Skip to main content
Log in

Mirror-Image Pain Update: Complex Interactions Between Central and Peripheral Mechanisms

  • Reviews
  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

The appearance of contralateral effects after unilateral injury has been shown in various experimental pain models, as well as in clinics. They consist of a diversity of phenomena in contralateral peripheral nerves, sensory ganglia, or spinal cord: from structural changes and altered gene or protein expression to functional consequences such as the development of mirror-image pain (MP). Although MP is a well-documented phenomenon, the exact molecular mechanism underlying the induction and maintenance of mirror-like spread of pain is still an unresolved challenge. MP has generally been explained by central sensitization mechanisms leading to facilitation of pain impulse transfer through neural connections between the two sides of the central nervous system. On the contrary, the peripheral nervous system (PNS) was usually regarded unlikely to evoke such a symmetrical phenomenon. However, recent findings provided evidence that events in the PNS could play a significant role in MP induction. This manuscript provides an updated and comprehensive synthesis of the MP phenomenon and summarizes the available data on the mechanisms. A more detailed focus is placed on reported evidence for peripheral mechanisms behind the MP phenomenon, which were not reviewed up to now.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

All data supporting the findings of this study are available within the paper.

References

  1. Bliddal H, Danneskiold-Samsøe B (2007) Chronic widespread pain in the spectrum of rheumatological diseases. Best Pract Res Clin Rheumatol 21(3):391–402. https://doi.org/10.1016/j.berh.2007.03.005

    Article  PubMed  Google Scholar 

  2. Konopka KH, Harbers M, Houghton A, Kortekaas R, van Vliet A, Timmerman W, den Boer JA, Struys MM et al (2012) Bilateral sensory abnormalities in patients with unilateral neuropathic pain; a quantitative sensory testing (QST) study. PLoS ONE 7(5):e37524. https://doi.org/10.1371/journal.pone.0037524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Masgoret P, de Soto I, Caballero Á, Ríos J, Gomar C (2020) Incidence of contralateral neurosensitive changes and persistent postoperative pain 6 months after mastectomy: a prospective, observational investigation. Medicine (Baltimore) 99(11):e19101. https://doi.org/10.1097/MD.0000000000019101

    Article  PubMed  Google Scholar 

  4. Enax-Krumova E, Attal N, Bouhassira D, Freynhagen R, Gierthmühlen J, Hansson P, Kuehler BM, Maier C et al (2021) Contralateral sensory and pain perception changes in patients with unilateral neuropathy. Neurology 97(4):e389–e402. https://doi.org/10.1212/WNL.0000000000012229

    Article  CAS  PubMed  Google Scholar 

  5. Werner MU, Ringsted TK, Kehlet H, Wildgaard K (2013) Sensory testing in patients with postthoracotomy pain syndrome: part 1: mirror-image sensory dysfunction. Clin J Pain 29(9):775–783. https://doi.org/10.1097/AJP.0b013e318277b646

    Article  PubMed  Google Scholar 

  6. Shenker N, Haigh R, Roberts E, Mapp P, Harris N, Blake D (2003) A review of contralateral responses to a unilateral inflammatory lesion. Rheumatology 42(11):1279–1286. https://doi.org/10.1093/rheumatology/keg397

    Article  CAS  PubMed  Google Scholar 

  7. Sluka KA, Kalra A, Moore SA (2001) Unilateral intramuscular injections of acidic saline produce a bilateral, long-lasting hyperalgesia. Muscle Nerve 24(1):37–46. https://doi.org/10.1002/1097-4598(200101)24

    Article  CAS  PubMed  Google Scholar 

  8. Radhakrishnan R, Moore SA, Sluka KA (2003) Unilateral carrageenan injection into muscle or joint induces chronic bilateral hyperalgesia in rats. Pain 104(3):567–577. https://doi.org/10.1016/S0304-3959(03)00114-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Koltzenburg M, Wall PD, McMahon SB (1999) Does the right side know what the left is doing? Trends Neurosci 22(3):122–127. https://doi.org/10.1016/s0166-2236(98)01302-2

    Article  CAS  PubMed  Google Scholar 

  10. Lee BH, Seong J, Kim UJ, Won R, Kim J (2005) Behavioral characteristics of a mouse model of cancer pain. Yonsei Med J 46(2):252–259. https://doi.org/10.3349/ymj.2005.46.2.252

    Article  PubMed  PubMed Central  Google Scholar 

  11. Mao-Ying QL, Zhao J, Dong ZQ, Wang J, Yu J, Yan MF, Zhang YQ, Wu GC et al (2006) A rat model of bone cancer pain induced by intra-tibia inoculation of Walker 256 mammary gland carcinoma cells. Biochem Biophys Res Commun 345(4):1292–1298. https://doi.org/10.1016/j.bbrc.2006.04.186

    Article  CAS  PubMed  Google Scholar 

  12. Sun YE, Lu CE, Lei Y, Liu Y, Ma Z, Gu X (2015) Mas-related G-protein-coupled receptor c agonist bovine adrenal medulla 8–22 attenuates bone cancer pain in mice. Int J Clin Exp Med 8(11):20178–20187

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Colvin LA, Mark MA, Duggan AW (1996) Bilaterally enhanced dorsal horn postsynaptic currents in a rat model of peripheral mononeuropathy. Neurosci Lett 207(1):29–32. https://doi.org/10.1016/0304-3940(96)12480-0

    Article  CAS  PubMed  Google Scholar 

  14. Oaklander AL, Romans K, Horasek S, Stocks A, Hauer P, Meyer RA (1998) Unilateral postherpetic neuralgia is associated with bilateral sensory neuron damage. Ann Neurol 44(5):789–795. https://doi.org/10.1002/ana.410440513

    Article  CAS  PubMed  Google Scholar 

  15. Oaklander AL, Brown JM (2004) Unilateral nerve injury produces bilateral loss of distal innervation. Ann Neurol 55(5):639–644. https://doi.org/10.1002/ana.20048

    Article  PubMed  Google Scholar 

  16. Dubový P, Klusáková I, Svíženská I, Brázda V (2010) Spatio-temporal changes of SDF1 and its CXCR4 receptor in the dorsal root ganglia following unilateral sciatic nerve injury as a model of neuropathic pain. Histochem Cell Biol 133(3):323–337. https://doi.org/10.1007/s00418-010-0675-0

    Article  CAS  PubMed  Google Scholar 

  17. Jancálek R, Dubový P, Svízenská I, Klusáková I (2010) Bilateral changes of TNF-alpha and IL-10 protein in the lumbar and cervical dorsal root ganglia following a unilateral chronic constriction injury of the sciatic nerve. J Neuroinflammation 7(11):P10. https://doi.org/10.1186/1742-2094-7-11

    Article  CAS  Google Scholar 

  18. Brázda V, Klusáková I, Hradilová Svíženská I, Dubový P (2013) Dynamic response to peripheral nerve injury detected by in situ hybridization of IL-6 and its receptor mRNAs in the dorsal root ganglia is not strictly correlated with signs of neuropathic pain. Mol Pain 9:42. https://doi.org/10.1186/1744-8069-9-42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Dubový P, Brázda V, Klusáková I, Hradilová-Svíženská I (2013) Bilateral elevation of interleukin-6 protein and mRNA in both lumbar and cervical dorsal root ganglia following unilateral chronic compression injury of the sciatic nerve. J Neuroinflammation 10:55. https://doi.org/10.1186/1742-2094-10-55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Svízenská IH, Brázda V, Klusáková I, Dubový P (2013) Bilateral changes of cannabinoid receptor type 2 protein and mRNA in the dorsal root ganglia of a rat neuropathic pain model. J Histochem Cytochem 61(7):529–547. https://doi.org/10.1369/0022155413491269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Fetell M, Sendel M, Li T, Marinelli L, Vollert J, Ruggerio E, Houk G, Dockum M et al (2023) Cutaneous nerve fiber and peripheral Nav1.7 assessment in a large cohort of patients with postherpetic neuralgia. Pain. 164(11):2435–2446. https://doi.org/10.1097/j.pain.0000000000002950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Klit H, Finnerup NB, Jensen TS (2009) Central post-stroke pain: clinical characteristics, pathophysiology, and management. Lancet Neurol 8:857–868. https://doi.org/10.1016/S1474-4422(09)70176-0

