Skip to main content
Log in

A Multistep In Silico Approach Identifies Potential Glioblastoma Drug Candidates via Inclusive Molecular Targeting of Glioblastoma Stem Cells

  • Original Article
  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Glioblastoma (GBM) is the highest grade of glioma for which no effective therapy is currently available. Despite extensive research in diagnosis and therapy, there has been no significant improvement in GBM outcomes, with a median overall survival continuing at a dismal 15–18 months. In recent times, glioblastoma stem cells (GSCs) have been identified as crucial drivers of treatment resistance and tumor recurrence, and GBM therapies targeting GSCs are expected to improve patient outcomes. We used a multistep in silico screening strategy to identify repurposed candidate drugs against selected therapeutic molecular targets in GBM with potential to concomitantly target GSCs. Common differentially expressed genes (DEGs) were identified through analysis of multiple GBM and GSC datasets from the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA). For identification of target genes, we selected the genes with most significant effect on overall patient survival. The relative mRNA and protein expression of the selected genes in TCGA control versus GBM samples was also validated and their cancer dependency scores were assessed. Drugs targeting these genes and their corresponding proteins were identified from LINCS database using Connectivity Map (CMap) portal and by in silico molecular docking against each individual target using FDA-approved drug library from the DrugBank database, respectively. The molecules thus obtained were further evaluated for their ability to cross blood brain barrier (BBB) and their likelihood of resulting in drug resistance by acting as p-glycoprotein (p-Gp) substrates. The growth inhibitory effect of these final shortlisted compounds was examined on a panel of GBM cell lines and compared with temozolomide through the drug sensitivity EC50 values and AUC from the PRISM Repurposing Secondary Screen, and the IC50 values were obtained from GDSC portal. We identified RPA3, PSMA2, PSMC2, BLVRA, and HUS1 as molecular targets in GBM including GSCs with significant impact on patient survival. Our results show GSK-2126458/omipalisib, linifanib, drospirenone, eltrombopag, nilotinib, and PD198306 as candidate drugs which can be further evaluated for their anti-tumor potential against GBM. Through this work, we identified repurposed candidate therapeutics against GBM utilizing a GSC inclusive targeting approach, which demonstrated high in vitro efficacy and can prospectively evade drug resistance. These drugs have the potential to be developed as individual or combination therapy to improve GBM outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

NA.

References

  1. Ostrom QT, Cioffi G, Gittleman H et al (2019) CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2012-2016. Neuro-Oncology 21:v1–v100. https://doi.org/10.1093/neuonc/noz150

    Article  PubMed  PubMed Central  Google Scholar 

  2. Louis DN, Perry A, Reifenberger G et al (2016) The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol 131:803–820. https://doi.org/10.1007/S00401-016-1545-1

    Article  PubMed  Google Scholar 

  3. Aparicio-Blanco J, Sanz-Arriazu L, Lorenzoni R, Blanco-Prieto MJ (2020) Glioblastoma chemotherapeutic agents used in the clinical setting and in clinical trials: nanomedicine approaches to improve their efficacy. Int J Pharm 581:119283. https://doi.org/10.1016/j.ijpharm.2020.119283

    Article  CAS  PubMed  Google Scholar 

  4. Patterson JD, Wongsurawat T, Rodriguez A (2020) A glioblastoma genomics primer for clinicians. Med Res Arch:8. https://doi.org/10.18103/MRA.V8I2.2034

  5. Alphandéry E (2018) Glioblastoma treatments: an account of recent industrial developments. Front Pharmacol 9:879. https://doi.org/10.3389/fphar.2018.00879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Arbab AS, Rashid MH, Angara K et al (2017) Major challenges and potential microenvironment-targeted therapies in glioblastoma. Int J Mol Sci:18. https://doi.org/10.3390/IJMS18122732

  7. Alves ALV, Gomes INF, Carloni AC et al (2021) Role of glioblastoma stem cells in cancer therapeutic resistance: a perspective on antineoplastic agents from natural sources and chemical derivatives. Stem Cell Res Ther 12:206. https://doi.org/10.1186/s13287-021-02231-x

    Article  PubMed  PubMed Central  Google Scholar 

  8. Auffinger B, Spencer D, Pytel P et al (2015) The role of glioma stem cells in chemotherapy resistance and glioblastoma multiforme recurrence. Expert Rev Neurother 15:741–752. https://doi.org/10.1586/14737175.2015.1051968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Vlashi E, Lagadec C, Vergnes L et al (2011) Metabolic state of glioma stem cells and nontumorigenic cells. Proc Natl Acad Sci USA 108:16062–16067. https://doi.org/10.1073/pnas.1106704108

