Skip to main content

Advertisement

Log in

Mesenchymal Stem Cell-Derived Extracellular Vesicles Alleviate Brain Damage Following Subarachnoid Hemorrhage via the Interaction of miR-140-5p and HDAC7

  • Original Article
  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Subarachnoid hemorrhage (SAH) triggers severe neuroinflammation and cognitive impairment, where microglial M1 polarization exacerbates the injury and M2 polarization mitigates damage. Mesenchymal stem cell-derived extracellular vesicles (MSC-EVs), carrying microRNA (miR)-140-5p, offer therapeutic promise by targeting the cAMP/PKA/CREB pathway and modulating microglial responses, demonstrating a novel approach for addressing SAH-induced brain injury. This research explored the role of miR-140-5p delivered by MSC-EVs in mitigating brain damage following SAH. Serum from SAH patients and healthy individuals was analyzed for miR-140-5p and cAMP levels. The association between miR-140-5p levels, brain injury severity, and patient survival was examined, along with the target relationship between miR-140-5p and histone deacetylases 7 (HDAC7). MSC-EVs were characterized for their ability to cross the blood-brain barrier and modulate the HDAC7/AKAP12/cAMP/PKA/CREB axis, reducing M1 polarization and inflammation. The therapeutic effect of MSC-EV-miR-140-5p was demonstrated in an SAH mouse model, showing reduced neuronal apoptosis and improved neurological function. This study highlights the potential of MSC-EV-miR-140-5p in mitigating SAH-induced neuroinflammation and brain injury, providing a foundation for developing MSC-EV-based treatments for SAH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The data that supports the findings of this study are available on request from the corresponding author upon reasonable request.

References

  1. Ziu E, Khan Suheb MZ, Mesfin FB (2023) Subarachnoid hemorrhage. StatPearls. StatPearls Publishing

  2. Muehlschlegel S (2018) Subarachnoid hemorrhage. Continuum (Minneapolis Minn) 24(6):1623–1657. https://doi.org/10.1212/CON.0000000000000679

    Article  PubMed  Google Scholar 

  3. Wang J, Liang J, Deng J, Liang X, Wang K, Wang H, Qian D, Long H, Yang K, Qi S (2021) Emerging role of microglia-mediated neuroinflammation in Epilepsy after Subarachnoid Hemorrhage. Mol Neurobiol 58(6):2780–2791. https://doi.org/10.1007/s12035-021-02288-y

    Article  CAS  PubMed  Google Scholar 

  4. Tu XK, Chen Q, Chen S, Huang B, Ren BG, Shi SS (2021) GLP-1R agonist Liraglutide attenuates inflammatory reaction and neuronal apoptosis and reduces early brain Injury after Subarachnoid Hemorrhage in rats. Inflammation 44(1):397–406. https://doi.org/10.1007/s10753-020-01344-4

    Article  CAS  PubMed  Google Scholar 

  5. Wang XY, Wu F, Zhan RY, Zhou HJ (2022) Inflammatory role of microglia in brain injury caused by subarachnoid hemorrhage. Front Cell Neurosci 16:956185. https://doi.org/10.3389/fncel.2022.956185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Okada T, Kawakita F, Nishikawa H, Nakano F, Liu L, Suzuki H (2019) Selective toll-like receptor 4 antagonists prevent Acute blood-brain barrier disruption after subarachnoid hemorrhage in mice. Mol Neurobiol 56(2):976–985. https://doi.org/10.1007/s12035-018-1145-2

    Article  CAS  PubMed  Google Scholar 

  7. Liao Z, Liu C, Wang L, Sui C, Zhang H (2021) Therapeutic role of mesenchymal stem cell-derived extracellular vesicles in Female Reproductive diseases. Front Endocrinol 12:665645. https://doi.org/10.3389/fendo.2021.665645

    Article  Google Scholar 

  8. Harrell CR, Jovicic N, Djonov V, Arsenijevic N, Volarevic V (2019) Mesenchymal stem cell-derived exosomes and other Extracellular vesicles as new remedies in the Therapy of Inflammatory diseases. Cells 8(12):1605. https://doi.org/10.3390/cells8121605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wu R, Fan X, Wang Y, Shen M, Zheng Y, Zhao S, Yang L (2022) Mesenchymal stem cell-derived extracellular vesicles in liver immunity and therapy. Front Immunol 13:833878. https://doi.org/10.3389/fimmu.2022.833878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wang S, Lei B, Zhang E, Gong P, Gu J, He L, Han L, Yuan Z (2022) Targeted therapy for inflammatory diseases with mesenchymal stem cells and their derived exosomes: from Basic to Clinics. Int J Nanomed 17:1757–1781. https://doi.org/10.2147/IJN.S355366