    Article  PubMed  Google Scholar 

  23. Jancálek R (2011) Signaling mechanisms in mirror image pain pathogenesis. Ann Neurosci 18(3):123–127. https://doi.org/10.5214/ans.0972-7531.11183010

    Article  PubMed  PubMed Central  Google Scholar 

  24. Arguis MJ, Perez J, Martínez G, Ubre M, Gomar C (2008) Contralateral neuropathic pain following a surgical model of unilateral nerve injury in rats. Reg Anesth Pain Med 33(3):211–216. https://doi.org/10.1016/j.rapm.2007.12.003

    Article  PubMed  Google Scholar 

  25. Paulson PE, Morrow TJ, Casey KL (2000) Bilateral behavioral and regional cerebral blood flow changes during painful peripheral mononeuropathy in the rat. Pain 84(2–3):233–245. https://doi.org/10.1016/s0304-3959(99)00216-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Imamura Y, Kawamoto H, Nakanishi O (1997) Characterization of heat-hyperalgesia in an experimental trigeminal neuropathy in rats. Exp Brain Res 116(1):97–103. https://doi.org/10.1007/pl00005748

    Article  CAS  PubMed  Google Scholar 

  27. Aloisi AM, Porro CA, Cavazzuti M, Baraldi P, Carli G (1993) ‘Mirror pain’ in the formalin test: behavioral and 2-deoxyglucose studies. Pain 55(2):267–273. https://doi.org/10.1016/0304-3959(93)90156-j

    Article  PubMed  Google Scholar 

  28. Li L, Xian CJ, Zhong JH, Zhou XF (2002) Effect of lumbar 5 ventral root transection on pain behaviors: a novel rat model for neuropathic pain without axotomy of primary sensory neurons [published correction appears in Exp Neurol 2002 Aug; 176(2):407]. Exp Neurol 175(1):23–34. https://doi.org/10.1006/exnr.2002.7897

    Article  PubMed  Google Scholar 

  29. Shaikh S, Shortland P, Lauto A, Barton M, Morley JW, Mahns DA (2016) Sensory perturbations using suture and sutureless repair of transected median nerve in rats. Somatosens Mot Res 33(1):20–28. https://doi.org/10.3109/08990220.2016.1142438

    Article  PubMed  Google Scholar 

  30. Maleki J, LeBel AA, Bennett GJ, Schwartzman RJ (2000) Patterns of spread in complex regional pain syndrome, type I (reflex sympathetic dystrophy). Pain 88(3):259–266. https://doi.org/10.1016/s0304-3959(00)00332-8

    Article  PubMed  Google Scholar 

  31. Bruehl S (2015) Complex regional pain syndrome. BMJ h2730. https://doi.org/10.1136/bmj.h2730

  32. Leis S, Weber M, Isselmann A, Schmelz M, Birklein F (2003) Substance-P-induced protein extravasation is bilaterally increased in complex regional pain syndrome. Exp Neurol 183(1):197–204. https://doi.org/10.1016/s0014-4886(03)00163-8

    Article  CAS  PubMed  Google Scholar 

  33. Rasmussen VF, Karlsson P, Drummond PD, Schaldemose EL, Terkelsen AJ, Jensen TS, Knudsen LF (2018) Bilaterally reduced intraepidermal nerve fiber density in unilateral CRPS-I. Pain Med 19(10):2021–2030. https://doi.org/10.1093/pm/pnx240

    Article  PubMed  Google Scholar 

  34. Maatman RC, Werner MU, Scheltinga MRM, Roumen RMH (2019) Bilateral distribution of anterior cutaneous nerve entrapment syndrome (ACNES): are clinical features and outcomes comparable to unilateral ACNES? Reg Anesth Pain Med rapm-2018–100062. https://doi.org/10.1136/rapm-2018-100062

  35. Pelletier R, Paquette É, Bourbonnais D, Higgins J, Harris PG, Danino MA (2019) Bilateral sensory and motor as well as cognitive differences between persons with and without musculoskeletal disorders of the wrist and hand. Musculoskelet Sci Pract 44:102058. https://doi.org/10.1016/j.msksp.2019.102058

    Article  PubMed  Google Scholar 

  36. Nagaro T, Kimura S, Arai T (1987) A mechanism of new pain following cordotomy; reference of sensation. Pain 30(1):89–91. https://doi.org/10.1016/0304-3959(87)90086-8

    Article  PubMed  Google Scholar 

  37. Bowsher D (1988) Contralateral mirror-image pain following anterolateral cordotomy. Pain 33(1):63–65. https://doi.org/10.1016/0304-3959(88)90204-7

    Article  PubMed  Google Scholar 

  38. Nathan PW (1956) Reference of sensation at the spinal level. J Neurol Neurosurg Psychiatry 19(2):88–100. https://doi.org/10.1136/jnnp.19.2.88

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sanders M, Zuurmond W (1995) Safety of unilateral and bilateral percutaneous cervical cordotomy in 80 terminally ill cancer patients. J Clin Oncol 13(6):1509–1512. https://doi.org/10.1200/JCO.1995.13.6.1509

    Article  CAS  PubMed  Google Scholar 

  40. Higaki N, Yorozuya T, Nagaro T, Tsubota S, Fujii T, Fukunaga T, Moriyama M, Yoshikawa T (2015) Usefulness of cordotomy in patients with cancer who experience bilateral pain: implications of increased pain and new pain. Neurosurgery 76(3):249–256. https://doi.org/10.1227/NEU.0000000000000593. discussion 256; quiz 256-257

    Article  PubMed  Google Scholar 

  41. Younis S, Maarbjerg S, Reimer M, Wolfram F, Olesen J, Baron R, Bendtsen L (2016) Quantitative sensory testing in classical trigeminal neuralgia-a blinded study in patients with and without concomitant persistent pain. Pain 157(7):1407–1414. https://doi.org/10.1097/j.pain.0000000000000528

    Article  PubMed  Google Scholar 

  42. Boudreau SA, Kamavuako EN, Rathleff MS (2017) Distribution and symmetrical patellofemoral pain patterns as revealed by high-resolution 3D body mapping: a cross-sectional study. BMC Musculoskelet Disord 18(1):160. https://doi.org/10.1186/s12891-017-1521-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Perez DE, Wolford LM, Schneiderman E, Movahed R, Bourland C, Gutierrez EP (2016) Does unilateral temporomandibular total joint reconstruction result in contralateral joint pain and dysfunction? J Oral Maxillofac Surg 74(8):1539–1547. https://doi.org/10.1016/j.joms.2016.02.009

    Article  PubMed  Google Scholar 

  44. Clark AJ, Norman RW (1998) ‘Mirror pain’ as an unusual presentation of renal colic. Urology 51(1):116–118. https://doi.org/10.1016/s0090-4295(97)00472-x