    Article  PubMed  PubMed Central  Google Scholar 

  10. Soeda A, Park M, Lee D et al (2009) Hypoxia promotes expansion of the CD133-positive glioma stem cells through activation of HIF-1alpha. Oncogene 28:3949–3959. https://doi.org/10.1038/onc.2009.252

    Article  CAS  PubMed  Google Scholar 

  11. Tang X, Zuo C, Fang P et al (2021) Targeting glioblastoma stem cells: a review on biomarkers, signal pathways and targeted therapy. Front Oncol 11:701291. https://doi.org/10.3389/fonc.2021.701291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zhou G, Soufan O, Ewald J et al (2019) NetworkAnalyst 3.0: a visual analytics platform for comprehensive gene expression profiling and meta-analysis. Nucleic Acids Res 47:W234–W241. https://doi.org/10.1093/NAR/GKZ240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Xia J, Gill EE, Hancock REW (2015) NetworkAnalyst for statistical, visual and network-based meta-analysis of gene expression data. Nat Protoc 10:823–844. https://doi.org/10.1038/NPROT.2015.052

    Article  CAS  PubMed  Google Scholar 

  14. Xia J, Benner MJ, Hancock REW (2014) NetworkAnalyst - integrative approaches for protein–protein interaction network analysis and visual exploration. Nucleic Acids Res 42:W167–W174. https://doi.org/10.1093/NAR/GKU443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Szklarczyk D, Gable AL, Nastou KC et al (2021) The STRING database in 2021: customizable proteinprotein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res 49:605–612. https://doi.org/10.1093/nar/gkaa1074

    Article  CAS  Google Scholar 

  16. Szklarczyk D, Morris JH, Cook H et al (2017) The STRING database in 2017: quality-controlled protein–protein association networks, made broadly accessible. Nucleic Acids Res 45:D362–D368. https://doi.org/10.1093/NAR/GKW937

    Article  CAS  PubMed  Google Scholar 

  17. Zhou Y, Zhou B, Pache L et al (2019) Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat Commun:10. https://doi.org/10.1038/S41467-019-09234-6

  18. Ge SX, Son EW, Yao R (2018) iDEP: an integrated web application for differential expression and pathway analysis of RNA-Seq data. BMC Bioinformatics 19:1–24. https://doi.org/10.1186/S12859-018-2486-6

    Article  Google Scholar 

  19. Tang Z, Li C, Kang B et al (2017) GEPIA: a web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res 45:W98–W102. https://doi.org/10.1093/NAR/GKX247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Behan FM, Iorio F, Picco G et al (2019) Prioritization of cancer therapeutic targets using CRISPR-Cas9 screens. Nature 568:511–516. https://doi.org/10.1038/S41586-019-1103-9

    Article  CAS  PubMed  Google Scholar 

  21. Subramanian A, Narayan R, Corsello SM et al (2017) A next generation connectivity map: L1000 platform and the first 1,000,000 profiles. Cell 171:1437–1452.e17. https://doi.org/10.1016/j.cell.2017.10.049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Keenan AB, Jenkins SL, Jagodnik KM et al (2018) The library of integrated network-based cellular signatures NIH program: system-level cataloging of human cells response to perturbations. Cell Syst 6:13–24. https://doi.org/10.1016/j.cels.2017.11.001

    Article  CAS  PubMed  Google Scholar 

  23. Goldman MJ, Craft B, Hastie M et al (2020) Visualizing and interpreting cancer genomics data via the Xena platform. Nat Biotechnol 38:675–678. https://doi.org/10.1038/s41587-020-0546-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wishart DS, Feunang YD, Guo AC et al (2018) DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res 46:D1074–D1082. https://doi.org/10.1093/NAR/GKX1037

    Article  CAS  PubMed  Google Scholar 

  25. Knox C, Law V, Jewison T et al (2011) DrugBank 3.0: a comprehensive resource for “omics” research on drugs. Nucleic Acids Res:39. https://doi.org/10.1093/NAR/GKQ1126

  26. Morris GM, Ruth H, Lindstrom W et al (2009) AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem 30:2785–2791. https://doi.org/10.1002/JCC.21256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Dallakyan S, Olson AJ (2015) Small-molecule library screening by docking with PyRx. Methods Mol Biol 1263:243–250. https://doi.org/10.1007/978-1-4939-2269-7_19

    Article  CAS  PubMed  Google Scholar 

  28. Pettersen EF, Goddard TD, Huang CC et al (2004) UCSF Chimera--a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612. https://doi.org/10.1002/JCC.20084

