Skip to main content
Log in

RBM3 Promotes Anti-inflammatory Responses in Microglia and Serves as a Neuroprotective Target of Ischemic Stroke

  • Original Article
  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Ischemic stroke is a major cause of death and disability in adults. Hypothermic treatment is successful in treating neonatal cerebral ischemia, but its application is restricted in adult patients due to complex management strategies and severe adverse effects. Two homologous RNA-binding proteins, RBM3 and CIRP, are the only known cold-inducible proteins in vertebrates, and their expression levels are robustly elevated by mild to moderate hypothermia. In previous studies, we and others have demonstrated that both RBM3 and CIRP mediate the neuroprotective and neurogenic effects of hypothermia in cell and animal models. However, CIRP can also be detrimental to neurons by triggering neuroinflammatory responses, complicating its post-stroke functions. In this study, we compared the properties of the two cold-inducible RNA-binding proteins after ischemic stroke. Our results indicated that RBM3 expression was stimulated in the ischemic brain of stroke patients, while CIRP expression was not. In an experimental model, RBM3 can ameliorate ischemic-like insult by promoting neuronal survival and eliciting anti-inflammatory responses in activated microglia, while the impact of CIRP was intriguing. Collectively, our data supported the notion that RBM3 may be a more promising therapeutic target than CIRP for treating ischemic stroke. We further demonstrated that zr17-2, a small molecule initially identified to target CIRP, can specifically target RBM3 but not CIRP in microglia. zr17-2 demonstrated anti-inflammatory and neuroprotective effects after ischemic stroke both in vitro and in vivo, suggesting its potential therapeutic value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1 
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The source data are attached as additional information.

References 

  1. Collaborators GBDS (2021) Global, regional, and national burden of stroke and its risk factors, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet Neurol 20(10):795–820. https://doi.org/10.1016/S1474-4422(21)00252-0

    Article  Google Scholar 

  2. Badhiwala JH, Nassiri F, Alhazzani W, Selim MH, Farrokhyar F, Spears J, Kulkarni AV, Singh S, Alqahtani A, Rochwerg B, Alshahrani M, Murty NK, Alhazzani A, Yarascavitch B, Reddy K, Zaidat OO, Almenawer SA (2015) Endovascular thrombectomy for acute ischemic stroke: a meta-analysis. JAMA 314(17):1832–1843. https://doi.org/10.1001/jama.2015.13767

    Article  CAS  PubMed  Google Scholar 

  3. Tsivgoulis G, Katsanos AH, Sandset EC, Turc G, Nguyen TN, Bivard A, Fischer U, Khatri P (2023) Thrombolysis for acute ischaemic stroke: current status and future perspectives. The Lancet Neurology. https://doi.org/10.1016/S1474-4422(22)00519-1

    Article  PubMed  Google Scholar 

  4. Sweid A, Hammoud B, Ramesh S, Wong D, Alexander TD, Weinberg JH, Deprince M, Dougherty J, Maamari DJ, Tjoumakaris S, Zarzour H, Gooch MR, Herial N, Romo V, Hasan DM, Rosenwasser RH, Jabbour P (2020) Acute ischaemic stroke interventions: large vessel occlusion and beyond. Stroke Vasc Neurol 5(1):80–85. https://doi.org/10.1136/svn-2019-000262

    Article  PubMed  Google Scholar 

  5. Suzuki K, Matsumaru Y, Takeuchi M, Morimoto M, Kanazawa R, Takayama Y, Kamiya Y, Shigeta K, Okubo S, Hayakawa M, Ishii N, Koguchi Y, Takigawa T, Inoue M, Naito H, Ota T, Hirano T, Kato N, Ueda T, Iguchi Y, Akaji K, Tsuruta W, Miki K, Fujimoto S, Higashida T, Iwasaki M, Aoki J, Nishiyama Y, Otsuka T, Kimura K, Investigators SS (2021) Effect of mechanical thrombectomy without vs with intravenous thrombolysis on functional outcome among patients with acute ischemic stroke: the SKIP randomized clinical trial. JAMA 325(3):244–253. https://doi.org/10.1001/jama.2020.23522

