Abstract
Ischemic stroke is a major cause of death and disability in adults. Hypothermic treatment is successful in treating neonatal cerebral ischemia, but its application is restricted in adult patients due to complex management strategies and severe adverse effects. Two homologous RNA-binding proteins, RBM3 and CIRP, are the only known cold-inducible proteins in vertebrates, and their expression levels are robustly elevated by mild to moderate hypothermia. In previous studies, we and others have demonstrated that both RBM3 and CIRP mediate the neuroprotective and neurogenic effects of hypothermia in cell and animal models. However, CIRP can also be detrimental to neurons by triggering neuroinflammatory responses, complicating its post-stroke functions. In this study, we compared the properties of the two cold-inducible RNA-binding proteins after ischemic stroke. Our results indicated that RBM3 expression was stimulated in the ischemic brain of stroke patients, while CIRP expression was not. In an experimental model, RBM3 can ameliorate ischemic-like insult by promoting neuronal survival and eliciting anti-inflammatory responses in activated microglia, while the impact of CIRP was intriguing. Collectively, our data supported the notion that RBM3 may be a more promising therapeutic target than CIRP for treating ischemic stroke. We further demonstrated that zr17-2, a small molecule initially identified to target CIRP, can specifically target RBM3 but not CIRP in microglia. zr17-2 demonstrated anti-inflammatory and neuroprotective effects after ischemic stroke both in vitro and in vivo, suggesting its potential therapeutic value.
Similar content being viewed by others
Data Availability
The source data are attached as additional information.
References
Collaborators GBDS (2021) Global, regional, and national burden of stroke and its risk factors, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet Neurol 20(10):795–820. https://doi.org/10.1016/S1474-4422(21)00252-0
Badhiwala JH, Nassiri F, Alhazzani W, Selim MH, Farrokhyar F, Spears J, Kulkarni AV, Singh S, Alqahtani A, Rochwerg B, Alshahrani M, Murty NK, Alhazzani A, Yarascavitch B, Reddy K, Zaidat OO, Almenawer SA (2015) Endovascular thrombectomy for acute ischemic stroke: a meta-analysis. JAMA 314(17):1832–1843. https://doi.org/10.1001/jama.2015.13767
Tsivgoulis G, Katsanos AH, Sandset EC, Turc G, Nguyen TN, Bivard A, Fischer U, Khatri P (2023) Thrombolysis for acute ischaemic stroke: current status and future perspectives. The Lancet Neurology. https://doi.org/10.1016/S1474-4422(22)00519-1
Sweid A, Hammoud B, Ramesh S, Wong D, Alexander TD, Weinberg JH, Deprince M, Dougherty J, Maamari DJ, Tjoumakaris S, Zarzour H, Gooch MR, Herial N, Romo V, Hasan DM, Rosenwasser RH, Jabbour P (2020) Acute ischaemic stroke interventions: large vessel occlusion and beyond. Stroke Vasc Neurol 5(1):80–85. https://doi.org/10.1136/svn-2019-000262
Suzuki K, Matsumaru Y, Takeuchi M, Morimoto M, Kanazawa R, Takayama Y, Kamiya Y, Shigeta K, Okubo S, Hayakawa M, Ishii N, Koguchi Y, Takigawa T, Inoue M, Naito H, Ota T, Hirano T, Kato N, Ueda T, Iguchi Y, Akaji K, Tsuruta W, Miki K, Fujimoto S, Higashida T, Iwasaki M, Aoki J, Nishiyama Y, Otsuka T, Kimura K, Investigators SS (2021) Effect of mechanical thrombectomy without vs with intravenous thrombolysis on functional outcome among patients with acute ischemic stroke: the SKIP randomized clinical trial. JAMA 325(3):244–253. https://doi.org/10.1001/jama.2020.23522