    Article  Google Scholar 

  11. Gan L, Liu D, Xie D, Bond Lau W, Liu J, Christopher TA, Lopez B, Liu L, Hu H, Yao P, He Y, Gao E, Koch WJ, Zhao J, Ma XL, Cao Y, Wang Y (2022) Ischemic heart-derived small extracellular vesicles impair adipocyte function. Circul Res 130(1):48–66. https://doi.org/10.1161/CIRCRESAHA.121.320157

    Article  CAS  Google Scholar 

  12. Ghafouri-Fard S, Abak A, Tavakkoli Avval S, Rahmani S, Shoorei H, Taheri M, Samadian M (2021) Contribution of miRNAs and lncRNAs in osteogenesis and related disorders. 142:111942. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapiehttps://doi.org/10.1016/j.biopha.2021.111942

  13. Wang S, Cui Y, Xu J, Gao H (2019) Mir-140-5p attenuates Neuroinflammation and Brain Injury in rats following intracerebral hemorrhage by targeting TLR4. Inflammation 42(5):1869–1877. https://doi.org/10.1007/s10753-019-01049-3

    Article  CAS  PubMed  Google Scholar 

  14. Qian Y, Li Q, Chen L, Sun J, Cao K, Mei Z, Lu X (2022) Mesenchymal stem cell-derived extracellular vesicles alleviate M1 microglial activation in Brain Injury of mice with subarachnoid hemorrhage via microRNA-140-5p delivery. Int J Neuropsychopharmacol 25(4):328–338. https://doi.org/10.1093/ijnp/pyab096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Xu Y, Li H, Chen G, Zhu L, Lin H, Huang C, Wei S, Yang T, Qian W, Li X, Zhao S, Pan W (2022) Radix polygoni multiflori protects against hippocampal neuronal apoptosis in diabetic encephalopathy by inhibiting the HDAC4/JNK pathway. Biomed Pharmacotherapy = Biomedecine Pharmacotherapie 153:113427. https://doi.org/10.1016/j.biopha.2022.113427

    Article  CAS  PubMed  Google Scholar 

  16. Tang Y, Sun Y, Zeng J, Yuan B, Zhao Y, Geng X, Jia L, Zhou S, Chen X (2022) Exosomal mir-140-5p inhibits osteogenesis by targeting IGF1R and regulating the mTOR pathway in ossification of the posterior longitudinal ligament. J Nanobiotechnol 20(1):452. https://doi.org/10.1186/s12951-022-01655-8

    Article  CAS  Google Scholar 

  17. Kumar V, Kundu S, Singh A, Singh S (2022) Understanding the role of histone deacetylase and their inhibitors in neurodegenerative disorders: current targets and future perspective. Curr Neuropharmacol 20(1):158–178. https://doi.org/10.2174/1570159X19666210609160017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cui M, Ding H, Chen F, Zhao Y, Yang Q, Dong Q (2016) Mdivi-1 protects against ischemic brain Injury via elevating Extracellular Adenosine in a cAMP/CREB-CD39-Dependent manner. Mol Neurobiol 53(1):240–253. https://doi.org/10.1007/s12035-014-9002-4

    Article  CAS  PubMed  Google Scholar 

  19. Guan R, Lv J, Xiao F, Tu Y, Xie Y, Li L (2019) Potential role of the cAMP/PKA/CREB signalling pathway in hypoxic preconditioning and effect on propofol–induced neurotoxicity in the hippocampus of neonatal rats. Mol Med Rep 20(2):1837–1845. https://doi.org/10.3892/mmr.2019.10397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Seo JH, Maki T, Miyamoto N, Choi YK, Chung KK, Hamanaka G, Park JH, Mandeville ET, Takase H, Hayakawa K, Lok J, Gelman IH, Kim KW, Lo EH, Arai K (2020) AKAP12 supports blood-brain Barrier Integrity against Ischemic Stroke. Int J Mol Sci 21(23):9078. https://doi.org/10.3390/ijms21239078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gao X, Zhang X, Cui L, Chen R, Zhang C, Xue J, Zhang L, He W, Li J, Wei S, Wei M, Cui H (2020) Ginsenoside Rb1 promotes Motor Functional Recovery and Axonal Regeneration in Post-stroke mice through cAMP/PKA/CREB signaling pathway. Brain Res Bull 154:51–60. https://doi.org/10.1016/j.brainresbull.2019.10.006