    Article  CAS  PubMed  Google Scholar 

  29. Daina A, Michielin O, Zoete V (2017) SwissADME: a free web tool to evaluate pharmacokinetics, druglikeness and medicinal chemistry friendliness of small molecules. Sci Rep 2017 7:1 7:1–13. https://doi.org/10.1038/srep42717

  30. Shaker B, Yu MS, Song JS et al (2021) LightBBB: computational prediction model of blood–brain-barrier penetration based on LightGBM. Bioinformatics 37:1135–1139. https://doi.org/10.1093/BIOINFORMATICS/BTAA918

    Article  CAS  PubMed  Google Scholar 

  31. Liu H, Wang L, Lv M et al (2014) AlzPlatform: an Alzheimer’s disease domain-specific chemogenomics knowledgebase for polypharmacology and target identification research. J Chem Inf Model 54:1050–1060. https://doi.org/10.1021/CI500004H/ASSET/IMAGES/LARGE/CI-2014-00004H_0003.JPEG

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Corsello SM, Nagari RT, Spangler RD et al (2020) Discovering the anticancer potential of non-oncology drugs by systematic viability profiling. Nat Cancer 1:235–248. https://doi.org/10.1038/s43018-019-0018-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yang W, Soares J, Greninger P et al (2013) Genomics of drug sensitivity in Cancer (GDSC): a resource for therapeutic biomarker discovery in cancer cells. Nucleic Acids Res 41:D955–D961. https://doi.org/10.1093/NAR/GKS1111

    Article  CAS  PubMed  Google Scholar 

  34. Pilié PG, Tang C, Mills GB, Yap TA (2019) State-of-the-art strategies for targeting the DNA damage response in cancer. Nat Rev Clin Oncol 16:81–104. https://doi.org/10.1038/s41571-018-0114-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Bao S, Wu Q, McLendon RE et al (2006) Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444:756–760. https://doi.org/10.1038/nature05236

    Article  CAS  PubMed  Google Scholar 

  36. Morgan MA, Lawrence TS (2015) Molecular pathways: overcoming radiation resistance by targeting DNA damage response pathways. Clin Cancer Res 21:2898–2904. https://doi.org/10.1158/1078-0432.ccr-13-3229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Chandrashekar DS, Bashel B, Balasubramanya SAH et al (2017) UALCAN: a portal for facilitating tumor subgroup gene expression and survival analyses. Neoplasia (United States) 19:649–658. https://doi.org/10.1016/J.NEO.2017.05.002

    Article  CAS  Google Scholar 

  38. Chandrashekar DS, Karthikeyan SK, Korla PK et al (2022) UALCAN: an update to the integrated cancer data analysis platform. Neoplasia (United States) 25:18–27. https://doi.org/10.1016/J.NEO.2022.01.001

    Article  CAS  Google Scholar 

  39. Du J, Yan X, Mi S et al (2020) Identification of prognostic model and biomarkers for Cancer stem cell characteristics in glioblastoma by network analysis of multi-omics data and Stemness indices. Front Cell Dev Biol 8:1116. https://doi.org/10.3389/FCELL.2020.558961/BIBTEX

    Article  Google Scholar 

  40. Thaker NG, Zhang F, McDonald PR et al (2009) Identification of survival genes in human glioblastoma cells by small interfering RNA screening. Mol Pharmacol 76:1246. https://doi.org/10.1124/MOL.109.058024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kim SS, Seong S, Lim SH, Kim SY (2013) Biliverdin reductase plays a crucial role in hypoxia-induced chemoresistance in human glioblastoma. Biochem Biophys Res Commun 440:658–663. https://doi.org/10.1016/J.BBRC.2013.09.120

    Article  CAS  PubMed  Google Scholar 

  42. Warde-Farley D, Donaldson SL, Comes O et al (2010) The GeneMANIA prediction server: biological network integration for gene prioritization and predicting gene function. Nucleic Acids Res 38:W214–W220. https://doi.org/10.1093/NAR/GKQ537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ghosh D, Ulasov IV, Chen LP et al (2016) TGFβ-responsive HMOX1 expression is associated with stemness and invasion in GBM. Stem Cells 34:2276. https://doi.org/10.1002/STEM.2411

    Article  CAS  PubMed  Google Scholar 

  44. Ravi VM, Neidert N, Will P et al (2022) T-cell dysfunction in the glioblastoma microenvironment is mediated by myeloid cells releasing interleukin-10. Nat Commun 13:1 13:1–16. https://doi.org/10.1038/s41467-022-28523-1

  45. Hu Y, Zhou W, Xue Z et al (2022) Thiabendazole inhibits glioblastoma cell proliferation and invasion targeting Mini-chromosome maintenance protein 2. J Pharmacol Exp Ther 380:63–75. https://doi.org/10.1124/JPET.121.000852

