Advertisement

Gravitational instability in isotropic MHD plasma waves

  • Alemayehu Mengesha Cherkos
Review
  • 41 Downloads

Abstract

The effect of compressive viscosity, thermal conductivity and radiative heat-loss functions on the gravitational instability of infinitely extended homogeneous MHD plasma has been investigated. By taking in account these parameters we developed the six-order dispersion relation for magnetohydrodynamic (MHD) waves propagating in a homogeneous and isotropic plasma. The general dispersion relation has been developed from set of linearized basic equations and solved analytically to analyse the conditions of instability and instability of self-gravitating plasma embedded in a constant magnetic field. Our result shows that the presence of viscosity and thermal conductivity in a strong magnetic field substantially modifies the fundamental Jeans criterion of gravitational instability.

Keywords

MHD gravitational instability magnetic fields stability viscosity 

Notes

Acknowledgements

I am thankful to the editor and anonymous referees for the evaluation of my paper.

References

  1. Alemayehu M., Tessema S. B. 2013a, J. Plasma Phys, 79, 535CrossRefGoogle Scholar
  2. Alemayehu M., Tessema S. B. 2013b, J. Plasma Phys, 79, 805CrossRefGoogle Scholar
  3. Braginskii S. I. 1965, Rev. Plasma Phys. 1, 205ADSGoogle Scholar
  4. Bray, R. J., Cram, L. E., Durrant, C. J., Loughhead, R. E. 1991, Plasma Loops in the Solar Corona, Cambridge University Press, Cambridge, p. 5CrossRefGoogle Scholar
  5. Carbonell M., Oliver R., Ballester J. L. 2004, J. Astronomy and Astrophysics, 415, 739ADSCrossRefGoogle Scholar
  6. Chandrasekhar, S. 1961, Hydrodynamics and Hydromagnetic Stability, Oxford University Press, Oxford, p. 652zbMATHGoogle Scholar
  7. Chhajlani R. K., Vaghela D. S. 1987, J. Astrophysics and Space Science, 134, 301ADSCrossRefGoogle Scholar
  8. Daniela P., Nakia C., Massimiliano L., Giovanni M., Riccardo B. 2011, J. High Energy Astrophy. Phen. (astro-ph.HE), 241, 721Google Scholar
  9. Erdelyi R., Goossens M. 1994, J. Astrophys. Space, Sci. 213, 273Google Scholar
  10. Hood A. W., Priest E. R. 1981, J. Solar Physics, 73, 289ADSCrossRefGoogle Scholar
  11. Jeans J. H. 1902, Phil. Trans. Roy. Soc. Lond. A199, 1ADSCrossRefGoogle Scholar
  12. Kalra G. L., Talwar S. P. 1964, J. Annales d’Astrophysique, 27, 102ADSGoogle Scholar
  13. Kumar N., Kumar P., Singh S. 2006, J. A&A, 453, 1067ADSCrossRefGoogle Scholar
  14. Ofman L., Davila J. M., Steinolfson R. S. 1994, ApJ, 421, 360ADSCrossRefGoogle Scholar
  15. Pandey V. S., Dwivedi B. N. 2007, J. Bull. Astr. Soc. India, 35, 465ADSGoogle Scholar
  16. Patidar A. K., Pensia R. K., Shrivastava V. 2012, Canadian J. Phys., 90, 1209ADSCrossRefGoogle Scholar
  17. Pinter B., Cadez V. M., Roberts, B. 1999, A&A, 346, 190ADSGoogle Scholar
  18. Porter L. J., Klimchuk J. A., Sturrock P. A. 1994, ApJ, 435, 482ADSCrossRefGoogle Scholar
  19. Ruderman M. S., Oliver R., Erdelyi R., Ballester J. L., Goossens M. 2000, A&A, 354, 261ADSGoogle Scholar

Copyright information

© Indian Academy of Sciences 2018

Authors and Affiliations

  1. 1.Institute of Geophysics Space Science and AstronomyAddis Ababa UniversityAddis AbabaEthiopia

Personalised recommendations