Scholar 

  67. Raju P. et al. 2016, Astrophys. Space Sci., 361, article 77

  68. Ram S., Tiwari S. K. 1998, Astrophys. Space Sci., 259, 91

    ADS  MathSciNet  Google Scholar 

  69. Rao V. M. U., Kumari G. S. D., Sireesha K. V. S. 2011, Astrophys. Space Sci., 335, 635

    ADS  Google Scholar 

  70. Rao V. U. M., Divya Prasanthia U. Y., Adityab Y. 2018, Results Phys., 10, 469

    ADS  Google Scholar 

  71. Rao V. U. M., Prasanthi U. Y. D. 2017a, Eur. Phys. J. Plus, 132, 64

    Google Scholar 

  72. Rao V. U. M., Prasanthi U. Y. D. 2017b, Can. J. Phys., 95, 554

    ADS  Google Scholar 

  73. Rapetti D., Allen S. W., Amin M. A., Blandford R. D. 2007, arXiv:astro-ph/0605683v2 25

  74. Raut V. B., Adhav K. S., Wankade R. P., Gawande S. M. 2016, Eur. Int. J. Sci. Tech., 5

  75. Reddy D. R. K. 2016, Prespacetime J., 7

  76. Reddy D. R. K. 2017, Prespacetime J., 8, 190

    Google Scholar 

  77. Reddy D. R. K. et al. 2015, Prespacetime J., 6, 1171

    Google Scholar 

  78. Reddy D. R. K., Govinda P., Naidu R. L. 2008, Int. J. Theor. Phys., 47, 2966

    Google Scholar 

  79. Reddy D. R. K., Naidu R. L., Rao V. U. M. 2006, Astrophys. Space Sci., 306, 185

    ADS  Google Scholar 

  80. Reddy D. R. K., Subba Rao M. V., Naidu R. L. 2018, Prespacetime J., 9(4), 313

    Google Scholar 

  81. Riess A. G. et al. 1998, Astron. J., 116, 1009

    ADS  Google Scholar 

  82. Riess A. G. et al. 2000, Astron. Soc. Pac., 114, 1284

    ADS  Google Scholar 

  83. Riess A. G. et al. 2004, Astrophys. J., 607, 665

    ADS  Google Scholar 

  84. Ross D. K. 1972, Phys. Rev. D, 5, 284 (1972)

    ADS  Google Scholar 

  85. Saez D., Ballester V. J. 1986, Phys. Lett. A, 113, 467

    ADS  Google Scholar 

  86. Sahni V., Saini T. D., Starobinsky A. A., Alam U. 2003, JETP Lett., 77, 201

    ADS  Google Scholar 

  87. Sahni V., Shtanov Y. 2003, J. Cosmol. Astropart. Phys., 11, 014

    ADS  Google Scholar 

  88. Sahoo P. K., Sahoo P., Bishi B. K., Aygun S. 2017, arXiv:1703.08430v3 [physics.gen-ph] 9 Jun 2017

  89. Sahoo P. K., Sivakumar M. 2015, Astrophys. Space Sci., 357, 60, https://doi.org/10.1007/s10509-015-2264-0

    ADS  Article  Google Scholar 

  90. Samanta G. C., Biswal S. K., Sahoo P. K. 2013, Int. J. Theor. Phys., 52, 1504

    Google Scholar 

  91. Santhi M. V. et al. 2016, Prespacetime J., 7, 1379

    Google Scholar 

  92. Santhi M. V. et al. 2017a, Can. J. Phys., 95, 179

    ADS  Google Scholar 

  93. Santhi M. V. et al. 2017b, Can. J. Phys., 95, 381

    ADS  Google Scholar 

  94. Santhi M. V., Aditya Y., Rao V. U. M. 2016, Astrophys. Space Sci., 361, 142

    ADS  Google Scholar 

  95. Sarkar S. 2014, Astrophys. Space Sci., 349, 985

    ADS  Google Scholar 

  96. Sarkar S., Mahanta C. R. 2013, Int. J. Theor. Phys., 52, 1482

    Google Scholar 

  97. Schmidt B. P. et al. 1998, Astrophys. J., 507, 46

    ADS  Google Scholar 

  98. Setare M. R. 2007, Phys. Lett. B, 644, 99

    ADS  MathSciNet  Google Scholar 