    Article  PubMed  PubMed Central  Google Scholar 

  6. Wu L, Wu D, Yang T, Xu J, Chen J, Wang L, Xu S, Zhao W, Wu C, Ji X (2020) Hypothermic neuroprotection against acute ischemic stroke: the 2019 update. J Cereb Blood Flow Metab : Off J Int Soc Cereb Blood Flow Metab 40(3):461–481. https://doi.org/10.1177/0271678X19894869

    Article  Google Scholar 

  7. Shankaran S, Laptook AR, Ehrenkranz RA, Tyson JE, McDonald SA, Donovan EF, Fanaroff AA, Poole WK, Wright LL, Higgins RD, Finer NN, Carlo WA, Duara S, Oh W, Cotten CM, Stevenson DK, Stoll BJ, Lemons JA, Guillet R, Jobe AH, National Institute of Child H, Human Development Neonatal Research N (2005) Whole-body hypothermia for neonates with hypoxic-ischemic encephalopathy. N Engl J Med 353(15):1574–1584. https://doi.org/10.1056/NEJMcps050929

    Article  CAS  PubMed  Google Scholar 

  8. Hypothermia after Cardiac Arrest Study G (2002) Mild therapeutic hypothermia to improve the neurologic outcome after cardiac arrest. N Engl J Med 346(8):549–556. https://doi.org/10.1056/NEJMoa012689

    Article  Google Scholar 

  9. Yenari MA, Han HS (2012) Neuroprotective mechanisms of hypothermia in brain ischaemia. Nat Rev Neurosci 13(4):267–278. https://doi.org/10.1038/nrn3174

    Article  CAS  PubMed  Google Scholar 

  10. You JS, Kim JY, Yenari MA (2022) Therapeutic hypothermia for stroke: unique challenges at the bedside. Front Neurol 13:951586. https://doi.org/10.3389/fneur.2022.951586

    Article  PubMed  PubMed Central  Google Scholar 

  11. Zhu X, Buhrer C, Wellmann S (2016) Cold-inducible proteins CIRP and RBM3, a unique couple with activities far beyond the cold. Cell Mol Life Sci 73(20):3839–3859. https://doi.org/10.1007/s00018-016-2253-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zhu X, Zelmer A, Kapfhammer JP, Wellmann S (2016) Cold-inducible RBM3 inhibits PERK phosphorylation through cooperation with NF90 to protect cells from endoplasmic reticulum stress. FASEB J 30(2):624–634. https://doi.org/10.1096/fj.15-274639

    Article  CAS  PubMed  Google Scholar 

  13. Zhu X, Yan J, Bregere C, Zelmer A, Goerne T, Kapfhammer JP, Guzman R, Wellmann S (2019) RBM3 promotes neurogenesis in a niche-dependent manner via IMP2-IGF2 signaling pathway after hypoxic-ischemic brain injury. Nat Commun 10(1):3983. https://doi.org/10.1038/s41467-019-11870-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chip S, Zelmer A, Ogunshola OO, Felderhoff-Mueser U, Nitsch C, Buhrer C, Wellmann S (2011) The RNA-binding protein RBM3 is involved in hypothermia induced neuroprotection. Neurobiol Dis 43(2):388–396. https://doi.org/10.1016/j.nbd.2011.04.010

    Article  CAS  PubMed  Google Scholar 

  15. Zhang Q, Wang YZ, Zhang W, Chen X, Wang J, Chen J, Luo W (2017) Involvement of cold inducible RNA-binding protein in severe hypoxia-induced growth arrest of neural stem cells in vitro. Mol Neurobiol 54(3):2143–2153. https://doi.org/10.1007/s12035-016-9761-1