    Article  CAS  PubMed  Google Scholar 

  45. Koonj Beharry B, Ramdwar N, Sengupta S (2019) “Mirror” ureteric colic caused by proximal ureteric calculus in massively hydronephrotic kidney. Urol Case Rep 25:100892. https://doi.org/10.1016/j.eucr.2019.100892

    Article  PubMed  PubMed Central  Google Scholar 

  46. Kim JS (1998) Delayed-onset ipsilateral sensory symptoms in patients with central poststroke pain. Eur Neurol 40(4):201–206. https://doi.org/10.1159/000007980

    Article  CAS  PubMed  Google Scholar 

  47. Caruncho MV, Branas F (2006) Mirror pain as a complication of large core biopsy of the breast. Breast J 12(4):393–395. https://doi.org/10.1111/j.1075-122X.2006.00290.x

    Article  PubMed  Google Scholar 

  48. Kang K, Lee JH, Kim HG (2013) Contralateral referred pain in a patient with intramedullary spinal cord metastasis from extraskeletal small cell osteosarcoma. J Spinal Cord Med 36(6):695–699. https://doi.org/10.1179/2045772312Y.0000000087

    Article  PubMed  PubMed Central  Google Scholar 

  49. Giglio JA, Gregg JM (2018) Development of mirror pain following trigeminal nerve injury: a case report and review of neuropathic mechanisms. Gen Dent 66(1):27–32

    PubMed  Google Scholar 

  50. Shenker NG, Haigh RC, Mapp PI, Harris N, Blake DR (2008) Contralateral hyperalgesia and allodynia following intradermal capsaicin injection in man. Rheumatology (Oxford) 47(9):1417–1421. https://doi.org/10.1093/rheumatology/ken251

    Article  CAS  PubMed  Google Scholar 

  51. Stohler CS, Kowalski CJ, Lund JP (2001) Muscle pain inhibits cutaneous touch perception. Pain 92(3):327–333. https://doi.org/10.1016/s0304-3959(01)00274-3

    Article  PubMed  Google Scholar 

  52. Lei J, You HJ, Andersen OK, Graven-Nielsen T, Arendt-Nielsen L (2008) Homotopic and heterotopic variation in skin blood flow and temperature following experimental muscle pain in humans. Brain Res 1232:85–93. https://doi.org/10.1016/j.brainres.2008.07.056

    Article  CAS  PubMed  Google Scholar 

  53. Enax-Krumova EK, Pohl S, Westermann A, Maier C (2017) Ipsilateral and contralateral sensory changes in healthy subjects after experimentally induced concomitant sensitization and hypoesthesia. BMC Neurol 17(1):60. https://doi.org/10.1186/s12883-017-0839-9

    Article  PubMed  PubMed Central  Google Scholar 

  54. Huang D, Yu B (2010) The mirror-image pain: an unclered phenomenon and its possible mechanism. Neurosci Biobehav Rev 34(4):5528–5532. https://doi.org/10.1016/j.neubiorev.2009.10.011

    Article  Google Scholar 

  55. Bennett GJ, Xie YK (1988) A peripheral mononeuropathy in rat that produces disorders of pain sensation like those seen in man. Pain 33(1):87–107. https://doi.org/10.1016/0304-3959(88)90209-6

    Article  PubMed  Google Scholar 

  56. Basbaum AI, Gautron M, Jazat F, Mayes M, Guilbaud G (1991) The spectrum of fiber loss in a model of neuropathic pain in the rat: an electron microscopic study. Pain 47(3):359–367. https://doi.org/10.1016/0304-3959(91)90229-q

    Article  CAS  PubMed  Google Scholar 

  57. Attal N, Jazat F, Kayser V, Guilbaud G (1990) Further evidence for “pain-related” behaviours in a model of unilateral peripheral mononeuropathy. Pain 41(2):235–251. https://doi.org/10.1016/0304-3959(90)90022-6

    Article  CAS  PubMed  Google Scholar 

  58. Behera D, Behera S, Jacobs KE, Biswal S (2013) Bilateral peripheral neural activity observed in vivo following unilateral nerve injury. Am J Nucl Med Mol Imaging 3(3):282–290

    PubMed  PubMed Central  Google Scholar 

  59. Kajander KC, Pollock CH, Berg H (1996) Evaluation of hindpaw position in rats during chronic constriction injury (CCI) produced with different suture materials. Somatosens Mot Res 13(2):95–101. https://doi.org/10.3109/08990229609051397

    Article  CAS  PubMed  Google Scholar 

  60. Yasuda T, Miki S, Yoshinaga N, Senba E (2005) Effects of amitriptyline and gabapentin on bilateral hyperalgesia observed in an animal model of unilateral axotomy. Pain 115(1–2):161–170. https://doi.org/10.1016/j.pain.2005.02.026

    Article  CAS  PubMed  Google Scholar 

  61. Xu XJ, Plesan A, Yu W, Hao JX, Wiesenfeld-Hallin Z (2001) Possible impact of genetic differences on the development of neuropathic pain-like behaviors after unilateral sciatic nerve ischemic injury in rats. Pain 89(2–3):135–145. https://doi.org/10.1016/s0304-3959(00)00356-0

    Article  CAS  PubMed  Google Scholar 

  62. Seltzer Z, Dubner R, Shir Y (1990) A novel behavioral model of neuropathic pain disorders produced in rats by partial sciatic nerve injury. Pain 43(2):205–218. https://doi.org/10.1016/0304-3959(90)91074-s

    Article  PubMed  Google Scholar 

  63. Chen J, Luo C, Li H, Chen H (1999) Primary hyperalgesia to mechanical and heat stimuli following subcutaneous bee venom injection into the plantar surface of hindpaw in the conscious rat: a comparative study with the formalin test. Pain 83(1):67–76. https://doi.org/10.1016/s0304-3959(99)00075-5

    Article  CAS  PubMed  Google Scholar 

  64. Cheng CF, Cheng JK, Chen CY, Lien CC, Chu D, Wang SY, Tsaur ML (2014) Mirror-image pain is mediated by nerve growth factor produced from tumor necrosis factor alpha-activated satellite glia after peripheral nerve injury. Pain 155(5):906–920. https://doi.org/10.1016/j.pain.2014.01.010

    Article  CAS  PubMed  Google Scholar 

  65. Bai ZT, Liu T, Chai ZF, Pang XY, Ji YH (2006) Rat pain-related responses induced by experimental scorpion BmK sting. Eur J Pharmacol 552(1–3):67–77. https://doi.org/10.1016/j.ejphar.2006.09.018

    Article  CAS  PubMed  Google Scholar 

  66. Chacur M, Milligan ED, Gazda LS, Armstrong C, Wang H, Tracey KJ, Maier SF, Watkins LR (2001) A new model of sciatic inflammatory neuritis (SIN): induction of unilateral and bilateral mechanical allodynia following acute unilateral peri-sciatic immune activation in rats. Pain 94(3):231–244. https://doi.org/10.1016/s0304-3959(01)00354-2

    Article  PubMed  Google Scholar 

  67. Russell FA, Fernandes ES, Courade JP, Keeble JE, Brain SD (2009) Tumour necrosis factor alpha mediates transient receptor potential vanilloid 1-dependent bilateral thermal hyperalgesia with distinct peripheral roles of interleukin-1beta, protein kinase C and cyclooxygenase-2 signalling. Pain 142(3):264–274. https://doi.org/10.1016/j.pain.2009.01.021

