Skip to main content

Advertisement

Log in

Oral Microbiota and Porphyromonas gingivalis Kgp Genotypes Altered in Parkinson’s Disease with Mild Cognitive Impairment

  • Original Article
  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Cognitive impairment (CI) is a common complication of the non-motor symptoms in Parkinson’s disease (PD), including PD with mild cognitive impairment (PD-MCI) and PD dementia. Recent studies reported the oral dysbiosis in PD and CI, respectively. Porphyromonas gingivalis (P. gingivalis), a pathogen of oral dysbiosis, plays an important role in PD, whose lysine-gingipain (Kgp) could lead to AD-type pathologies. No previous study investigated the composition of oral microbiota and role of P. gingivalis in PD-MCI. This study aimed to investigate the differences of oral microbiota composition, P. gingivalis copy number, and Kgp genotypes among PD-MCI, PD with normal cognition (PD-NC) and periodontal status-matched control (PC) groups. The oral bacteria composition, the copy number of P. gingivalis, and the Kgp genotypes in gingival crevicular fluid from PD-MCI, PD-NC, and PC were analyzed using 16S ribosomal RNA sequencing, quantitative real-time PCR, and MseI restriction. We found that the structures of oral microbiota in PD-MCI group were significantly different compared to that in PD-NC and PC group. The relative abundances of Prevotella, Lactobacillus, Megasphaera, Atopobium, and Howardella were negatively correlated with cognitive score. Moreover, there was a significant difference of Kgp genotypes among the three groups. The predominant Kgp genotypes of P. gingivalis in the PD-MCI group were primarily Kgp II, whereas in the PD-NC group, it was mainly Kgp I. The Kgp II correlated with lower MMSE and MoCA scores, which suggested that Kgp genotypes II is related to cognitive impairment in PD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

Raw sequencing data was deposited in the NCBI GenBank under BioProject ID PRJNA1030740.

References

  1. Hoogland J, Boel JA, de Bie RMA, Geskus RB, Schmand BA, Dalrymple-Alford JC, Marras C, Adler CH et al (2017) Mild cognitive impairment as a risk factor for Parkinson’s disease dementia. Movement Disord 32(7):1056–1065. https://doi.org/10.1002/mds.27002

    Article  PubMed  Google Scholar 

  2. Pedersen KF, Larsen JP, Tysnes O, Alves G (2017) Natural course of mild cognitive impairment in Parkinson disease. Neurology 88(8):767–774. https://doi.org/10.1212/WNL.0000000000003634

    Article  PubMed  Google Scholar 

  3. Compta Y, Parkkinen L, O'Sullivan SS, Vandrovcova J, Holton JL, Collins C, Lashley T, Kallis C et al (2011) Lewy- and Alzheimer-type pathologies in Parkinson’s disease dementia: which is more important? Brain 134(5):1493–1505. https://doi.org/10.1093/brain/awr031

    Article  PubMed  Google Scholar 

  4. Irwin DJ, Lee VMY, Trojanowski JQ (2013) Parkinson’s disease dementia: convergence of α-synuclein, tau and amyloid-β pathologies. Nat Rev Neurosci 14(9):626–636. https://doi.org/10.1038/nrn3549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Pereira PAB, Aho VTE, Paulin L, Pekkonen E, Auvinen P, Scheperjans F (2017) Oral and nasal microbiota in Parkinson’s disease. Parkinsonism Relat D 38:61–67. https://doi.org/10.1016/j.parkreldis.2017.02.026

    Article  Google Scholar 

  6. Fleury V, Zekeridou A, Lazarevic V, Gaïa N, Giannopoulou C, Genton L, Cancela J, Girard M et al (2021) Oral dysbiosis and inflammation in Parkinson’s disease. J Parkinsons Dis 11(2):619–631. https://doi.org/10.3233/JPD-202459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Yay E, Yilmaz M, Toygar H, Balci N, Alvarez Rivas C, Bolluk Kilic B, Zirh A, Paster B et al (2023) Parkinson’s disease alters the composition of subgingival microbiome. J Oral Microbiol 15(1). https://doi.org/10.1080/20002297.2023.2250650

