Large Scale Earth’s Bow Shock with Northern IMF as Simulated by PIC Code in Parallel with MHD Model

Article
  • 100 Downloads

Abstract

In this paper, we propose a 3D kinetic model (particle-in-cell, PIC) for the description of the large scale Earth’s bow shock. The proposed version is stable and does not require huge or extensive computer resources. Because PIC simulations work with scaled plasma and field parameters, we also propose to validate our code by comparing its results with the available MHD simulations under same scaled solar wind (SW) and (IMF) conditions. We report new results from the two models. In both codes the Earth’s bow shock position is found to be ≈14.8 RE along the Sun–Earth line, and ≈29 RE on the dusk side. Those findings are consistent with past in situ observations. Both simulations reproduce the theoretical jump conditions at the shock. However, the PIC code density and temperature distributions are inflated and slightly shifted sunward when compared to the MHD results. Kinetic electron motions and reflected ions upstream may cause this sunward shift. Species distributions in the foreshock region are depicted within the transition of the shock (measured ≈2 c/ωpi for ΘBn = 90° and MMS = 4.7) and in the downstream. The size of the foot jump in the magnetic field at the shock is measured to be (1.7c/ωpi). In the foreshocked region, the thermal velocity is found equal to 213 km s−1 at 15RE and is equal to 63 km s −1 at 12 RE (magnetosheath region). Despite the large cell size of the current version of the PIC code, it is powerful to retain macrostructure of planets magnetospheres in very short time, thus it can be used for pedagogical test purposes. It is also likely complementary with MHD to deepen our understanding of the large scale magnetosphere.

Keywords

Magnetosphere magnetopause bow shock PIC code MHD model. 

Notes

Acknowledgements

This work would have not been done without the insights and hard work on code development by Dr Lotfi Ben-Jaffel, IAP. The author would also like to thank the IAP-CNRS (Paris, France), David Sibeck of NGFC-NASA, Bob Clauer of VT and Douglas Staley, President of NIA for their continuous support and insights, and Zamala program and Bank of Palestine for supporting his research visits to the US.