    Article  CAS  PubMed  Google Scholar 

  16. Su F, Yang S, Wang H, Qiao Z, Zhao H, Qu Z (2020) CIRBP ameliorates neuronal amyloid toxicity via antioxidative and antiapoptotic pathways in primary cortical neurons. Oxid Med Cell Longev 2020:2786139. https://doi.org/10.1155/2020/2786139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Li S, Zhang Z, Xue J, Liu A, Zhang H (2012) Cold-inducible RNA binding protein inhibits H(2)O(2)-induced apoptosis in rat cortical neurons. Brain Res 1441:47–52. https://doi.org/10.1016/j.brainres.2011.12.053

    Article  CAS  PubMed  Google Scholar 

  18. Yan J, Goerne T, Zelmer A, Guzman R, Kapfhammer JP, Wellmann S, Zhu X (2019) The RNA-binding protein RBM3 promotes neural stem cell (NSC) proliferation under hypoxia. Front Cell Dev Biol 7:288. https://doi.org/10.3389/fcell.2019.00288

    Article  PubMed  PubMed Central  Google Scholar 

  19. Zhou M, Yang WL, Ji Y, Qiang X (1840) Wang P (2014) Cold-inducible RNA-binding protein mediates neuroinflammation in cerebral ischemia. Biochim Biophys Acta 7:2253–2261. https://doi.org/10.1016/j.bbagen.2014.02.027

    Article  CAS  Google Scholar 

  20. Sharma A, Brenner M, Jacob A, Marambaud P, Wang P (2021) Extracellular CIRP activates the IL-6Ralpha/STAT3/Cdk5 pathway in neurons. Mol Neurobiol 58(8):3628–3640. https://doi.org/10.1007/s12035-021-02368-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Labat-gest V, Tomasi S (2013) Photothrombotic ischemia: a minimally invasive and reproducible photochemical cortical lesion model for mouse stroke studies. J Vis Exp (76). https://doi.org/10.3791/50370

  22. Rytter A, Cronberg T, Asztely F, Nemali S, Wieloch T (2003) Mouse hippocampal organotypic tissue cultures exposed to in vitro “ischemia” show selective and delayed CA1 damage that is aggravated by glucose. J Cereb Blood Flow Metab : Off J Int Soc Cereb Blood Flow Metab 23(1):23–33. https://doi.org/10.1097/01.WCB.0000034361.37277.1B

    Article  CAS  Google Scholar 

  23. Ramiro L, Garcia-Berrocoso T, Brianso F, Goicoechea L, Simats A, Llombart V, Gonzalo R, Hainard A, Martinez-Saez E, Canals F, Sanchez JC, Sanchez-Pla A, Montaner J (2021) Integrative multi-omics analysis to characterize human brain ischemia. Mol Neurobiol 58(8):4107–4121. https://doi.org/10.1007/s12035-021-02401-1

    Article  CAS  PubMed  Google Scholar 

  24. Krug T, Gabriel JP, Taipa R, Fonseca BV, Domingues-Montanari S, Fernandez-Cadenas I, Manso H, Gouveia LO, Sobral J, Albergaria I, Gaspar G, Jimenez-Conde J, Rabionet R, Ferro JM, Montaner J, Vicente AM, Silva MR, Matos I, Lopes G, Oliveira SA (2012) TTC7B emerges as a novel risk factor for ischemic stroke through the convergence of several genome-wide approaches. J Cereb Blood Flow Metab :Off J Int Soc Cereb Blood Flow Metab 32(6):1061–1072. https://doi.org/10.1038/jcbfm.2012.24

    Article  CAS  Google Scholar 

  25. Ransohoff RM (2016) A polarizing question: do M1 and M2 microglia exist? Nat Neurosci 19(8):987–991. https://doi.org/10.1038/nn.4338

    Article  CAS  PubMed  Google Scholar 

  26. Teng X, Zhang H, Snead C, Catravas JD (2002) Molecular mechanisms of iNOS induction by IL-1 beta and IFN-gamma in rat aortic smooth muscle cells. Am J Physiol Cell Physiol 282(1):C144-152. https://doi.org/10.1152/ajpcell.2002.282.1.C144