Wu L, Wu D, Yang T, Xu J, Chen J, Wang L, Xu S, Zhao W, Wu C, Ji X (2020) Hypothermic neuroprotection against acute ischemic stroke: the 2019 update. J Cereb Blood Flow Metab : Off J Int Soc Cereb Blood Flow Metab 40(3):461–481. https://doi.org/10.1177/0271678X19894869
Shankaran S, Laptook AR, Ehrenkranz RA, Tyson JE, McDonald SA, Donovan EF, Fanaroff AA, Poole WK, Wright LL, Higgins RD, Finer NN, Carlo WA, Duara S, Oh W, Cotten CM, Stevenson DK, Stoll BJ, Lemons JA, Guillet R, Jobe AH, National Institute of Child H, Human Development Neonatal Research N (2005) Whole-body hypothermia for neonates with hypoxic-ischemic encephalopathy. N Engl J Med 353(15):1574–1584. https://doi.org/10.1056/NEJMcps050929
Hypothermia after Cardiac Arrest Study G (2002) Mild therapeutic hypothermia to improve the neurologic outcome after cardiac arrest. N Engl J Med 346(8):549–556. https://doi.org/10.1056/NEJMoa012689
Yenari MA, Han HS (2012) Neuroprotective mechanisms of hypothermia in brain ischaemia. Nat Rev Neurosci 13(4):267–278. https://doi.org/10.1038/nrn3174
You JS, Kim JY, Yenari MA (2022) Therapeutic hypothermia for stroke: unique challenges at the bedside. Front Neurol 13:951586. https://doi.org/10.3389/fneur.2022.951586
Zhu X, Buhrer C, Wellmann S (2016) Cold-inducible proteins CIRP and RBM3, a unique couple with activities far beyond the cold. Cell Mol Life Sci 73(20):3839–3859. https://doi.org/10.1007/s00018-016-2253-7
Zhu X, Zelmer A, Kapfhammer JP, Wellmann S (2016) Cold-inducible RBM3 inhibits PERK phosphorylation through cooperation with NF90 to protect cells from endoplasmic reticulum stress. FASEB J 30(2):624–634. https://doi.org/10.1096/fj.15-274639
Zhu X, Yan J, Bregere C, Zelmer A, Goerne T, Kapfhammer JP, Guzman R, Wellmann S (2019) RBM3 promotes neurogenesis in a niche-dependent manner via IMP2-IGF2 signaling pathway after hypoxic-ischemic brain injury. Nat Commun 10(1):3983. https://doi.org/10.1038/s41467-019-11870-x
Chip S, Zelmer A, Ogunshola OO, Felderhoff-Mueser U, Nitsch C, Buhrer C, Wellmann S (2011) The RNA-binding protein RBM3 is involved in hypothermia induced neuroprotection. Neurobiol Dis 43(2):388–396. https://doi.org/10.1016/j.nbd.2011.04.010
Zhang Q, Wang YZ, Zhang W, Chen X, Wang J, Chen J, Luo W (2017) Involvement of cold inducible RNA-binding protein in severe hypoxia-induced growth arrest of neural stem cells in vitro. Mol Neurobiol 54(3):2143–2153. https://doi.org/10.1007/s12035-016-9761-1
Su F, Yang S, Wang H, Qiao Z, Zhao H, Qu Z (2020) CIRBP ameliorates neuronal amyloid toxicity via antioxidative and antiapoptotic pathways in primary cortical neurons. Oxid Med Cell Longev 2020:2786139. https://doi.org/10.1155/2020/2786139
Li S, Zhang Z, Xue J, Liu A, Zhang H (2012) Cold-inducible RNA binding protein inhibits H(2)O(2)-induced apoptosis in rat cortical neurons. Brain Res 1441:47–52. https://doi.org/10.1016/j.brainres.2011.12.053
Yan J, Goerne T, Zelmer A, Guzman R, Kapfhammer JP, Wellmann S, Zhu X (2019) The RNA-binding protein RBM3 promotes neural stem cell (NSC) proliferation under hypoxia. Front Cell Dev Biol 7:288. https://doi.org/10.3389/fcell.2019.00288