    Article  CAS  PubMed  Google Scholar 

  22. Bai H, Zhao L, Liu H, Guo H, Guo W, Zheng L, Liu X, Wu X, Luo J, Li X, Gao L, Feng D, Qu Y (2018) Adiponectin confers neuroprotection against cerebral ischemia-reperfusion injury through activating the cAMP/PKA-CREB-BDNF signaling. Brain Res Bull 143:145–154. https://doi.org/10.1016/j.brainresbull.2018.10.013

    Article  CAS  PubMed  Google Scholar 

  23. Ma CL, Li L, Yang GM, Zhang ZB, Zhao YN, Zeng XF, Zhang DX, Yu Y, Shi ZJ, Yan QW, Li LH, Hong SJ (2020) Neuroprotective effect of gastrodin in methamphetamine-induced apoptosis through regulating cAMP/PKA/CREB pathway in cortical neuron. Hum Exp Toxicol 39(8):1118–1129. https://doi.org/10.1177/0960327120911438

    Article  CAS  PubMed  Google Scholar 

  24. Park GS, Choi HY, Jang HG, Park JS, Koh EJ, Lee JM (2022) Adrenocorticotropic hormone and β-endorphin concentration as a prognostic factor in patients with subarachnoid hemorrhage due to aneurysmal rupture. J Cerebrovasc Endovascular Neurosurg 24(2):113–120. https://doi.org/10.7461/jcen.2021.E2021.08.003

    Article  Google Scholar 

  25. Conroy H, Mawhinney L, Donnelly SC (2010) Inflammation and cancer: macrophage migration inhibitory factor (MIF)--the potential missing link. QJM: Monthly J Association Physicians 103(11):831–836. https://doi.org/10.1093/qjmed/hcq148

    Article  CAS  Google Scholar 

  26. Tang H, Shao C, Wang X, Cao Y, Li Z, Luo X, Yang X, Zhang Y (2022) 6-Gingerol attenuates subarachnoid hemorrhage-induced early brain injury via GBP2/PI3K/AKT pathway in the rat model. Front Pharmacol 13:882121. https://doi.org/10.3389/fphar.2022.882121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Xie Y, Peng J, Pang J, Guo K, Zhang L, Yin S, Zhou J, Gu L, Tu T, Mu Q, Liao Y, Zhang X, Chen L, Jiang Y (2020) Biglycan regulates neuroinflammation by promoting M1 microglial activation in early brain injury after experimental subarachnoid hemorrhage. J Neurochem 152(3):368–380. https://doi.org/10.1111/jnc.14926

    Article  CAS  PubMed  Google Scholar 

  28. Tan X, Zheng Y, Zeng H, Peng Y, Yu X, Cao S (2022) Inhibition of mer exacerbates early brain injury by regulating microglia/macrophage phenotype after subarachnoid hemorrhage in mice. J Stroke Cerebrovasc Diseases: Official J Natl Stroke Association 31(9):106659. https://doi.org/10.1016/j.jstrokecerebrovasdis.2022.106659

    Article  Google Scholar 

  29. Heinz R, Brandenburg S, Nieminen-Kelhä M, Kremenetskaia I, Boehm-Sturm P, Vajkoczy P, Schneider UC (2021) Microglia as target for anti-inflammatory approaches to prevent secondary brain injury after subarachnoid hemorrhage (SAH). J Neuroinflamm 18(1):36. https://doi.org/10.1186/s12974-021-02085-3

    Article  CAS  Google Scholar 

  30. Gao R, Zhang X, Zou K, Meng D, Lv J (2023) Cryptochrome 1 activation inhibits melanogenesis and melanosome transport through negative regulation of cAMP/PKA/CREB signaling pathway. Front Pharmacol 14:1081030. https://doi.org/10.3389/fphar.2023.1081030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Xiong L, Sun L, Zhang Y, Peng J, Yan J, Liu X (2020) Exosomes from bone marrow mesenchymal stem cells can alleviate early brain Injury after Subarachnoid Hemorrhage through miRNA129-5p-HMGB1 pathway. Stem Cells Dev 29(4):212–221. https://doi.org/10.1089/scd.2019.0206