    Article  CAS  PubMed  Google Scholar 

  27. Schreiber T, Ehlers S, Heitmann L, Rausch A, Mages J, Murray PJ, Lang R, Holscher C (2009) Autocrine IL-10 induces hallmarks of alternative activation in macrophages and suppresses antituberculosis effector mechanisms without compromising T cell immunity. J Immunol 183(2):1301–1312. https://doi.org/10.4049/jimmunol.0803567

    Article  CAS  PubMed  Google Scholar 

  28. Coderch C, Diaz de Cerio M, Zapico JM, Pelaez R, Larrayoz IM, Ramos A, Martinez A, de Pascual-Teresa B (2017) In silico identification and in vivo characterization of small molecule therapeutic hypothermia mimetics. Bioorg Med Chem 25(24):6597–6604. https://doi.org/10.1016/j.bmc.2017.10.039

    Article  CAS  PubMed  Google Scholar 

  29. Pan HZ, Zhang LJ, Liu YW, Li YN, Su ZH, Meng J, Zhang H (2020) Cold-inducible RNA binding protein agonist enhances the cardioprotective effect of UW solution during extended heart preservation. Artif Organs 44(10):E406–E418. https://doi.org/10.1111/aor.13695

    Article  CAS  PubMed  Google Scholar 

  30. Gardela J, Ruiz-Conca M, Garcia-Sanmartin J, Martinez A, Mogas T, Lopez-Bejar M, Alvarez-Rodriguez M (2022) Mild hypothermia and vitrification increase the mRNA expression of cold-inducible proteins in bovine oocytes and cumulus cells. Theriogenology 185:16–23. https://doi.org/10.1016/j.theriogenology.2022.03.010

    Article  CAS  PubMed  Google Scholar 

  31. Contartese DS, Rey-Funes M, Pelaez R, Solino M, Fernandez JC, Nakamura R, Ciranna NS, Sarotto A, Dorfman VB, Lopez-Costa JJ, Zapico JM, Ramos A, de Pascual-Teresa B, Larrayoz IM, Loidl CF, Martinez A (2023) A hypothermia mimetic molecule (zr17-2) reduces ganglion cell death and electroretinogram distortion in a rat model of intraorbital optic nerve crush (IONC). Front Pharmacol 14:1112318. https://doi.org/10.3389/fphar.2023.1112318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Huber C, Huber M, Ding Y (2019) Evidence and opportunities of hypothermia in acute ischemic stroke: clinical trials of systemic versus selective hypothermia. Brain circulation 5(4):195–202. https://doi.org/10.4103/bc.bc_25_19

    Article  PubMed  PubMed Central  Google Scholar 

  33. Tong G, Endersfelder S, Rosenthal LM, Wollersheim S, Sauer IM, Buhrer C, Berger F, Schmitt KR (2013) Effects of moderate and deep hypothermia on RNA-binding proteins RBM3 and CIRP expressions in murine hippocampal brain slices. Brain Res 1504:74–84. https://doi.org/10.1016/j.brainres.2013.01.041

    Article  CAS  PubMed  Google Scholar 

  34. Rosenthal LM, Leithner C, Tong G, Streitberger KJ, Krech J, Storm C, Schmitt KRL (2019) RBM3 and CIRP expressions in targeted temperature management treated cardiac arrest patients-a prospective single center study. PLoS ONE 14(12):e0226005. https://doi.org/10.1371/journal.pone.0226005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lucht J, Rolfs N, Wowro SJ, Berger F, Schmitt KRL, Tong G (2021) Cooling and sterile inflammation in an oxygen-glucose-deprivation/reperfusion injury model in BV-2 microglia. Mediators Inflamm 2021:8906561. https://doi.org/10.1155/2021/8906561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Jackson TC, Manole MD, Kotermanski SE, Jackson EK, Clark RS, Kochanek PM (2015) Cold stress protein RBM3 responds to temperature change in an ultra-sensitive manner in young neurons. Neuroscience 305:268–278. https://doi.org/10.1016/j.neuroscience.2015.08.012