Zhou M, Yang WL, Ji Y, Qiang X (1840) Wang P (2014) Cold-inducible RNA-binding protein mediates neuroinflammation in cerebral ischemia. Biochim Biophys Acta 7:2253–2261. https://doi.org/10.1016/j.bbagen.2014.02.027
Sharma A, Brenner M, Jacob A, Marambaud P, Wang P (2021) Extracellular CIRP activates the IL-6Ralpha/STAT3/Cdk5 pathway in neurons. Mol Neurobiol 58(8):3628–3640. https://doi.org/10.1007/s12035-021-02368-z
Labat-gest V, Tomasi S (2013) Photothrombotic ischemia: a minimally invasive and reproducible photochemical cortical lesion model for mouse stroke studies. J Vis Exp (76). https://doi.org/10.3791/50370
Rytter A, Cronberg T, Asztely F, Nemali S, Wieloch T (2003) Mouse hippocampal organotypic tissue cultures exposed to in vitro “ischemia” show selective and delayed CA1 damage that is aggravated by glucose. J Cereb Blood Flow Metab : Off J Int Soc Cereb Blood Flow Metab 23(1):23–33. https://doi.org/10.1097/01.WCB.0000034361.37277.1B
Ramiro L, Garcia-Berrocoso T, Brianso F, Goicoechea L, Simats A, Llombart V, Gonzalo R, Hainard A, Martinez-Saez E, Canals F, Sanchez JC, Sanchez-Pla A, Montaner J (2021) Integrative multi-omics analysis to characterize human brain ischemia. Mol Neurobiol 58(8):4107–4121. https://doi.org/10.1007/s12035-021-02401-1
Krug T, Gabriel JP, Taipa R, Fonseca BV, Domingues-Montanari S, Fernandez-Cadenas I, Manso H, Gouveia LO, Sobral J, Albergaria I, Gaspar G, Jimenez-Conde J, Rabionet R, Ferro JM, Montaner J, Vicente AM, Silva MR, Matos I, Lopes G, Oliveira SA (2012) TTC7B emerges as a novel risk factor for ischemic stroke through the convergence of several genome-wide approaches. J Cereb Blood Flow Metab :Off J Int Soc Cereb Blood Flow Metab 32(6):1061–1072. https://doi.org/10.1038/jcbfm.2012.24
Ransohoff RM (2016) A polarizing question: do M1 and M2 microglia exist? Nat Neurosci 19(8):987–991. https://doi.org/10.1038/nn.4338
Teng X, Zhang H, Snead C, Catravas JD (2002) Molecular mechanisms of iNOS induction by IL-1 beta and IFN-gamma in rat aortic smooth muscle cells. Am J Physiol Cell Physiol 282(1):C144-152. https://doi.org/10.1152/ajpcell.2002.282.1.C144
Schreiber T, Ehlers S, Heitmann L, Rausch A, Mages J, Murray PJ, Lang R, Holscher C (2009) Autocrine IL-10 induces hallmarks of alternative activation in macrophages and suppresses antituberculosis effector mechanisms without compromising T cell immunity. J Immunol 183(2):1301–1312. https://doi.org/10.4049/jimmunol.0803567
Coderch C, Diaz de Cerio M, Zapico JM, Pelaez R, Larrayoz IM, Ramos A, Martinez A, de Pascual-Teresa B (2017) In silico identification and in vivo characterization of small molecule therapeutic hypothermia mimetics. Bioorg Med Chem 25(24):6597–6604. https://doi.org/10.1016/j.bmc.2017.10.039
Pan HZ, Zhang LJ, Liu YW, Li YN, Su ZH, Meng J, Zhang H (2020) Cold-inducible RNA binding protein agonist enhances the cardioprotective effect of UW solution during extended heart preservation. Artif Organs 44(10):E406–E418. https://doi.org/10.1111/aor.13695
Gardela J, Ruiz-Conca M, Garcia-Sanmartin J, Martinez A, Mogas T, Lopez-Bejar M, Alvarez-Rodriguez M (2022) Mild hypothermia and vitrification increase the mRNA expression of cold-inducible proteins in bovine oocytes and cumulus cells. Theriogenology 185:16–23. https://doi.org/10.1016/j.theriogenology.2022.03.010