    Article  CAS  PubMed  Google Scholar 

  46. Sun Y, Cheng Z, Liu S (2022) MCM2 in human cancer: functions, mechanisms, and clinical significance. Mol Med 28:128. https://doi.org/10.1186/S10020-022-00555-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Pilarczyk M, Fazel-Najafabadi M, Kouril M et al (2022) Connecting omics signatures and revealing biological mechanisms with iLINCS. Nat Commun 13:1–13. https://doi.org/10.1038/s41467-022-32205-3

    Article  CAS  Google Scholar 

  48. Lozinski M, Bowden NA, Graves MC et al (2022) Transcriptomic profiling of dna damage response in patient-derived glioblastoma cells before and after radiation and temozolomide treatment. Cells:11. https://doi.org/10.3390/CELLS11071215/S1

  49. Kang H, Lee H, Kim D et al (2022) Targeting glioblastoma stem cells to overcome chemoresistance: an overview of current therapeutic strategies. Biomedicines:10. https://doi.org/10.3390/BIOMEDICINES10061308

  50. Pedersen H, Obara EAA, Elbæk KJ et al (2020) Replication protein a (RPA) mediates radio-resistance of glioblastoma cancer stem-like cells. Int J Mol Sci 21:1588. https://doi.org/10.3390/IJMS21051588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Mao DD, Gujar AD, Mahlokozera T et al (2015) A CDC20-APC/SOX2 signaling axis regulates human glioblastoma stem-like cells. Cell Rep 11:1809. https://doi.org/10.1016/J.CELREP.2015.05.027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Xu L, Liu Z, Wang H et al (2023) SESN2 could be a potential marker for diagnosis and prognosis in glioma. Genes 14:701. https://doi.org/10.3390/GENES14030701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Munster P, Aggarwal R, Hong D et al (2016) First-in-human phase I study of GSK2126458, an oral pan-class I phosphatidylinositol-3-kinase inhibitor, in patients with advanced solid tumor malignancies. Clin Cancer Res 22:1932–1939. https://doi.org/10.1158/1078-0432.CCR-15-1665

    Article  CAS  PubMed  Google Scholar 

  54. Lukey PT, Harrison SA, Yang S et al (2019) A randomised, placebo-controlled study of omipalisib (PI3K/mTOR) in idiopathic pulmonary fibrosis. Eur Respir J:53. https://doi.org/10.1183/13993003.01992-2018

  55. Liang L, Zhao Z, Jin Q et al (2023) RPA3 promotes the proliferation, migration, and invasion of gliomas by activating the PI3K-AKT-mTOR pathway. Cell Mol Biol 69:80–86. https://doi.org/10.14715/CMB/2023.69.5.14

    Article  PubMed  Google Scholar 

  56. Langhans J, Schneele L, Trenkler N et al (2017) The effects of PI3K-mediated signalling on glioblastoma cell behaviour. Oncogenesis 6:1–9. https://doi.org/10.1038/s41389-017-0004-8

    Article  CAS  Google Scholar 

  57. Eckerdt FD, Bell JB, Gonzalez C et al (2020) Combined PI3Kα-mTOR targeting of glioma stem cells. Sci Rep:10. https://doi.org/10.1038/S41598-020-78788-Z

  58. Olmez I, Brenneman B, Xiao A et al (2017) Combined CDK4/6 and mtor inhibition is synergistic against glioblastoma via multiple mechanisms. Clin Cancer Res 23:6958–6968. https://doi.org/10.1158/1078-0432.CCR-17-0803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thankfully acknowledge support by CSIR (to ND) and SERB (to PS and AK). We also acknowledge the kind departmental and administrative support extended by Dr. Tammanna R. Sahrawat (Chairperson, CSBB, PU).

Funding

This work was supported by funding from CSIR (to ND).

Author information

Authors and Affiliations

Authors

Contributions

Nilambra Dogra: conceptualization, methodology, investigation, analysis, visualization, supervision, writing — original draft, review and editing. Parminder Singh: data curation, investigation and formal analysis. Ashok Kumar: resources. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Nilambra Dogra.

Ethics declarations

Ethics Approval

NA.

Consent to Participate

NA.

Consent for Publication

NA.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 3136 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dogra, N., Singh, P. & Kumar, A. A Multistep In Silico Approach Identifies Potential Glioblastoma Drug Candidates via Inclusive Molecular Targeting of Glioblastoma Stem Cells. Mol Neurobiol (2024). https://doi.org/10.1007/s12035-024-04139-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12035-024-04139-y

Keywords

Navigation