    Article  CAS  PubMed  Google Scholar 

  32. Dang TK, Hong SM, Dao VT, Tran PTT, Tran HT, Do GH, Hai TN, Pham N, H. T., Kim SY (2023) Anti-neuroinflammatory effects of alkaloid-enriched extract from Huperzia serrata on lipopolysaccharide-stimulated BV-2 microglial cells. Pharm Biol 61(1):135–143. https://doi.org/10.1080/13880209.2022.2159450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Cai L, Gong Q, Qi L, Xu T, Suo Q, Li X, Wang W, Jing Y, Yang D, Xu Z, Yuan F, Tang Y, Yang G, Ding J, Chen H, Tian H (2022) ACT001 attenuates microglia-mediated neuroinflammation after traumatic brain injury via inhibiting AKT/NFκB/NLRP3 pathway. Cell Communication Signaling: CCS 20(1):56. https://doi.org/10.1186/s12964-022-00862-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Soldevilla B, Rodríguez M, San Millán C, García V, Fernández-Periañez R, Gil-Calderón B, Martín P, García-Grande A, Silva J, Bonilla F, Domínguez G (2014) Tumor-derived exosomes are enriched in ∆Np73, which promotes oncogenic potential in acceptor cells and correlates with patient survival. Hum Mol Genet 23(2):467–478. https://doi.org/10.1093/hmg/ddt437

    Article  CAS  PubMed  Google Scholar 

  35. Park HJ, Zhao TT, Park KH, Lee MK (2019) Repeated treatments with the D1 dopamine receptor agonist SKF-38393 modulate cell viability via sustained ERK-Bad-bax activation in dopaminergic neuronal cells. Behav Brain Res 367:166–175. https://doi.org/10.1016/j.bbr.2019.03.035

    Article  CAS  PubMed  Google Scholar 

  36. Wang J, Polaki V, Chen S, Bihl C J (2020) Exercise improves endothelial function Associated with alleviated inflammation and oxidative stress of Perivascular Adipose tissue in type 2 Diabetic mice. Oxidative Med Cell Longev 2020:8830537. https://doi.org/10.1155/2020/8830537

  37. Salem M, Shan Y, Bernaudo S, Peng C (2019) Mir-590-3p targets cyclin G2 and FOXO3 to promote Ovarian Cancer Cell Proliferation, Invasion, and spheroid formation. Int J Mol Sci 20(8):1810. https://doi.org/10.3390/ijms20081810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhu D, Fang H, Yu H, Liu P, Yang Q, Luo P, Zhang C, Gao Y, Chen YX (2022) Alcohol-induced inhibition of bone formation and neovascularization contributes to the failure of fracture healing via the miR-19a-3p/FOXF2 axis. Bone Joint Res 11(6):386–397. https://doi.org/10.1302/2046-3758.116.BJR-2021-0596.R1

    Article  PubMed  PubMed Central  Google Scholar 

  39. Yang Z, Li J, Feng G, Gao S, Wang Y, Zhang S, Liu Y, Ye L, Li Y, Zhang X (2017) MicroRNA-145 modulates N6-Methyladenosine levels by targeting the 3’-Untranslated mRNA region of the N6-Methyladenosine binding YTH domain family 2 protein. J Biol Chem 292(9):3614–3623. https://doi.org/10.1074/jbc.M116.749689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Chen L, Hu L, Li Q, Ma J, Li H (2019) Exosome-encapsulated miR-505 from ox-LDL-treated vascular endothelial cells aggravates atherosclerosis by inducing NET formation. Acta Biochim Biophys Sin 51(12):1233–1241. https://doi.org/10.1093/abbs/gmz123

    Article  CAS  PubMed  Google Scholar 

  41. Qiao Y, Wang P, Qi J, Zhang L, Gao C (2012) TLR-induced NF-κB activation regulates NLRP3 expression in murine macrophages. FEBS Lett 586(7):1022–1026. https://doi.org/10.1016/j.febslet.2012.02.045

    Article  CAS  PubMed  Google Scholar 

  42. Turtoi A, Mottet D, Matheus N, Dumont B, Peixoto P, Hennequière V, Deroanne C, Colige A, De Pauw E, Bellahcène A, Castronovo V (2012) The angiogenesis suppressor gene AKAP12 is under the epigenetic control of HDAC7 in endothelial cells. Angiogenesis 15(4):543–554. https://doi.org/10.1007/s10456-012-9279-8