    Article  CAS  PubMed  Google Scholar 

  68. Xu J, Wei X, Gao F, Zhong X, Guo R, Ji Y, Zhou X, Chen J et al (2020) NADPH oxidase 2 derived ROS contributes to LTP of C-fiber evoked field potentials in spinal dorsal horn and persistent mirror-image pain following high frequency stimulus of the sciatic nerve. Pain 161(4):758–772. https://doi.org/10.1097/j.pain.0000000000001761

    Article  CAS  PubMed  Google Scholar 

  69. Kambiz S, Brakkee EM, Duraku LS, Hovius SE, Ruigrok TJ, Walbeehm ET (2015) Mirror-image pain after nerve reconstruction in rats is related to enhanced density of epidermal peptidergic nerve fibers. Exp Neurol 267:87–94. https://doi.org/10.1016/j.expneurol.2015.02.033

    Article  CAS  PubMed  Google Scholar 

  70. Fitzgerald M (1982) The contralateral input to the dorsal horn of the spinal cord in the decerebrate spinal rat. Brain Res 236(2):275–287. https://doi.org/10.1016/0006-8993(82)90714-4

    Article  CAS  PubMed  Google Scholar 

  71. Woolf CJ (1984) Long term alterations in the excitability of the flexion reflex produced by peripheral tissue injury in the chronic decerebrate rat. Pain 18(4):325–343. https://doi.org/10.1016/0304-3959(84)90045-9

    Article  PubMed  Google Scholar 

  72. Gwak YS, Kim HK, Kim HY, Leem JW (2010) Bilateral hyperexcitability of thalamic VPL neurons following unilateral spinal injury in rats. J Physiol Sci 60(1):59–66. https://doi.org/10.1007/s12576-009-0066-2

    Article  PubMed  Google Scholar 

  73. Chang YW, Tan A, Saab C, Waxman S (2010) Unilateral focal burn injury is followed by long-lasting bilateral allodynia and neuronal hyperexcitability in spinal cord dorsal horn. J Pain 11(2):119–130. https://doi.org/10.1016/j.jpain.2009.06.009

    Article  PubMed  Google Scholar 

  74. Gallo A, Leerink M, Michot B, Ahmed E, Forget P, Mouraux A, Hermans E, Deumens R (2017) Bilateral tactile hypersensitivity and neuroimmune responses after spared nerve injury in mice lacking vasoactive intestinal peptide. Exp Neurol 293:62–73. https://doi.org/10.1016/j.expneurol.2017.03.019

    Article  CAS  PubMed  Google Scholar 

  75. Culberson JL, Haines DE, Kimmel DL, Brown PB (1979) Contralateral projection of primary afferent fibers to mammalian spinal cord. Exp Neurol 64(1):83–97. https://doi.org/10.1016/0014-4886(79)90007-4

    Article  CAS  PubMed  Google Scholar 

  76. Light AR, Perl ER (1979) Reexamination of the dorsal root projection to the spinal dorsal horn including observations on the differential termination of coarse and fine fibers. J Comp Neurol 186(2):117–131. https://doi.org/10.1002/cne.901860202

    Article  CAS  PubMed  Google Scholar 

  77. Luz LL, Lima S, Fernandes EC, Kokai E, Gomori L, Szucs P, Safronov BV (2023) Contralateral afferent input to lumbar lamina I neurons as a neural substrate for mirror-image pain. J Neurosci 43(18):3245–3258. https://doi.org/10.1523/JNEUROSCI.1897-22.2023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Petkó M, Antal M (2000) Propriospinal afferent and efferent connections of the lateral and medial areas of the dorsal horn (laminae I-IV) in the rat lumbar spinal cord. J Comp Neurol 422:312–325. https://doi.org/10.1002/(sici)1096-9861(20000626)422:2%3c312::aid-cne11%3e3.0.co;2-a

    Article  PubMed  Google Scholar 

  79. Petkó M, Veress G, Vereb G, Storm-Mathisen J, Antal M (2004) Commissural propriospinal connections between the lateral aspects of laminae III-IV in the lumbar spinal cord of rats. J Comp Neurol 480(4):364–377. https://doi.org/10.1002/cne.2035

    Article  PubMed  Google Scholar 

  80. Boyer NP, Gupton SL (2018) Revisiting netrin-1: one who guides (axons). Front Cell Neurosci 12:221. https://doi.org/10.3389/fncel.2018.00221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Maxwell DJ, Soteropoulos DS (2020) The mammalian spinal commissural system: properties and functions. J Neurophysiol 123(1):4–21. https://doi.org/10.1152/jn.00347.2019

    Article  CAS  PubMed  Google Scholar 

  82. Da Silva RV, Johannssen HC, Wyss MT, Roome RB, Bourojeni FB, Stifani N, Marsh APL, Ryan MM et al (2018) DCC is required for the development of nociceptive topognosis in mice and humans. Cell Rep 22(5):1105–1114. https://doi.org/10.1016/j.celrep.2018.01.004

    Article  CAS  PubMed  Google Scholar 

  83. Sotgiu ML, Biella G (1998) Spinal neuron sensitization facilitates contralateral input in rats with peripheral mononeuropathy. Neurosci Lett 241(2–3):127–130. https://doi.org/10.1016/s0304-3940(98)00011-1

    Article  CAS  PubMed  Google Scholar 

  84. Duarte J, Fernandes EC, Kononenko O, Sarkisyan D, Luz LL, Bakalkin G, Safronov BV (2019) Differential suppression of the ipsi- and contralateral nociceptive reflexes in the neonatal rat spinal cord by agonists of µ-, δ- and κ-opioid receptors. Brain Res 1717:182–189. https://doi.org/10.1016/j.brainres.2019.04.026

    Article  CAS  PubMed  Google Scholar 

  85. Mansikka H, Zhao C, Sheth RN, Sora I, Uhl G, Raja SN (2004) Nerve injury induces a tonic bilateral mu-opioid receptor-mediated inhibitory effect on mechanical allodynia in mice. Anesthesiology 100(4):912–921. https://doi.org/10.1097/00000542-200404000-00022

    Article  CAS  PubMed  Google Scholar 

  86. Wang JY, Zhao M, Huang FS, Tang JS, Yuan YK (2015) Mu-opioid receptor in the nucleus submedius: involvement in opioid-induced inhibition of mirror-image allodynia in a rat model of neuropathic pain. Neurochem Res 33:2134–2141. https://doi.org/10.1007/s11064-008-9733-6

    Article  CAS  Google Scholar 

  87. Xiao Y, Lei J, Ye G, Xu H, You HJ (2015) Role of thalamic nuclei in the modulation of Fos expression within the cerebral cortex during hypertonic saline-induced muscle nociception. Neuroscience 304:36–46. https://doi.org/10.1016/j.neuroscience.2015.07.027

    Article  CAS  PubMed  Google Scholar 

  88. Ishikawa H, Mitsui Y, Yoshitomi T, Mashimo K, Aoki S, Mukuno K, Shimizu K (2000) Presynaptic effects of botulinum toxin type A on the neuronally evoked response of albino and pigmented rabbit iris sphincter and dilator muscles. Jpn J Ophthalmol 44(2):106–109. https://doi.org/10.1016/s0021-5155(99)00197-5

