Skip to main content
Log in

Activity cycle of solar filaments

  • Published:
Journal of Astrophysics and Astronomy Aims and scope Submit manuscript

Abstract

Long-term variation in the distribution of the solar filaments observed at the Observatorie de Paris, Section de Meudon from March 1919 to December 1989 is presented to compare with sunspot cycle and to study the periodicity in the filament activity, namely the periods of the coronal activity with the Morlet wavelet used. It is inferred that the activity cycle of solar filaments should have the same cycle length as sunspot cycle, but the cycle behavior of solar filaments is globally similar in profile with, but different in detail from, that of sunspot cycles. The amplitude of solar magnetic activity should not keep in phase with the complexity of solar magnetic activity. The possible periods in the filament activity are about 10.44 and 19.20 years. The wavelet local power spectrum of the period 10.44 years is statistically significant during the whole consideration time. The wavelet local power spectrum of the period 19.20 years is under the 95% confidence spectrum during the whole consideration time, but over the mean red-noise spectrum of α = 0.72 before approximate Carrington rotation number 1500, and after that the filament activity does not statistically show the period. Wavelet reconstruction indicates that the early data of the filament archive (in and before cycle 16) are more noiseful than the later (in and after cycle 17).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bumba, V. 2003, Cyclic changes of the solar global and local magnetic field patterns, In: Proceedings of ISCS 2003 Symposium, Solar Variability as an Input to the Earth’s Environment, Tatranska Lomnica, Slovakia, ESA SP-535, pp. 23–28.

    Google Scholar 

  • Coffey, H. E., Hanchett, C. D. 1998a, ASP Conference Series, 140, 447.

    ADS  Google Scholar 

  • Coffey, H. E., Hanchett, C. D. 1998b, ASP Conference Series, 150, 488.

    ADS  Google Scholar 

  • d’Azambuja, L. 1928, Annales de l’Observatoire de Paris, Section de Meudon, Tom VI, Fascicule I.

  • d’Azambuja, L. 1923, Comptes Rendus, 176, 950.

    Google Scholar 

  • d’Azambuja, L., D’Azambuja, M. 1948, Annales de l’Observatoire de Paris, Section de Meudon, Tom VII, Fascicule VII.

  • De Moortel, I., McAteer, R. T. J. 2004a, Solar Phys., 222, 203.

    Article  ADS  Google Scholar 

  • De Moortel, I., Munday, S. A., Hood, A. W. 2004b, Solar Phys., 223, 1.

    Article  Google Scholar 

  • Faria, H. H., et al. 2004, Solar Phys., 223, 305.

    Article  ADS  Google Scholar 

  • Howe, R., Christensen-Dalgaard, J., Hill, F. et al. 2000, Science, 287, 2456.

    Article  ADS  Google Scholar 

  • Kane, P. R. 2003, JGR, 108(A1), 1046.

    Article  MathSciNet  Google Scholar 

  • Kane, P. R. 2005, Solar Phys., 227, 155.

    Article  ADS  Google Scholar 

  • Knaack, R., Stenflo, J. O. 2004, In Large-Scale Solar Magnetic Fields: Temporal Variations, Syars and Suns: Activity, Evolution and Planets; Dupree, A. K., Benz, A. O., (eds.) IAU Symposium, 219, pp. 552–556.

  • Kononovich, E. V., Shefov, N. N. 2002, Quasi-biennial variations of the solar activity during the 11-year cycle and their display in the variations of the temperature of the middle atmosphere, “Physics of Auroral Phenomena”. In: Proceedings of XXV Annual Seminar, Apatity, Kola Science Center, 143, Polar Geophysical Institute, Russian Academy of Science, pp. 143–146.

  • Krivova, N. A., Solanki, S. K. 2002, AA, 394, 701.

    ADS  Google Scholar 

  • Li, K. J., Liang, H. F., Yun, H. S., Gu, X. M. 2002, Solar Phys., 205, 361.

    Article  ADS  Google Scholar 

  • Martin, S. F. 1990, IAUS, 138, 129.

    ADS  Google Scholar 

  • McIntosh, P. S. 1972, Rev. Geophys. Space Sci., 10, 837.

    ADS  Google Scholar 

  • Minarovjech, M., Rybansky, M., Rusin, V. 1998a, Solar Phys., 177, 357.

    Article  ADS  Google Scholar 

  • Minarovjech, M., Rybansky, M., Rusin, V. 1998b, ASP Conference Series, 150, 484.

    ADS  Google Scholar 

  • Mouradian, Z. 1998, ASP Conference Series, 140, 179.

    ADS  Google Scholar 

  • Mouradian, Z., Soru-Escaut, I. 1994, A & A, 290, 279.

    ADS  Google Scholar 

  • Obridko, V. N., Shelting, B. D. 2001, Astron. Rep., 45, 1012.

    Article  ADS  Google Scholar 

  • Ogurtsov, M. G., Nagovitsyn, Kocharov, Jungner 2002, Solar Phys., 211, 371.

    Article  ADS  Google Scholar 

  • Polygiannakis, J., Preka-Papadema, P., Moussas, X. 2003, Mon. Not. R. Astron. Soc., 343, 725.

    Article  ADS  Google Scholar 

  • Prabhakaran, S. R., Radhika, Revathy, Ramadas 2002, Solar Phys., 208, 359.

    Article  ADS  Google Scholar 

  • Sakurai, T., 1998, ASP Conf. Ser., 140, 483.

    ADS  Google Scholar 

  • Rusin, V., Rybansky, M., Minarovjech, M. 1998, ASP Conference Series, 140, 353.

    ADS  Google Scholar 

  • Rusin, V., Minarovjech, M., Rybansky, M. 2000, J. Astrophys. Astr., 21, 201.

    ADS  Google Scholar 

  • Tandberg-hanssen, E. 1995, The nature of solar prominences, Kluwer Acad. Publ., Dordrecht, Holland.

    Google Scholar 

  • Torrence, C., Compo, G. P. 1998, Bull. Am. Meteorol. Soc., 79, 61.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. J. Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, K.J., Li, Q.X., Gao, P.X. et al. Activity cycle of solar filaments. J Astrophys Astron 28, 147–156 (2007). https://doi.org/10.1007/s12036-007-0012-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12036-007-0012-8

Key words

Navigation