    Article  CAS  PubMed  Google Scholar 

  43. Wang P, Xue Y, Zuo Y, Xue Y, Zhang JH, Duan J, Liu F, Liu A (2022) Exosome-encapsulated microRNA-140-5p alleviates neuronal Injury following subarachnoid hemorrhage by regulating IGFBP5-Mediated PI3K/AKT signaling pathway. Mol Neurobiol 59(12):7212–7228. https://doi.org/10.1007/s12035-022-03007-x

    Article  CAS  PubMed  Google Scholar 

  44. Wang XL, Wang JX, Chen JL, Hao WY, Xu WZ, Xu ZQ, Jiang YT, Luo PQ, Chen Q, Li YH, Zhu GQ, Li XZ (2022) Asprosin in the Paraventricular Nucleus induces sympathetic activation and pressor responses via cAMP-Dependent ROS production. Int J Mol Sci 23(20):12595. https://doi.org/10.3390/ijms232012595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Elia CA, Losurdo M, Malosio ML, Coco S (2019) Extracellular vesicles from mesenchymal stem cells exert Pleiotropic effects on Amyloid-β, inflammation, and regeneration: a spark of Hope for Alzheimer’s disease from tiny structures? BioEssays: News Reviews Mol Cell Dev Biology 41(4):e1800199. https://doi.org/10.1002/bies.201800199

    Article  Google Scholar 

  46. Man K, Brunet MY, Lees R, Peacock B, Cox SC (2023) Epigenetic reprogramming via synergistic hypomethylation and Hypoxia enhances the therapeutic efficacy of mesenchymal stem cell Extracellular vesicles for bone repair. Int J Mol Sci 24(8):7564. https://doi.org/10.3390/ijms24087564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Camardo SS, Dahal A, S., Ramamurthi A (2023) Surface-functionalized stem cell-derived extracellular vesicles for Vascular Elastic Matrix Regenerative Repair. Mol Pharm 20(6):2801–2813. https://doi.org/10.1021/acs.molpharmaceut.2c00769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Hu X, Yan J, Huang L, Araujo C, Peng J, Gao L, Liu S, Tang J, Zuo G, Zhang JH (2021) INT-777 attenuates NLRP3-ASC inflammasome-mediated neuroinflammation via TGR5/cAMP/PKA signaling pathway after subarachnoid hemorrhage in rats. Brain Behav Immun 91:587–600. https://doi.org/10.1016/j.bbi.2020.09.016

    Article  CAS  PubMed  Google Scholar 

  49. Tao Y, Li L, Jiang B, Feng Z, Yang L, Tang J, Chen Q, Zhang J, Tan Q, Feng H, Chen Z, Zhu G (2016) Cannabinoid receptor-2 stimulation suppresses neuroinflammation by regulating microglial M1/M2 polarization through the cAMP/PKA pathway in an experimental GMH rat model. Brain Behav Immun 58:118–129. https://doi.org/10.1016/j.bbi.2016.05.020

    Article  CAS  PubMed  Google Scholar 

  50. Zhang L, Hu K, Shao T, Hou L, Zhang S, Ye W, Josephson L, Meyer JH, Zhang MR, Vasdev N, Wang J, Xu H, Wang L, Liang SH (2021) Recent developments on PET radiotracers for TSPO and their applications in neuroimaging. Acta Pharm Sinica B 11(2):373–393. https://doi.org/10.1016/j.apsb.2020.08.006

    Article  CAS  Google Scholar 

  51. Fayazi N, Sheykhhasan M, Soleimani Asl S, Najafi R (2021) Stem cell-derived exosomes: a new strategy of neurodegenerative Disease treatment. Mol Neurobiol 58(7):3494–3514. https://doi.org/10.1007/s12035-021-02324-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Garcia-Martin R, Wang G, Brandão BB, Zanotto TM, Shah S, Patel K, Schilling S, B., Kahn CR (2022) MicroRNA sequence codes for small extracellular vesicle release and cellular retention. Nature 601(7893):446–451. https://doi.org/10.1038/s41586-021-04234-3

    Article  CAS  PubMed  Google Scholar 

  53. Ding K, Lai Z, Yang G, Zeng L (2021) MiR-140-5p targets Prox1 to regulate the proliferation and differentiation of neural stem cells through the ERK/MAPK signaling pathway. Annals Translational Med 9(8):671. https://doi.org/10.21037/atm-21-597