    Article  CAS  PubMed  Google Scholar 

  37. Jackson TC, Kotermanski SE, Kochanek PM (2018) Infants uniquely express high levels of RBM3 and other cold-adaptive neuroprotectant proteins in the human brain. Dev Neurosci 40(4):325–336. https://doi.org/10.1159/000493637

    Article  CAS  PubMed  Google Scholar 

  38. Jackson TC, Herrmann JR, Garman RH, Kang RD, Vagni VA, Gorse K, Janesko-Feldman K, Stezoski J, Kochanek PM (2022) Hypoxia-ischemia-mediated effects on neurodevelopmentally regulated cold-shock proteins in neonatal mice under strict temperature control. Pediatr Res. https://doi.org/10.1038/s41390-022-01990-4

    Article  PubMed  PubMed Central  Google Scholar 

  39. Liu A, Zhang Z, Li A, Xue J (2010) Effects of hypothermia and cerebral ischemia on cold-inducible RNA-binding protein mRNA expression in rat brain. Brain Res 1347:104–110. https://doi.org/10.1016/j.brainres.2010.05.029

    Article  CAS  PubMed  Google Scholar 

  40. Avila-Gomez P, Vieites-Prado A, Dopico-Lopez A, Bashir S, Fernandez-Susavila H, Gubern C, Perez-Mato M, Correa-Paz C, Iglesias-Rey R, Sobrino T, Bustamante A, Wellmann S, Montaner J, Serena J, Castillo J, Hervella P, Campos F (2020) Cold stress protein RBM3 responds to hypothermia and is associated with good stroke outcome. Brain Commun 2(2):fcaa078. https://doi.org/10.1093/braincomms/fcaa078

    Article  PubMed  PubMed Central  Google Scholar 

  41. Avila-Gomez P, Perez-Mato M, Hervella P, Dopico-Lopez A, Silva-Candal AD, Bugallo-Casal A, Lopez-Amoedo S, Candamo-Lourido M, Sobrino T, Iglesias-Rey R, Castillo J, Campos F (2022) Associations between RNA-binding motif protein 3, fibroblast growth factor 21, and clinical outcome in patients with stroke. J Clin Med 11 (4). https://doi.org/10.3390/jcm11040949

  42. Li M, Yao M, Shao K, Shen X, Ge Z, Li Y (2023) Serum cold-inducible RNA-binding protein (CIRP) levels as a prognostic indicator in patients with acute ischemic stroke. Front Neurol 14:1211108. https://doi.org/10.3389/fneur.2023.1211108

    Article  PubMed  PubMed Central  Google Scholar 

  43. Artero-Castro A, Callejas FB, Castellvi J, Kondoh H, Carnero A, Fernandez-Marcos PJ, Serrano M, Ramon y Cajal S, Lleonart ME (2009) Cold-inducible RNA-binding protein bypasses replicative senescence in primary cells through extracellular signal-regulated kinase 1 and 2 activation. Mol Cell Biol 29(7):1855–1868. https://doi.org/10.1128/MCB.01386-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Feng J, Long M, Zhao X, Yan P, Lin Y, Wang M, Huang W (2024) RBM3 accelerates wound healing of skin in diabetes through ERK1/2 signaling. Curr Mol Pharmacol 17(1):e18761429260980. https://doi.org/10.2174/0118761429260980231005105929