  8. Na HS, Jung NY, Song Y, Kim SY, Kim HJ, Lee JY, Chung J (2023) A distinctive subgingival microbiome in patients with periodontitis and Alzheimer’s disease compared with cognitively unimpaired periodontitis patients. J Clin Periodontol 51(1):43–53. https://doi.org/10.1111/jcpe.13880

    Article  CAS  PubMed  Google Scholar 

  9. Adams B, Nunes JM, Page MJ, Roberts T, Carr J, Nell TA, Kell DB, Pretorius E (2019) Parkinson’s disease: a systemic inflammatory disease accompanied by bacterial inflammagens. Front Aging Neurosci 11:210. https://doi.org/10.3389/fnagi.2019.00210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chen C, Wu Y, Chang Y (2017) Periodontal inflammatory disease is associated with the risk of Parkinson’s disease: a population-based retrospective matched-cohort study. Peerj 5:e3647. https://doi.org/10.7717/peerj.3647

    Article  PubMed  PubMed Central  Google Scholar 

  11. Jeong E, Park J, Park Y (2021) Evaluation of the association between periodontitis and risk of Parkinson’s disease: a nationwide retrospective cohort study. Sci Rep-Uk 11(1):16594. https://doi.org/10.1038/s41598-021-96147-4

    Article  CAS  Google Scholar 

  12. Feng Y, Wu Q, Peng Y, Liang F, You H, Feng Y, Li G, Li X et al (2020) Oral P. gingivalis impairs gut permeability and mediates immune responses associated with neurodegeneration in LRRK2 R1441G mice. J Neuroinflamm 17(1):1–12. https://doi.org/10.1186/s12974-020-02027-5

    Article  CAS  Google Scholar 

  13. Ide M, Harris M, Stevens A, Sussams R, Hopkins V, Culliford D, Fuller J, Ibbett P et al (2016) Periodontitis and cognitive decline in Alzheimer’s disease. Plos One 11(3):e151081. https://doi.org/10.1371/journal.pone.0151081

    Article  CAS  Google Scholar 

  14. Kamer AR, Craig RG, Dasanayake AP, Brys M, Glodzik Sobanska L, Leon MJ (2008) Inflammation and Alzheimer’s disease: possible role of periodontal diseases. Alzheimers Dement 4(4):242–250. https://doi.org/10.1016/j.jalz.2007.08.004

    Article  CAS  PubMed  Google Scholar 

  15. Chen C, Wu Y, Chang Y (2017) Association between chronic periodontitis and the risk of Alzheimer’s disease: a retrospective, population-based, matched-cohort study. Alzheimers Res Ther 9(1):1–7. https://doi.org/10.1186/s13195-017-0282-6

    Article  Google Scholar 

  16. Noble JM, Borrell LN, Papapanou PN, Elkind MSV, Scarmeas N, Wright CB (2009) Periodontitis is associated with cognitive impairment among older adults: analysis of NHANES-III. J Neurol Neurosurg Psychiatry 80(11):1206–1211. https://doi.org/10.1136/jnnp.2009.174029

    Article  CAS  PubMed  Google Scholar 

  17. Sparks Stein P, Steffen MJ, Smith C, Jicha G, Ebersole JL, Abner E, Dawson D (2012) Serum antibodies to periodontal pathogens are a risk factor for Alzheimer’s disease. Alzheimers Dement 8(3):196–203. https://doi.org/10.1016/j.jalz.2011.04.006

    Article  CAS  PubMed  Google Scholar 

  18. Poole S, Singhrao SK, Kesavalu L, Curtis MA, Crean S (2013) Determining the presence of periodontopathic virulence factors in short-term postmortem Alzheimer’s disease brain tissue. J Alzheimer's Dis 36(4):665–677. https://doi.org/10.3233/JAD-121918

