Skip to main content
Log in

Rapid neutron capture process in supernovae and chemical element formation

  • Published:
Journal of Astrophysics and Astronomy Aims and scope Submit manuscript

Abstract

The rapid neutron capture process (r-process) is one of the major nucleosynthesis processes responsible for the synthesis of heavy nuclei beyond iron. Isotopes beyond Fe are most exclusively formed in neutron capture processes and more heavier ones are produced by the r-process. Approximately half of the heavy elements with mass number A > 70 and all of the actinides in the solar system are believed to have been produced in the r-process. We have studied the r-process in supernovae for the production of heavy elements beyond A = 40 with the newest mass values available. The supernova envelopes at a temperature >109 K and neutron density of 1024 cm−3 are considered to be one of the most potential sites for the r-process. The primary goal of the r-process calculations is to fit the global abundance curve for solar system r-process isotopes by varying time dependent parameters such as temperature and neutron density. This method aims at comparing the calculated abundances of the stable isotopes with observation. We have studied the r-process path corresponding to temperatures ranging from 1.0 × 109 K to 3.0 × 109 K and neutron density ranging from 1020 cm−3 to 1030 cm−3. With temperature and density conditions of 3.0 × 109 K and 1020 cm−3 a nucleus of mass 273 was theoretically found corresponding to atomic number 115. The elements obtained along the r-process path are compared with the observed data at all the above temperature and density range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arnett, W. D. 1979, Proceedings of the workshop on Sources of Gravitational Radiation, Cambridge University Press, 311.

  • Audi, G., Wapstra, A. H., Thibault, C. 2003, Nucl. Phys. A, 729, 337.

    Article  ADS  Google Scholar 

  • Borzov, I. N., Goriely, S. 2000, Phys. Rev. C, 62, 03550.

    Article  Google Scholar 

  • Bruenn, S. W. 1989a, ApJ, 340, 955.

    Article  ADS  Google Scholar 

  • Burbidge, E. M., Burbidge, G. R., Fowler, W. A., Hoyle, F. 1957, Rev. Mod. Phys., 29, 547.

    Article  ADS  Google Scholar 

  • Chetia, A., Duorah, H. L. 1986, Il Nuovo Cimento, 94B, 93.

    ADS  Google Scholar 

  • Fermi, E. 1950, University of Chicago, Chicago Ill, 8.

  • Freiburghaus, C., Rembges, J. F., Rauscher, T., Kolbe, E., Thielemann, F. K., Kratz, K. L., Pfeiffer, B., Cowan, J. J. 1999, ApJ, 516, 381.

    Article  ADS  Google Scholar 

  • Janka, H. T. 1993, Frontier Objects in Astrophysics and Particle Physics (eds) Giovannelli, F., Mannocchi, G., Conf. Proc., SIF, Bologna, 40, p345.

  • Kratz, K. L., Pfeiffer, B., Thielemann, F. K., Bitouzet, J. P., Moller, P. 1993, ApJ, 402, 216.

    Article  ADS  Google Scholar 

  • Mathews, G. J., Cowan, J. J. 1992, ApJ, 391, 719.

    Article  ADS  Google Scholar 

  • Meyer, B. S., Mathews, G. J., Howard, W. M., Woosley, S. E., Hoffman, R. D. 1992, ApJ, 399, 656.

    Article  ADS  Google Scholar 

  • Mukhopadhyay, B. 2007, Class. Quant. Grav., 24, 1433.

    Article  MATH  ADS  Google Scholar 

  • Qian, Y. Z., Vogel, P., Wasserburg, G. J. 1998, ApJ, 494, 285.

    Article  ADS  Google Scholar 

  • Schramm, D. N. 1973, Proceedings of Conference on Explosive Nucleosynthesis, Austin, Texas.

  • Swiategki, W. J., Wilczynska, K. S., Wilczynski, J. 2005, Phys. Rev. C., 71, 014602.

    Article  ADS  Google Scholar 

  • Takahashi, K., Witti, J., Janka, H. T. 1994, A&A, 286, 857.

    ADS  Google Scholar 

  • Terasawa, M., Sumiyoshi, K., Kajino, T., Mathews, G. J., Tanihata, I. 2001, ApJ, 562, 470.

    Article  ADS  Google Scholar 

  • Wanajo, S., Tamamura, M., Itoh, N., Nomoto, K., Ishimaru, Y., Beers, T. C., Nozawa, S. 2003, ApJ, 593, 968.

    Article  ADS  Google Scholar 

  • Wilson, J. R., Mayle, R. W., Woosley, S. E., Weaver, T. 1986, Ann. N. Y. Acad. Sci., 470, 267.

    Article  ADS  Google Scholar 

  • Witti, J., Janka, H. T., Takahashi, K. 1994, A&A, 286, 841.

    ADS  Google Scholar 

  • Woosley, S. E., Hoffman, R. D., 1992, ApJ, 395, 202.

    Article  ADS  Google Scholar 

  • Woosely, S. E., Wilson, J. R., Mathews, G. J., Hoffman, R. D., Meyer, B. S. 1994, ApJ, 433, 229.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rulee Baruah.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baruah, R., Duorah, K. & Duorah, H.L. Rapid neutron capture process in supernovae and chemical element formation. J Astrophys Astron 30, 165–175 (2009). https://doi.org/10.1007/s12036-009-0013-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12036-009-0013-x

Key words

Navigation