    Article  CAS  PubMed  Google Scholar 

  45. Liu Y, Liu P, Hu Y, Cao Y, Lu J, Yang Y, Lv H, Lian S, Xu B, Li S (2021) Cold-induced RNA-binding protein promotes glucose metabolism and reduces apoptosis by increasing AKT phosphorylation in mouse skeletal muscle under acute cold exposure. Front Mol Biosci 8:685993. https://doi.org/10.3389/fmolb.2021.685993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ma R, Zhao LN, Yang H, Wang YF, Hu J, Zang J, Mao JG, Xiao JJ, Shi M (2018) RNA binding motif protein 3 (RBM3) drives radioresistance in nasopharyngeal carcinoma by reducing apoptosis via the PI3K/AKT/Bcl-2 signaling pathway. American journal of translational research 10(12):4130–4140

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Brochu C, Cabrita MA, Melanson BD, Hamill JD, Lau R, Pratt MA, McKay BC (2013) NF-kappaB-dependent role for cold-inducible RNA binding protein in regulating interleukin 1beta. PLoS ONE 8(2):e57426. https://doi.org/10.1371/journal.pone.0057426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Fujita Y, Yago T, Matsumoto H, Asano T, Matsuoka N, Temmoku J, Sato S, Yashiro-Furuya M, Suzuki E, Watanabe H, Kawakami A, Migita K (2021) Cold-inducible RNA-binding protein (CIRP) potentiates uric acid-induced IL-1beta production. Arthritis Res Ther 23(1):128. https://doi.org/10.1186/s13075-021-02508-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Long F, Hu L, Chen Y, Duan X, Xie K, Feng J, Wang M (2023) RBM3 is associated with acute lung injury in septic mice and patients via the NF-kappaB/NLRP3 pathway. Inflamm Res : Off J Eur Histamine Res Soc [et al] 72(4):731–744. https://doi.org/10.1007/s00011-023-01705-3

    Article  CAS  Google Scholar 

  50. Saito K, Fukuda N, Matsumoto T, Iribe Y, Tsunemi A, Kazama T, Yoshida-Noro C, Hayashi N (2010) Moderate low temperature preserves the stemness of neural stem cells and suppresses apoptosis of the cells via activation of the cold-inducible RNA binding protein. Brain Res 1358:20–29. https://doi.org/10.1016/j.brainres.2010.08.048

    Article  CAS  PubMed  Google Scholar 

  51. Kizil C, Kyritsis N, Brand M (2015) Effects of inflammation on stem cells: together they strive? EMBO reports 16(4):416–426. https://doi.org/10.15252/embr.201439702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Gesteira TF, Coulson-Thomas YM, Coulson-Thomas VJ (2016) Anti-inflammatory properties of the glial scar. Neural Regen Res 11(11):1742–1743. https://doi.org/10.4103/1673-5374.194710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Xianyuan Xiang (Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences) for scientific discussion.

Funding

This study was supported by the National Natural Science Foundation of China (No. 32100774), Shenzhen Key Laboratory of Neuroimmunomodulation for Neurological Diseases (No. ZDSYS20220304163558001) and the Foundation of Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions (No. NSY889021031).

Author information

Authors and Affiliations

Authors

Contributions

XZ designed the study, performed experiments, analyzed data, and wrote the manuscript. JZ, KL, YY, and YZ performed in vitro experiments and assisted with data analysis. SL and KL performed in vivo experiments and assisted with data analysis. All authors approved for the final version of manuscript.

Corresponding author

Correspondence to Xinzhou Zhu.

Ethics declarations

Ethics Approval

All animal experimental procedures were approved by the Institutional Animal Care and Use Committee (IACUC) in Shenzhen Institute of Advanced Technology (SIAT) with the license number SIAT-IACUC-20210909-NS-NTPZX-ZXZ-A1231-08.

The omics data from patients were collected from the Gene Expression Omnibus (GEO) public database. Institutional Review Board in SIAT confirmed that no ethical approval was required.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 5048 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, J., Liu, S., Li, K. et al. RBM3 Promotes Anti-inflammatory Responses in Microglia and Serves as a Neuroprotective Target of Ischemic Stroke. Mol Neurobiol 61, 7384–7402 (2024). https://doi.org/10.1007/s12035-024-04052-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-024-04052-4

Keywords

Navigation