  99. Setare M. R., Vanegas E. C. 2009, Int. J. Mod. Phys. D, 18, 147

    ADS  Google Scholar 

  100. Shaikh A. Y. 2017, Adv. Astrophys., 2(3)

  101. Shaikh A. Y., Katore S. D. 2016a, Pramana J. Phys., 87, 83

    ADS  Google Scholar 

  102. Shaikh A. Y., Katore S. D. 2016b, Pramana J. Phys., 87, 88

    ADS  Google Scholar 

  103. Shaikh A. Y., Wankhade K. S. 2017a, Phys. Astron. Int. J., 1(4), 00020

    Google Scholar 

  104. Shaikh A. Y., Wankhade K. S. 2017b, Theoretical Phys., 2(1)

  105. Shaikh A. Y., Wankhade K. S., Bhoyar S. R. 2017, IJSRST, 3(8)

  106. Sharif M., Zubair M. 2010, Astrophys. Space Sci., https://doi.org/10.1007/s10509-010-0414-y

    ADS  MATH  Google Scholar 

  107. Shri Ram, Chandel S. 2015, Astrophys. Space Sci., 355, 195

    ADS  Google Scholar 

  108. Singh C. P., Ram S. 2003, Astrophys. Space Sci., 284, 1999

    Google Scholar 

  109. Singh T., Agrawal A. K. 1991, Astrophys. Space Sci., 182, 289

    ADS  MathSciNet  Google Scholar 

  110. Singh T., Agrawal A. K. 1992, Astrophys. Space Sci., 191, 61

    ADS  MathSciNet  Google Scholar 

  111. Spergel D. N. et al. 2003, Astrophys. J. Suppl., 148, 175

    ADS  Google Scholar 

  112. Spergel D. N. et al. 2007, Astrophys. J. Suppl., 170, 377

    ADS  Google Scholar 

  113. Stewart J. M., Ellis G. F. R. 1968, J. Math. Phys. 9, 1072

    ADS  Google Scholar 

  114. Tegmark M. et al. (SDSS collaboration) 2004, Phys. Rev. D, 69, 103501

  115. Throne K. S. 1967, Astrophys. J., 148, 503

    Google Scholar 

  116. Tonry J. L. et al. 2003, Astrophys. J., 594, 1

    ADS  Google Scholar 

  117. Vasilyev V. V. 2003, Pis’ma Zh. Eksp. Teor. Fiz., 77, 249, arXiv:astro-ph/0201498

    Google Scholar 

  118. Visser M. 2004, Class. Quantum Gravit., 21, 2603

    ADS  Google Scholar 

  119. Visser M. 2005, Gen. Relativ. Gravit., 37, 1541

    ADS  Google Scholar 

  120. Wagoner R. V. 1970, Phys. Rev. D, 1, 3209

    ADS  Google Scholar 

  121. Yadav A. K., Srivastava P. K., Yadav L. 2015, Int. J. Theor. Phys., 54, 1671

    Google Scholar 

  122. Yadav A. K., Yadav L. 2010, arXiv:1007.1411v2 [gr-qc]

  123. Zhang X. 2005, Phys. Lett. B, 611, 1, arXiv:astro-ph/0503075

    ADS  Google Scholar 

  124. Zhang X., Wu F. Q. 2005, Phys. Rev. D, 72, 043524

    ADS  Google Scholar 

Download references

Acknowledgements

The authors are indebted to the anonymous referee for suggestions that have significantly improved their paper in terms of research quality as well as the presentation.

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. Y. Shaikh.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shaikh, A.Y., Shaikh, A.S. & Wankhade, K.S. Hypersurface-homogeneous modified holographic Ricci dark energy cosmological model by hybrid expansion law in Saez–Ballester theory of gravitation. J Astrophys Astron 40, 25 (2019). https://doi.org/10.1007/s12036-019-9591-4

Download citation

Keywords

  • Hypersurface-homogeneous space-time
  • hybrid expansion law
  • modified holographic dark energy
  • Saez–Ballester theory