    Article  CAS  PubMed  Google Scholar 

  89. Hu SW, Zhang Q, Xia SH, Zhao WN, Li QZ, Yang JX, An S, Ding HL et al (2021) Contralateral projection of anterior cingulate cortex contributes to mirror-image pain. J Neurosci 41(48):9988–10003. https://doi.org/10.1523/JNEUROSCI.0881-21.2021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Li QY, Chen SX, Liu JY, Yao PW, Duan YW, Li YY, Zang Y (2022) Neuroinflammation in the anterior cingulate cortex: the potential supraspinal mechanism underlying the mirror-image pain following motor fiber injury. J Neuroinflammation 19(1):162. https://doi.org/10.1186/s12974-022-02525-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Forss N, Kirveskari E, Gockel M (2005) Mirror-like spread of chronic pain. Neurology 65(5):748–750. https://doi.org/10.1212/01.WNL.0000166027.81432.9B

    Article  PubMed  Google Scholar 

  92. You HJ, Lei J, Sui MY, Huang L, Tan YX, Tjølsen A, Arendt-Nielsen L (2010) Endogenous descending modulation: spatiotemporal effect of dynamic imbalance between descending facilitation and inhibition of nociception. J Physiol 588(Pt 21):4177–4188. https://doi.org/10.1113/jphysiol.2010.196923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Kalra A, Urban MO, Sluka KA (2001) Blockade of opioid receptors in rostral ventral medulla prevents antihyperalgesia produced by transcutaneous electrical nerve stimulation (TENS). J Pharmacol Exp Ther 298(1):257–263

    CAS  PubMed  Google Scholar 

  94. Ainsworth L, Budelier K, Clinesmith M, Fiedler A, Landstrom R, Leeper BJ, Moeller L, Mutch S et al (2006) Transcutaneous electrical nerve stimulation (TENS) reduces chronic hyperalgesia induced by muscle inflammation. Pain 120(1–2):182–187. https://doi.org/10.1016/j.pain.2005.10.030

    Article  PubMed  Google Scholar 

  95. Tillu DV, Gebhart GF, Sluka KA (2008) Descending facilitatory pathways from the RVM initiate and maintain bilateral hyperalgesia after muscle insult. Pain 136(3):331–339. https://doi.org/10.1016/j.pain.2007.07.011

    Article  CAS  PubMed  Google Scholar 

  96. DeSantana JM, da Cruz KM, Sluka KA (2013) Animal models of fibromyalgia. Arthritis Res Ther 15(6):222. https://doi.org/10.1186/ar4402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Radhakrishnan R, Sluka KA (2009) Increased glutamate and decreased glycine release in the rostral ventromedial medulla during induction of a pre-clinical model of chronic widespread muscle pain. Neurosci Lett 457(3):141–145. https://doi.org/10.1016/j.neulet.2009.03.086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Da Silva LF, Desantana JM, Sluka KA (2010) Activation of NMDA receptors in the brainstem, rostral ventromedial medulla, and nucleus reticularis gigantocellularis mediates mechanical hyperalgesia produced by repeated intramuscular injections of acidic saline in rats. J Pain 11(4):378–387. https://doi.org/10.1016/j.jpain.2009.08.006

    Article  CAS  PubMed  Google Scholar 

  99. Da Silva LF, Walder RY, Davidson BL, Wilson SP, Sluka KA (2010) Changes in expression of NMDA-NR1 receptor subunits in the rostral ventromedial medulla modulate pain behaviors. Pain 151(1):155–161. https://doi.org/10.1016/j.pain.2010.06.037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Chen HS, Li MM, Shi J, Chen J (2003) Supraspinal contribution to development of both tonic nociception and referred mirror hyperalgesia: a comparative study between formalin test and bee venom test in the rat. Anesthesiology 98(5):1231–1236. https://doi.org/10.1097/00000542-200305000-00027

    Article  CAS  PubMed  Google Scholar 

  101. Vogel C, Mössner R, Gerlach M, Heinemann T, Murphy DL, Riederer P, Lesch KP, Sommer C (2003) Absence of thermal hyperalgesia in serotonin transporter-deficient mice. J Neurosci 23(2):708–715. https://doi.org/10.1523/JNEUROSCI.23-02-00708.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Bhangoo S, Ren D, Miller RJ, Henry KJ, Lineswala J, Hamdouchi C, Li B, Monahan PE et al (2007) Delayed functional expression of neuronal chemokine receptors following focal nerve demyelination in the rat: a mechanism for the development of chronic sensitization of peripheral nociceptors. Mol Pain 3:38. https://doi.org/10.1186/1744-8069-3-38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Petrus E, Dembling S, Usdin T, Isaac JTR, Koretsky AP (2020) Circuit-specific plasticity of callosal inputs underlies cortical takeover. J Neurosci 40(40):7714–7723. https://doi.org/10.1523/JNEUROSCI.1056-20.2020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Berger A, Artzi M, Aizenstein O, Gonen T, Tellem R, Hochberg U, Ben-Bashat D, Strauss I (2021) Cervical cordotomy for intractable pain: do postoperative imaging features correlate with pain outcomes and mirror pain? AJNR Am J Neuroradiol 42(4):794–800. https://doi.org/10.3174/ajnr.A6999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Basbaum A (2022) History of spinal cord “pain” pathways including the pathways not taken. Front Pain Res (Lausanne) 3:910954. https://doi.org/10.3389/fpain.2022.910954

    Article  PubMed  Google Scholar 

  106. Wieseler-Frank J, Maier SF, Watkins LR (2004) Glial activation and pathological pain. Neurochem Int 45(2–3):389395. https://doi.org/10.1016/j.neuint.2003.09.009

    Article  CAS  Google Scholar 

  107. Hansson E (2006) Could chronic pain and spread of pain sensation be induced and maintained by glial activation? Acta Physiol (Oxf) 187(1–2):321–327. https://doi.org/10.1111/j.1748-1716.2006.01568.x

    Article  CAS  PubMed  Google Scholar 

  108. Milligan ED, Twining C, Chacur M, Biedenkapp J, O’Connor K, Poole S, Tracey K, Martin D et al (2003) Spinal glia and proinflammatory cytokines mediate mirror-image neuropathic pain in rats. J Neurosci 23(3):1026–1040. https://doi.org/10.1523/JNEUROSCI.23-03-01026.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Hunt JL, Winkelstein BA, Rutkowski MD, Weinstein JN, DeLeo JA (2001) Repeated injury to the lumbar nerve roots produces enhanced mechanical allodynia and persistent spinal neuroinflammation. Spine (Phila Pa 1976) 26(19):2073–2079. https://doi.org/10.1097/00007632-200110010-00005

    Article  CAS  PubMed  Google Scholar 

  110. Hatashita S, Sekiguchi M, Kobayashi H, Konno S, Kikuchi S (2008) Contralateral neuropathic pain and neuropathology in dorsal root ganglion and spinal cord following hemilateral nerve injury in rats. Spine (Phila Pa 1976) 33(12):1344–1351. https://doi.org/10.1097/BRS.0b013e3181733188

    Article  PubMed  Google Scholar 

  111. Racz I, Nadal X, Alferink J, Baños JE, Rehnelt J, Martín M, Pintado B, Gutierrez-Adan A (2008) Crucial role of CB(2) cannabinoid receptor in the regulation of central immune responses during neuropathic pain. J Neurosci 28(46):12125–12135. https://doi.org/10.1523/JNEUROSCI.3400-08.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Schreiber KL, Beitz AJ, Wilcox GL (2008) Activation of spinal microglia in a murine model of peripheral inflammation-induced, long-lasting contralateral allodynia. Neurosci Lett 440(1):63–67. https://doi.org/10.1016/j.neulet.2008.05.044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Jiang F, Liu T, Cheng M, Bai ZT, Zhou JJ, Ji YH (2009) Spinal astrocyte and microglial activation contributes to rat pain-related behaviors induced by the venom of scorpion Buthus martensi Karch. Eur J Pharmacol 623(1–3):52–64. https://doi.org/10.1016/j.ejphar.2009.09.028