References

  1. Axford, W. 1962, J. Geophys. Res., 67, 3791.ADSCrossRefGoogle Scholar
  2. Bale, S., Mozer, F., Horbury, T. 2003, Phys. Rev. Lett., 91, 265004.ADSCrossRefGoogle Scholar
  3. Baraka, S. 2007, Ph.D. thesis, Université Pierre et Marie Curie-Paris VI.Google Scholar
  4. Baraka, S., Ben-Jaffel, L. 2007, J. Geophys. Res. (Space Phys.), 112, 6212.Google Scholar
  5. Baraka, S., Ben-Jaffel, L. 2011, Annales Geophysicae, 29, 31.ADSCrossRefGoogle Scholar
  6. Baraka, S., Jaffel, L. 2014, in: AGU Fall Meeting Abstracts, Vol. 1, 4222.Google Scholar
  7. Baraka, S., Jaffel, L., Dandouras, I. 2013, in: AGU Fall Meeting Abstracts, Vol. 1, 2236.Google Scholar
  8. Ben-Jaffel, L., Ballester, G. E. 2014, Astrophys. J. Lett., 785, L30.ADSCrossRefGoogle Scholar
  9. Ben-Jaffel, L., Strumik, M., Ratkiewicz, R., Grygorczuk, J. 2013, APJ, 779, 130.ADSCrossRefGoogle Scholar
  10. Birdsall, C. K., Langdon, A. B. 2005, Plasma Physics via Computer Simulaition (CRC Press).Google Scholar
  11. Bonifazi, C., Moreno, G. 1981, J. Geophys. Res.: Space Phys., (1978–2012), 86, 4405.Google Scholar
  12. Buneman, O. 1993, Simulation Techniques and Software, 67.Google Scholar
  13. Buneman, O., Barnes, C., Green, J., Nielsen, D. 1980, J. Comput. Phys., 38, 1.ADSMathSciNetCrossRefGoogle Scholar
  14. Buneman, O., Neubert, T., Nishikawa, K.-I. 1992, Plasma Science, IEEE Trans., 20, 810.Google Scholar
  15. Buneman, O., Nishikawa, K.-I., Neubert, T. 1995, Space Plasmas: Coupling Between Small and Medium Scale Processes, 347.Google Scholar
  16. Bykov, A., Treumann, R. 2011, Astron. Astrophys. Rev., 19, 1.Google Scholar
  17. Büchner, J., Dum, C., Scholer, M. 2003, Space plasma simulation, Vol. 615 (Springer).Google Scholar
  18. Cai, D., Esmaeili, A., Lembège, B., Nishikawa, K.-I. 2015, J. Geophys. Res.: Space Phys., 120, 8368.Google Scholar
  19. Cai, D., Li, Y., Nishikawa, K.-I. et al. 2003, in: Space Plasma Simulation (Springer), 25–53.Google Scholar
  20. Cai, D., Yan, X., Nishikawa, K.-I., Lembège, B. 2006, Geophys. Res. Lett., 33.Google Scholar
  21. Chapman, S., Ferraro, V. C. A. 1930, Nature, 126, 129.ADSCrossRefGoogle Scholar
  22. Dmitriev, A., Chao, J., Wu, D. 2003, J. Geophys. Res., 108, 1464.CrossRefGoogle Scholar
  23. Dungey, J. 1962, J. Physical Soc. Japan Suppl., 17, 15.Google Scholar
  24. Ellison, D. C., Giacalone, J., Burgess, D., Schwartz, S. 1993, J. Geophys. Res.: Space Phys. (1978–2012), 98, 21085.Google Scholar
  25. Filbert, P. C., Kellogg, P. J. 1979, J. Geophys. Res., 84, 1369.ADSCrossRefGoogle Scholar
  26. Fitzenreiter, R. J., Klimas, A. J., Scudder, J. D. 1984, GRL, 11, 496.ADSCrossRefGoogle Scholar
  27. Fontaine, D., Turc, L., Savoini, P. 2015, in; EGU General Assembly Conference Abstracts, Vol. 17, 5908.Google Scholar
  28. Gombosi, T., Zeeuw, D. D., Groth, C. 2000, IEEE Trans. Plasma Sci. Google Scholar
  29. Janhunen, P., Palmroth, M., Laitinen, T. et al. 2012, J. Atmos. Solar-Terrestrial Phys., 80, 48.Google Scholar
  30. Jelínek, K., Němeček, Z., Šafránková, J. et al. 2010, J. Geophys. Res. (Space Phys.), 115, 10203.Google Scholar
  31. Keika, K., Nakamura, R., Baumjohann, W. et al. 2009, J. Geophys. Res. (Space Phys.), 114.Google Scholar
  32. Kellogg, P. J. 1962, J. Geophys. Res., 67, 3805.Google Scholar
  33. Kowal, G., Dal Pino, E. d. G., Lazarian, A. 2011, AJ, 735, 102.CrossRefGoogle Scholar
  34. Krasnoselskikh, V., Balikhin, M., Walker, S. N. et al. 2013, Space Sci. Rev., 178, 535.ADSCrossRefGoogle Scholar
  35. Kronberg, E., Bučík, R., Haaland, S. et al. 2011, J. Geophys. Res.: Space Phys. (1978–2012), 116.Google Scholar