    Article  CAS  Google Scholar 

  19. Dominy SS, Lynch C, Ermini F, Benedyk M, Marczyk A, Konradi A, Nguyen M, Haditsch U et al (2019) Porphyromonas gingivalis in Alzheimer’s disease brains: evidence for disease causation and treatment with small-molecule inhibitors. Sci Adv 5(1):u3333. https://doi.org/10.1126/sciadv.aau3333

    Article  CAS  Google Scholar 

  20. Beikler T, Peters U, Ehmke B, Flemmig TF (2003) Sequence analysis of kgp in Porphyromonas gingivalis isolates from periodontitis patients. Oral Microbiol Immunol 18(6):393–397. https://doi.org/10.1046/j.0902-0055.2003.00106.x

    Article  CAS  PubMed  Google Scholar 

  21. Li D, Ren T, Li H, Liao G, Zhang X (2022) Porphyromonas gingivalis: a key role in Parkinson’s disease with cognitive impairment? Front Neurol 13:945523. https://doi.org/10.3389/fneur.2022.945523

    Article  PubMed  PubMed Central  Google Scholar 

  22. Hughes AJ, Ben-Shlomo Y, Daniel SE, Lees AJ (1992) What features improve the accuracy of clinical diagnosis in Parkinson’s disease: a clinicopathologic study. Neurology 42(6):1142–1146. https://doi.org/10.1212/wnl.42.6.1142

    Article  CAS  PubMed  Google Scholar 

  23. Litvan I, Goldman JG, Tröster AI, Schmand BA, Weintraub D, Petersen RC, Mollenhauer B, Adler CH et al (2012) Diagnostic criteria for mild cognitive impairment in Parkinson’s disease: Movement Disorder Society Task Force guidelines. Movement Disord 27(3):349–356. https://doi.org/10.1002/mds.24893

    Article  PubMed  Google Scholar 

  24. Manoil D, Bostanci N, Mumcu G, Inanc N, Can M, Direskeneli H, Belibasakis GN (2021) Novel and known periodontal pathogens residing in gingival crevicular fluid are associated with rheumatoid arthritis. J Periodontol 92(3):359–370. https://doi.org/10.1002/JPER.20-0295

    Article  CAS  PubMed  Google Scholar 

  25. Ren T, Gao Y, Qiu Y, Jiang S, Zhang Q, Zhang J, Wang L, Zhang Y et al (2020) Gut microbiota altered in mild cognitive impairment compared with normal cognition in sporadic Parkinson’s disease. Front Neurol 11:504772. https://doi.org/10.3389/fneur.2020.00137

    Article  Google Scholar 

  26. Aljumaah MR, Bhatia U, Roach J, Gunstad J, Azcarate Peril MA (2022) The gut microbiome, mild cognitive impairment, and probiotics: a randomized clinical trial in middle-aged and older adults. Clin Nutr 41(11):2565–2576. https://doi.org/10.1016/j.clnu.2022.09.012

    Article  PubMed  Google Scholar 

  27. Khedr EM, Omeran N, Karam-Allah Ramadan H, Ahmed GK, Abdelwarith AM (2022) Alteration of gut microbiota in Alzheimer’s disease and their relation to the cognitive impairmenT. J Alzheimer's Dis 88(3):1103–1114. https://doi.org/10.3233/JAD-220176

    Article  CAS  Google Scholar 

  28. Wallen ZD, Appah M, Dean MN, Sesler CL, Factor SA, Molho E, Zabetian CP, Standaert DG et al (2020) Characterizing dysbiosis of gut microbiome in PD: evidence for overabundance of opportunistic pathogens. NPJ Parkinsons Dis 6:11. https://doi.org/10.1038/s41531-020-0112-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Scheperjans F, Aho V, Pereira PAB, Koskinen K, Paulin L, Pekkonen E, Haapaniemi E, Kaakkola S et al (2015) Gut microbiota are related to Parkinson’s disease and clinical phenotype. Movement Disord 30(3):350–358. https://doi.org/10.1002/mds.26069