    Article  CAS  PubMed  Google Scholar 

  114. Gao YJ, Xu ZZ, Liu YC, Wen YR, Decosterd I, Ji RR (2010) The c-Jun N-terminal kinase 1 (JNK1) in spinal astrocytes is required for the maintenance of bilateral mechanical allodynia under a persistent inflammatory pain condition. Pain 148(2):309–319. https://doi.org/10.1016/j.pain.2009.11.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Obata H, Sakurazawa S, Kimura M, Saito S (2010) Activation of astrocytes in the spinal cord contributes to the development of bilateral allodynia after peripheral nerve injury in rats. Brain Res 1363:72–80. https://doi.org/10.1016/j.brainres.2010.09.105

    Article  CAS  PubMed  Google Scholar 

  116. Zhang F, Feng X, Dong R, Wang H, Liu J, Li W, Xu J, Yu B (2011) Effects of clonidine on bilateral pain behaviors and inflammatory response in rats under the state of neuropathic pain. Neurosci Lett 505(3):254–259. https://doi.org/10.1016/j.neulet.2011.10.029

    Article  CAS  PubMed  Google Scholar 

  117. Wilkerson JL, Gentry KR, Dengler EC, Wallace JA, Kerwin AA, Armijo LM, Kuhn MN, Thakur GA et al (2012) Intrathecal cannabilactone CB(2)R agonist, AM1710, controls pathological pain and restores basal cytokine levels. Pain 153(5):1091–1106. https://doi.org/10.1016/j.pain.2012.02.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Naseri K, Saghaei E, Abbaszadeh F, Afhami M, Haeri A, Rahimi F, Jorjani M (2013) Role of microglia and astrocyte in central pain syndrome following electrolytic lesion at the spinothalamic tract in rats. J Mol Neurosci 49(3):470–479. https://doi.org/10.1007/s12031-012-9840-3

    Article  CAS  PubMed  Google Scholar 

  119. Niu QS, Jiang F, Hua LM, Fu J, Jiao YL, Ji YH, Ding G (2013) Microglial activation of p38 contributes to scorpion envenomation-induced hyperalgesia. Biochem Biophys Res Commun 440(3):374–380. https://doi.org/10.1016/j.bbrc.2013.09.071

    Article  CAS  PubMed  Google Scholar 

  120. Choi HS, Roh DH, Yoon SY, Moon JY, Choi SR, Kwon SG, Kang SY, Han HJ et al (2015) Microglial interleukin-1β in the ipsilateral dorsal horn inhibits the development of mirror-image contralateral mechanical allodynia through astrocyte activation in a rat model of inflammatory pain. Pain 156(6):1046–1059. https://doi.org/10.1097/j.pain.0000000000000148

    Article  CAS  PubMed  Google Scholar 

  121. Wang JY, Gao YH, Qiao LN, Zhang JL, Duan-Mu CL, Yan YX, Chen SP, Liu JL (2018) Repeated electroacupuncture treatment attenuated hyperalgesia through suppression of spinal glial activation in chronic neuropathic pain rats. BMC Complement Altern Med 18(1):74. https://doi.org/10.1186/s12906-018-2134-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Vanderwall AG, Noor S, Sun MS, Sanchez JE, Yang XO, Jantzie LL, Mellios N, Milligan ED (2018) Effects of spinal non-viral interleukin-10 gene therapy formulated with d-mannose in neuropathic interleukin-10 deficient mice: behavioral characterization, mRNA and protein analysis in pain relevant tissues. Brain Behav Immun 69:91–112. https://doi.org/10.1016/j.bbi.2017.11.004

    Article  CAS  PubMed  Google Scholar 

  123. Yuan Q, Liu X, Xian YF, Yao M, Zhang X, Huang P, Wu W, Lin ZX (2020) Satellite glia activation in dorsal root ganglion contributes to mechanical allodynia after selective motor fiber injury in adult rats. Biomed Pharmacother 127:110187. https://doi.org/10.1016/j.biopha.2020.110187

    Article  CAS  PubMed  Google Scholar 

  124. Choi HS, Roh DH, Yoon SY, Kwon SG, Choi SR, Kang SY, Moon JY, Han HJ et al (2017) The role of spinal interleukin-1β and astrocyte connexin 43 in the development of mirror-image pain in an inflammatory pain model. Exp Neurol 287(Pt 1):1–13. https://doi.org/10.1016/j.expneurol.2016.10.012

    Article  CAS  PubMed  Google Scholar 

  125. Choi HS, Roh DH, Yoon SY, Choi SR, Kwon SG, Kang SY, Moon JY, Han HJ et al (2018) Differential involvement of ipsilateral and contralateral spinal cord astrocyte D-serine in carrageenan-induced mirror-image pain: role of σ1 receptors and astrocyte gap junctions. Br J Pharmacol 175(3):558–572. https://doi.org/10.1111/bph.14109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Spataro LE, Sloane EM, Milligan ED, Wieseler-Frank J, Schoeniger D, Jekich BM, Barrientos RM, Maier SF et al (2004) Spinal gap junctions: potential involvement in pain facilitation. J Pain 5(7):392–405. https://doi.org/10.1016/j.jpain.2004.06.006

    Article  CAS  PubMed  Google Scholar 

  127. Yang Q, Jiang M, Xu S, Yang L, Yang P, Song Y, Zhu H, Wang Y et al (2023) Mirror image pain mediated by D2 receptor regulation of astrocytic Cx43 phosphorylation and channel opening. Biochim Biophys Acta Mol Basis Dis 1869(4):166657. https://doi.org/10.1016/j.bbadis.2023.166657

    Article  CAS  PubMed  Google Scholar 

  128. Ledeboer A, Mahoney JH, Milligan ED, Martin D, Maier SF, Watkins LR (2006) Spinal cord glia and interleukin-1 do not appear to mediate persistent allodynia induced by intramuscular acidic saline in rats. J Pain 7(10):757–767. https://doi.org/10.1016/j.jpain.2006.04.001

    Article  CAS  PubMed  Google Scholar 

  129. Ledeboer A, Sloane EM, Milligan ED, Frank MG, Mahony JH, Maier SF, Watkins LR (2005) Minocycline attenuates mechanical allodynia and proinflammatory cytokine expression in rat models of pain facilitation. Pain 115(1):71–83. https://doi.org/10.1016/j.pain.2005.02.009

    Article  CAS  PubMed  Google Scholar 

  130. Kubíčková L, Klusáková I, Dubový P (2020) Bilateral activation of glial cells and cellular distribution of the chemokine CCL2 and its receptor CCR2 in the trigeminal subnucleus caudalis of trigeminal neuropathic pain model. Histochem Cell Biol 153(4):239–255. https://doi.org/10.1007/s00418-020-01850-4

    Article  CAS  PubMed  Google Scholar 

  131. Ma Q, Su D, Huo J, Yin G, Dong D, Duan K, Cheng H, Xu H et al (2023) Microglial depletion does not affect the laterality of mechanical allodynia in mice. Neurosci Bull 39(8):1229–1245. https://doi.org/10.1007/s12264-022-01017-2.Erratum.In:NeurosciBull.2023,39(11):1745-1746