  36. Kullen, A., Janhunen, P. et al. 2004, in: Ann. Geophys., Vol. 22, 951–970.Google Scholar
  37. Leboeuf, J., Tajima, T., Kennel, C. F., Dawson, J. 1978, Geophys. Res. Lett., 5, 609.Google Scholar
  38. Lindman, E. 1975, J. Comput. Phys., 18, 66.ADSCrossRefGoogle Scholar
  39. Mann, I., Milling, D., Rae, I. et al. 2008, Space Science Reviews, 141, 413.Google Scholar
  40. Maynard, N. C., Farrugia, C. J., Burke, W. J. et al. 2011, J. Geophys. Res.: Space Phys. (1978–2012), 116.Google Scholar
  41. Meziane, K., Hamza, A. M., Maksimovic, M., Alrefay, T. Y. 2015, J. Geophys. Res.: Space Phys., 120, 1229.ADSCrossRefGoogle Scholar
  42. Meziane, K., Wilber, M., Hamza, A. et al. 2007, J. Geophys. Res., 112, A01101.ADSCrossRefGoogle Scholar
  43. Moritaka, T., Kajimura, Y., Usui, H. et al. 2012, Phys. Plasmas (1994–present), 19, 032111.Google Scholar
  44. Nishikawa, K.-I. 1997, J. Geophys. Res.: Space Phys. (1978–2012), 102, 17631.Google Scholar
  45. Omidi, N., Blanco-Cano, X., Russell, C. 2005, J. Geophys. Res.: Space Phys. (1978–2012), 110.Google Scholar
  46. Omidi, N., Sibeck, D., Blanco-Cano, X. et al. 2013, J. Geophys. Res.: Space Phys., 118, 823.Google Scholar
  47. Palmroth, M., Janhunen, P., Pulkkinen, T. et al. 2005, in: Annales Geophysicae, Vol. 23 (Copernicus GmbH), 2051–2068.Google Scholar
  48. Palmroth, M., Pulkkinen, T., Janhunen, P., Wu, C.-C. 2002, J. Geophys. Res., 108, SMP24.Google Scholar
  49. Parks, G. K. 2004, Space Science Reviews, 113, 97.Google Scholar
  50. Paschmann, G., Sckopke, N., Papamastorakis, I. et al. 1981, J. Geophys. Res.: Space Phys. (1978–2012), 86, 4355.Google Scholar
  51. Peredo, M., Slavin, J., Mazur, E. Curtis, S. 1995, J. Geophys. Res.: Space Phys. (1978–2012), 100, 7907.ADSCrossRefGoogle Scholar
  52. Petrukovich, A., Artemyev, A., Vasko, I., Nakamura, R., Zelenyi, L. 2015, Space Science Reviews, 188, 311.ADSCrossRefGoogle Scholar
  53. Pokhotelov, D., von Alfthan, S., Kempf, Y. et al. 2013, in: Annales Geophysicae, Vol. 31 (Copernicus GmbH), 2207–2212.Google Scholar
  54. Pritchett, P. L. 2000, Plasma Science, IEEE Trans., 28, 1976.ADSCrossRefGoogle Scholar
  55. Rojas-Castillo, D., Blanco-Cano, X., Kajdič, P., Omidi, N. 2013, J. Geophys. Res.: Space Phys. Google Scholar
  56. Samsonov, A. A. 2007, Geomagnetism and Aeronomy, 47, 316.ADSCrossRefGoogle Scholar
  57. Savoini, P., Lembege, B., Stienlet, J. 2013, J. Geophys. Res. (Space Phys.), 118, 1132.ADSCrossRefGoogle Scholar
  58. Schreiner, C., Spanier, F. 2014, Comput. Phys. Commun. Google Scholar
  59. Seki, Y., Nishino, M., Fujimoto, M. et al. 2009, J. Geophys. Res.: Space Phys. (1978–2012), 114.Google Scholar
  60. Shaikhislamov, I., Antonov, V., Zakharov, Y. P. et al. 2011, arXiv preprint arXiv:1110.4461.
  61. Sitnov, M. 2015, private communication.Google Scholar
  62. Treumann, R. 2009, A&A Review, 17, 409.ADSCrossRefGoogle Scholar
  63. Vapirev, A., Lapenta, G., Divin, A. et al. 2013, J. Geophys. Res.: Space Phys. Google Scholar
  64. Villasenor, J., Buneman, O. 1992, Comput. Phys. Commun., 69, 306.Google Scholar
  65. Welling, D., Liemohn, M., Toth, G., Glocer, A. 2013, in: AGU Fall Meeting Abstracts, Vol. 1, 2105.Google Scholar
  66. Winglee, R., Lewis, W., Lu, G. 2005, J. Geophys. Res.: Space Phys. (1978–2012), 110.Google Scholar
  67. Wodnicka, E. 2009, in: Annales Geophysicae, Vol. 27 (Copernicus GmbH), 2331–2339.Google Scholar

Copyright information

© Indian Academy of Sciences 2016

Authors and Affiliations

  1. 1.National Institute of AerospaceHamptonUSA.
  2. 2.Center for Astronomy and Space Sciences-CASSRAl Aqsa UniversityGazaPalestine.
  3. 3.Institut d’Astrophysique de ParisParisFrance.

Personalised recommendations