    Article  PubMed  Google Scholar 

  30. Jo S, Kang W, Hwang YS, Lee SH, Park KW, Kim MS, Lee H, Yoon HJ et al (2022) Oral and gut dysbiosis leads to functional alterations in Parkinson’s disease. NPJ Parkinsons Dis 8(1):87. https://doi.org/10.1038/s41531-022-00351-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Toh TS, Chong CW, Lim S, Bowman J, Cirstea M, Lin C, Chen C, Appel-Cresswell S et al (2022) Gut microbiome in Parkinson’s disease: new insights from meta-analysis. Parkinsonism Relat D 94:1–9. https://doi.org/10.1016/j.parkreldis.2021.11.017

    Article  Google Scholar 

  32. Pessione E (2012) Lactic acid bacteria contribution to gut microbiota complexity: lights and shadows. Front Cell Infect Mi 2:86. https://doi.org/10.3389/fcimb.2012.00086

    Article  CAS  Google Scholar 

  33. Filosa S, Di Meo F, Crispi S (2018) Polyphenols-gut microbiota interplay and brain neuromodulation. Neural Regen Res 13(12):2055–2059. https://doi.org/10.4103/1673-5374.241429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Nie R, Wu Z, Ni J, Zeng F, Yu W, Zhang Y, Kadowaki T, Kashiwazaki H et al (2019) Porphyromonas gingivalis infection induces amyloid-β accumulation in monocytes/macrophages. J Alzheimer's Dis 72(2):479–494. https://doi.org/10.3233/JAD-190298

    Article  CAS  Google Scholar 

  35. Kim S, Kwon S, Kam T, Panicker N, Karuppagounder SS, Lee S, Lee JH, Kim WR et al (2019) Transneuronal propagation of pathologic α-synuclein from the gut to the brain models Parkinson’s disease. Neuron 103(4):627–641. https://doi.org/10.1016/j.neuron.2019.05.035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by grants from the National Natural Science Foundation of China (81360198), the Special Fund for Science and Technology Innovation Strategy of Guangdong province (grant number 2021S0025, 2021S0026, and 2021S0031), and Maoming Science and Technology Special Fund Plan and Project (grant number 2020KJZX006). XZ was supported by the Doctoral Research Foundation of Maoming People’s Hospital.

Author information

Authors and Affiliations

Authors

Contributions

Xiong Zhang and Renshi Xu conceptualized and designed the study. Dongcheng Li, Tengzhu Ren, and Hao Li organize the researches. Dongcheng Li, Mingdi Huang, Jiaxin Chen, and Qishan He performed data collection and analysis. Dongcheng Li, Qishan He, and Tengzhu Ren analyzed and interpreted data. Dongcheng Li wrote the manuscript draft. Xiong Zhang and Tengzhu Ren contributed to the drafting and critical revision of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Hailing Liu, Renshi Xu or Xiong Zhang.

Ethics declarations

Ethics Approval

The studies involving human participants were reviewed and approved by Ethics Committee of Maoming People’s Hospital (reference No. PJ2022MI-K011-01).

Consent to Participate

Informed consent was obtained from all individual participants included in the study.

Consent for Publication

Not applicable.

Competing Interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(PDF 1.10 mb)

ESM 2

(XLSX 30 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, D., Ren, T., Li, H. et al. Oral Microbiota and Porphyromonas gingivalis Kgp Genotypes Altered in Parkinson’s Disease with Mild Cognitive Impairment. Mol Neurobiol (2024). https://doi.org/10.1007/s12035-024-04119-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12035-024-04119-2

Keywords

Navigation