    Article  CAS  PubMed  Google Scholar 

  132. Dubový P, Tucková L, Jancálek R, Svízenská I, Klusáková I (2007) Increased invasion of ED-1 positive macrophages in both ipsi- and contralateral dorsal root ganglia following unilateral nerve injuries. Neurosci Lett 427(2):88–93. https://doi.org/10.1016/j.neulet.2007.09.012

    Article  CAS  PubMed  Google Scholar 

  133. Gazda LS, Milligan ED, Hansen MK, Twining CM, Poulos NM, Chacur M, O’Connor KA, Armstrong C et al (2001) Sciatic inflammatory neuritis (SIN): behavioral allodynia is paralleled by peri-sciatic proinflammatory cytokine and superoxide production. J Peripher Nerv Syst 6(3):111–129. https://doi.org/10.1046/j.1529-8027.2001.006001111.x

    Article  CAS  PubMed  Google Scholar 

  134. Twining CM, Sloane EM, Milligan ED, Chacur M, Martin D, Poole S, Marsh H, Maier SF et al (2004) Peri-sciatic proinflammatory cytokines, reactive oxygen species, and complement induce mirror-image neuropathic pain in rats. Pain 110(1–2):299–309. https://doi.org/10.1016/j.pain.2004.04.008

    Article  CAS  PubMed  Google Scholar 

  135. Romero-Sandoval EA, McCall C, Eisenach JC (2005) Alpha2-adrenoceptor stimulation transforms immune responses in neuritis and blocks neuritis-induced pain. J Neurosci 25(39):8988–8994. https://doi.org/10.1523/JNEUROSCI.2995-05.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Bennett GJ, Doyle T, Salvemini D (2014) Mitotoxicity in distal symmetrical sensory peripheral neuropathies. Nat Rev Neurol 10(6):326–336. https://doi.org/10.1038/nrneurol.2014.77

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Zajączkowska R, Kocot-Kępska M, Leppert W, Wrzosek A, Mika J, Wordliczek J (2019) Mechanisms of chemotherapy-induced peripheral neuropathy. Int J Mol Sci 20(6):1451. https://doi.org/10.3390/ijms20061451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Yagihashi S, Mizukami H, Sugimoto K (2011) Mechanism of diabetic neuropathy: where are we now and where to go? J Diabetes Investig 2(1):18–32. https://doi.org/10.1111/j.2040-1124.2010.00070.x

    Article  CAS  PubMed  Google Scholar 

  139. La Porta C, Bura SA, Aracil-Fernández A, Manzanares J, Maldonado R (2013) Role of CB1 and CB2 cannabinoid receptors in the development of joint pain induced by monosodium iodoacetate. Pain 154(1):160–174. https://doi.org/10.1016/j.pain.2012.10.009

    Article  CAS  PubMed  Google Scholar 

  140. Racz I, Nadal X, Alferink J, Baños JE, Rehnelt J, Martín M, Pintado B, Gutierrez-Adan A et al (2008) Interferon-gamma is a critical modulator of CB(2) cannabinoid receptor signaling during neuropathic pain. J Neurosci 28(46):12136–12145. https://doi.org/10.1523/JNEUROSCI.3402-08.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Nozaki C, Nent E, Bilkei-Gorzo A, Zimmer A (2018) Involvement of leptin signaling in the development of cannabinoid CB2 receptor-dependent mirror image pain. Sci Rep 8(1):10827. https://doi.org/10.1038/s41598-018-28507-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Nent E, Nozaki C, Schmöle AC, Otte D, Zimmer A (2019) CB2 receptor deletion on myeloid cells enhanced mechanical allodynia in a mouse model of neuropathic pain. Sci Res 9(1):7468. https://doi.org/10.1038/s41598-019-43858-4

    Article  CAS  Google Scholar 

  143. Su YS, Mei HR, Wang CH, Sun WH (2018) Peripheral 5-HT 3 mediates mirror-image pain by a cross-talk with acid-sensing ion channel 3. Neuropharmacology 130:92–104. https://doi.org/10.1016/j.neuropharm.2017.11.044

    Article  CAS  PubMed  Google Scholar 

  144. Lv H, Chen H, Xu JJ, Jiang YS, Shen YJ, Zhou SZ, Xu H, Xiong YC (2016) Redox imbalance in the peripheral mechanism underlying the mirror-image neuropathic pain due to chronic compression of dorsal root ganglion. Neurochem Res 41(5):958–964. https://doi.org/10.1007/s11064-015-1724-9

    Article  CAS  PubMed  Google Scholar 

  145. Coderre TJ, Xanthos DN, Francis L, Bennett GJ (2004) Chronic post-ischemia pain (CPIP): a novel animal model of complex regional pain syndrome-type I (CRPS-I; reflex sympathetic dystrophy) produced by prolonged hindpaw ischemia and reperfusion in the rat. Pain 112(1–2):94–105. https://doi.org/10.1016/j.pain.2004.08.001

    Article  PubMed  Google Scholar 

  146. Ryu TH, Jung KY, Ha MJ, Kwak KH, Lim DG, Hong JG (2010) Superoxide and nitric oxide involvement in enhancing of N-methyl-D-aspartate receptor-mediated central sensitization in the chronic post-ischemia pain model. Korean J Pain 23(1):1–10. https://doi.org/10.3344/kjp.2010.23.1.1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Kwak KH, Jung KY, Choi JY, Ryu T, Yeo JS, Park SS, Lim DG, Kim SO et al (2009) Contralateral allodynia and central change in the chronic post-ischemic pain model rats. Korean J Anesthesiol 56(4):419–424. https://doi.org/10.4097/kjae.2009.56.4.419

    Article  CAS  PubMed  Google Scholar 

  148. Forman HJ, Zhang H (2021) Targeting oxidative stress in disease: promise and limitations of antioxidant therapy. Nat Rev Drug Discov 20(9):689–709. https://doi.org/10.1038/s41573-021-00233-1.Erratum.In:NatRevDrugDiscov.2021;20(8):652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Silva Santos Ribeiro P, Willemen HLDM, Eijkelkamp N (2022) Mitochondria and sensory processing in inflammatory and neuropathic pain. Front Pain Res (Lausanne) 3:1013577. https://doi.org/10.3389/fpain.2022.1013577

    Article  CAS  PubMed  Google Scholar 

  150. Ribeiro H, Sarmento-Ribeiro AB, Andrade JP, Dourado M (2022) Apoptosis and (in) pain-potential clinical implications. Biomedicines 10(6):1255. https://doi.org/10.3390/biomedicines10061255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Yousuf MS, Maguire AD, Simmen T, Kerr BJ (2020) Endoplasmic reticulum-mitochondria interplay in chronic pain: the calcium connection. Mol Pain 16:1744806920946889. https://doi.org/10.1177/1744806920946889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Liao MF, Lu KT, Hsu JL, Lee CH, Cheng MY, Ro LS (2022) The role of autophagy and apoptosis in neuropathic pain formation. Int J Mol Sci 23(5):2685. https://doi.org/10.3390/ijms23052685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Huang XZ, Tu WF, Peng J, Deng RF, Mo K, Hu ZR, Lu Y (2015) Effect of preemptive local injection of ropivocaine with dexmedetomidine on mirror pain in rats and its mechanism. Asian Pac J Trop Med 8(10):836–840. https://doi.org/10.1016/j.apjtm.2015.09.010

    Article  CAS  PubMed  Google Scholar 

  154. Ohmichi Y, Sato J, Ohmichi M, Sakurai H, Yoshimoto T, Morimoto A, Hashimoto T, Eguchi K et al (2012) Two-week cast immobilization induced chronic widespread hyperalgesia in rats. Eur J Pain 16(3):338–348. https://doi.org/10.1002/j.1532-2149.2011.00026.x