    Article  CAS  Google Scholar 

  54. Zou Y, Liao L, Dai J, Mazhar M, Yang G, Wang H, Dechsupa N, Wang L (2023) Mesenchymal stem cell-derived extracellular vesicles/exosome: a promising therapeutic strategy for intracerebral hemorrhage. Regenerative Therapy 22:181–190. https://doi.org/10.1016/j.reth.2023.01.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Huang A, Ji L, Li Y, Li Y, Yu Q (2023) Gut microbiome plays a vital role in post-stroke injury repair by mediating neuroinflammation. Int Immunopharmacol 118:110126. https://doi.org/10.1016/j.intimp.2023.110126

    Article  CAS  PubMed  Google Scholar 

  56. Pinsky MR, Cecconi M, Chew MS, De Backer D, Douglas I, Edwards M, Hamzaoui O, Hernandez G, Martin G, Monnet X, Saugel B, Scheeren TWL, Teboul JL, Vincent JL (2022) Effective hemodynamic monitoring. Critical care. (London England) 26(1):294. https://doi.org/10.1186/s13054-022-04173-z

    Article  Google Scholar 

  57. Jin P, Deng S, Tian M, Lenahan C, Wei P, Wang Y, Tan J, Wen H, Zhao F, Gao Y, Gong Y (2021) INT-777 prevents cognitive impairment by activating Takeda G protein-coupled receptor 5 (TGR5) and attenuating neuroinflammation via cAMP/ PKA/ CREB signaling axis in a rat model of sepsis. Exp Neurol 335:113504. https://doi.org/10.1016/j.expneurol.2020.113504

    Article  CAS  PubMed  Google Scholar 

  58. Gao C, Zhou Y, Chen Z, Li H, Xiao Y, Hao W, Zhu Y, Vong CT, Farag MA, Wang Y, Wang S (2022) Turmeric-derived nanovesicles as novel nanobiologics for targeted therapy of ulcerative colitis. Theranostics 12(12):5596–5614. https://doi.org/10.7150/thno.73650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Guo K, Ma Z, Zhang Y, Han L, Shao C, Feng Y, Gao F, Di S, Zhang Z, Zhang J, Tabbò F, Ekman S, Suda K, Cappuzzo F, Han J, Li X, Yan X (2022) HDAC7 promotes NSCLC proliferation and metastasis via stabilization by deubiquitinase USP10 and activation of β-catenin-FGF18 pathway. J Experimental Clin cancer Research: CR 41(1):91. https://doi.org/10.1186/s13046-022-02266-9

    Article  CAS  PubMed Central  Google Scholar 

  60. Kobayashi T, Young C, Zhou W, Rhee EP (2023) Reduced glycolysis links resting zone chondrocyte proliferation in the growth plate. bioRxiv: the preprint server for biology, 2023.01.18.524550. https://doi.org/10.1101/2023.01.18.524550

Download references

Acknowledgements

Not applicable.

Funding

This study was supported by Zhenjiang City Social Development Subject (SH2022034), Jichuan Pharmaceutical Horizontal Project (JC-2023-003) and Zhenjiang Jinshan Healer (2021-JSYZ-22).

Author information

Authors and Affiliations

Authors

Contributions

Yu Qian conceived and designed research. Bo Chen performed experiments. Eryi Sun interpreted results of experiments. Xinyu Lu analyzed data. Zheng Li prepared figures. Runpei Wang drafted paper. Dazhao Fang edited and revised manuscript. All authors read and approved final version of manuscript.

Corresponding author

Correspondence to Dazhao Fang.

Ethics declarations

Ethics Approval and Consent to Participate

The collection of human blood samples in this study complies with the ethical standards of the Declaration of Helsinki and has been approved by the Ethics Committee of The Affiliated Huaian No.1 People’s Hospital of Nanjing Medical University. Written informed consent was obtained from all participants or their direct relatives. All animal experiments were conducted in accordance with ethical standards and received approval from the Animal Ethics Committee of The Affiliated Huaian No.1 People’s Hospital of Nanjing Medical University, following the Guide for the Care and Use of Laboratory Animals published by the National Institutes of Health.

Consent for Publication

Not applicable.

Competing Interests

The authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Supplementary Material 2

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qian, Y., Chen, B., Sun, E. et al. Mesenchymal Stem Cell-Derived Extracellular Vesicles Alleviate Brain Damage Following Subarachnoid Hemorrhage via the Interaction of miR-140-5p and HDAC7. Mol Neurobiol (2024). https://doi.org/10.1007/s12035-024-04118-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12035-024-04118-3

Keywords

Navigation