    Article  CAS  PubMed  Google Scholar 

  155. Segond von Banchet G, Boettger MK, Fischer N, Gajda M, Bräuer R, Schaible HG (2009) Experimental arthritis causes tumor necrosis factor-α-dependent infiltration of macrophages into rat dorsal root ganglia which correlates with pain-related behavior. Pain 145(1):151–159. https://doi.org/10.1016/j.pain.2009.06.002

    Article  CAS  PubMed  Google Scholar 

  156. Rutkowski MD, Winkelstein BA, Hickey WF, Pahl JL, DeLeo JA (2002) Lumbar nerve root injury induces central nervous system neuroimmune activation and neuroinflammation in the rat: relationship to painful radiculopathy. Spine (Phila Pa 1976) 27(15):1604–1613. https://doi.org/10.1097/00007632-200208010-00003

    Article  PubMed  Google Scholar 

  157. Dubový P, Klusáková I, Svízenská I, Brázda V (2010) Satellite glial cells express IL-6 and corresponding signal-transducing receptors in the dorsal root ganglia of rat neuropathic pain model. Neuron Glia Biol 6(1):73–83. https://doi.org/10.1017/S1740925X10000074

    Article  PubMed  Google Scholar 

  158. Cao J, Li Z, Zhang Z, Ren X, Zhao Q, Shao J, Li M, Wang J et al (2014) Intrathecal injection of fluorocitric acid inhibits the activation of glial cells causing reduced mirror pain in rats. BMC Anesthesiol 14:119. https://doi.org/10.1186/1471-2253-14-119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Cheng CF, Cheng JK, Chen CY, Rau RH, Chang YC, Tsaur ML (2015) Nerve growth factor-induced synapse-like structures in contralateral sensory ganglia contribute to chronic mirror-image pain. Pain 156(11):2295–2309. https://doi.org/10.1097/j.pain.0000000000000280v

    Article  CAS  PubMed  Google Scholar 

  160. McLachlan EM, Jänig W, Devor M, Michaelis M (1993) Peripheral nerve injury triggers noradrenergic sprouting within dorsal root ganglia. Nature 363(6429):543–546. https://doi.org/10.1038/363543a0

    Article  CAS  PubMed  Google Scholar 

  161. Chien SQ, Li C, Li H, Xie W, Pablo CS, Zhang JM (2005) Sympathetic fiber sprouting in chronically compressed dorsal root ganglia without peripheral axotomy. J Neuropathic Pain Symptom Palliation 1(1):19–23. https://doi.org/10.1300/J426v01n01_05

    Article  PubMed  PubMed Central  Google Scholar 

  162. Lee BH, Yoon YW, Chung K, Chung JM (1998) Comparison of sympathetic sprouting in sensory ganglia in three animal models of neuropathic pain. Exp Brain Res 120(4):432–438. https://doi.org/10.1007/s002210050416

    Article  CAS  PubMed  Google Scholar 

  163. Levine JD, Dardick SJ, Basbaum AI, Scipio E (1985) Reflex neurogenic inflammation. I. Contribution of the peripheral nervous system to spatially remote inflammatory responses that follow injury. J Neurosci 5(5):1380–1386. https://doi.org/10.1523/JNEUROSCI.05-05-01380.1985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Shir Y, Seltzer Z (1991) Effects of sympathectomy in a model of causalgiform pain produced by partial sciatic nerve injury in rats. Pain 45(3):309–320. https://doi.org/10.1016/0304-3959(91)90056-4

    Article  PubMed  Google Scholar 

  165. Carcamo CR (2014) Letter to the editor. Pain 155(6):1177. https://doi.org/10.1016/j.pain.2014.03.008

    Article  PubMed  Google Scholar 

  166. Martinez-Lavin M (2004) Fibromyalgia as a sympathetically maintained pain syndrome. Curr Pain Headache Rep 8(5):385–389. https://doi.org/10.1007/s11916-996-0012-4

    Article  PubMed  Google Scholar 

  167. Kidd BL, Cruwys SC, Garrett NE, Mapp PI, Jolliffe VA, Blake DR (1995) Neurogenic influences on contralateral responses during experimental rat monoarthritis. Brain Res 688(1–2):72–76. https://doi.org/10.1016/0006-8993(95)00512-o

    Article  CAS  PubMed  Google Scholar 

  168. Donaldson LF, McQueen DS, Seckl JR (1995) Neuropeptide gene expression and capsaicin-sensitive primary afferents: maintenance and spread of adjuvant arthritis in the rat. J Physiol (Lond) 486:473–482. https://doi.org/10.1113/jphysiol.1995.sp020826

    Article  CAS  PubMed  Google Scholar 

  169. Rees H, Sluka KA, Lu Y, Westlund KN, Willis WD (1996) Dorsal root reflexes in articular afferents occur bilaterally in a chronic model of arthritis in rats. J Neurophysiol 76:4190–4193. https://doi.org/10.1152/jn.1996.76.6.4190

    Article  CAS  PubMed  Google Scholar 

  170. Decaris E, Guingamp C, Chat M, Philippe L, Grillasca JP, Abid A, Minn A, Gillet P et al (1999) Evidence for neurogenic transmission inducing degenerative cartilage damage distant from local inflammation. Arthritis Rheum 42:1951–1960. https://doi.org/10.1002/1529-0131(199909)42:9%3c1951::AID-ANR22%3e3.0.CO;2-D

    Article  CAS  PubMed  Google Scholar 

  171. Bileviciute I, Lundeberg T, Ekblom A, Theodorsson E (1993) Bilateral changes of substance P-, neurokinin A-, calcitonin gene-related peptide- and neuropeptide Y-like immunoreactivity in rat knee joint synovial fluid during acute monoarthritis. Neurosci Lett 153:37–40. https://doi.org/10.1016/0304-3940(93)90071-r

    Article  CAS  PubMed  Google Scholar 

  172. Kelly S, Dunham JP, Donaldson LF (2007) Sensory nerves have altered function contralateral to a monoarthritis and may contribute to the symmetrical spread of inflammation. Eur J Neurosci 26(4):935–942. https://doi.org/10.1111/j.1460-9568.2007.05737.x

    Article  PubMed  PubMed Central  Google Scholar 

  173. Bileviciute-Ljungar I, Saxne T, Spetea M (2006) Anti-inflammatory effects of contralateral administration of the kappa-opioid agonist U-50,488H in rats with unilaterally induced adjuvant arthritis. Rheumatology (Oxford) 45(3):295–302. https://doi.org/10.1093/rheumatology/kei156

    Article  CAS  PubMed  Google Scholar 

  174. Strichartz GR, Khodorova A, Wang JC, Chen YW, Huang CC (2015) Contralateral hyperalgesia from injection of endothelin-1 into the ipsilateral paw requires efferent conduction into the contralateral paw. Anesth Analg 121(4):1065–1077. https://doi.org/10.1213/ANE.0000000000000858

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Both authors equally contributed to manuscript conception, design, and writing. Both authors read and approved the final manuscript.

Corresponding author

Correspondence to Lidija Bach-Rojecky.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Drinovac Vlah, V., Bach-Rojecky, L. Mirror-Image Pain Update: Complex Interactions Between Central and Peripheral Mechanisms. Mol Neurobiol (2024). https://doi.org/10.1007/s12035-024-04102-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12035-024-04102-x

Keywords

Navigation