Contartese DS, Rey-Funes M, Pelaez R, Solino M, Fernandez JC, Nakamura R, Ciranna NS, Sarotto A, Dorfman VB, Lopez-Costa JJ, Zapico JM, Ramos A, de Pascual-Teresa B, Larrayoz IM, Loidl CF, Martinez A (2023) A hypothermia mimetic molecule (zr17-2) reduces ganglion cell death and electroretinogram distortion in a rat model of intraorbital optic nerve crush (IONC). Front Pharmacol 14:1112318. https://doi.org/10.3389/fphar.2023.1112318
Huber C, Huber M, Ding Y (2019) Evidence and opportunities of hypothermia in acute ischemic stroke: clinical trials of systemic versus selective hypothermia. Brain circulation 5(4):195–202. https://doi.org/10.4103/bc.bc_25_19
Tong G, Endersfelder S, Rosenthal LM, Wollersheim S, Sauer IM, Buhrer C, Berger F, Schmitt KR (2013) Effects of moderate and deep hypothermia on RNA-binding proteins RBM3 and CIRP expressions in murine hippocampal brain slices. Brain Res 1504:74–84. https://doi.org/10.1016/j.brainres.2013.01.041
Rosenthal LM, Leithner C, Tong G, Streitberger KJ, Krech J, Storm C, Schmitt KRL (2019) RBM3 and CIRP expressions in targeted temperature management treated cardiac arrest patients-a prospective single center study. PLoS ONE 14(12):e0226005. https://doi.org/10.1371/journal.pone.0226005
Lucht J, Rolfs N, Wowro SJ, Berger F, Schmitt KRL, Tong G (2021) Cooling and sterile inflammation in an oxygen-glucose-deprivation/reperfusion injury model in BV-2 microglia. Mediators Inflamm 2021:8906561. https://doi.org/10.1155/2021/8906561
Jackson TC, Manole MD, Kotermanski SE, Jackson EK, Clark RS, Kochanek PM (2015) Cold stress protein RBM3 responds to temperature change in an ultra-sensitive manner in young neurons. Neuroscience 305:268–278. https://doi.org/10.1016/j.neuroscience.2015.08.012
Jackson TC, Kotermanski SE, Kochanek PM (2018) Infants uniquely express high levels of RBM3 and other cold-adaptive neuroprotectant proteins in the human brain. Dev Neurosci 40(4):325–336. https://doi.org/10.1159/000493637
Jackson TC, Herrmann JR, Garman RH, Kang RD, Vagni VA, Gorse K, Janesko-Feldman K, Stezoski J, Kochanek PM (2022) Hypoxia-ischemia-mediated effects on neurodevelopmentally regulated cold-shock proteins in neonatal mice under strict temperature control. Pediatr Res. https://doi.org/10.1038/s41390-022-01990-4
Liu A, Zhang Z, Li A, Xue J (2010) Effects of hypothermia and cerebral ischemia on cold-inducible RNA-binding protein mRNA expression in rat brain. Brain Res 1347:104–110. https://doi.org/10.1016/j.brainres.2010.05.029
Avila-Gomez P, Vieites-Prado A, Dopico-Lopez A, Bashir S, Fernandez-Susavila H, Gubern C, Perez-Mato M, Correa-Paz C, Iglesias-Rey R, Sobrino T, Bustamante A, Wellmann S, Montaner J, Serena J, Castillo J, Hervella P, Campos F (2020) Cold stress protein RBM3 responds to hypothermia and is associated with good stroke outcome. Brain Commun 2(2):fcaa078. https://doi.org/10.1093/braincomms/fcaa078
Avila-Gomez P, Perez-Mato M, Hervella P, Dopico-Lopez A, Silva-Candal AD, Bugallo-Casal A, Lopez-Amoedo S, Candamo-Lourido M, Sobrino T, Iglesias-Rey R, Castillo J, Campos F (2022) Associations between RNA-binding motif protein 3, fibroblast growth factor 21, and clinical outcome in patients with stroke. J Clin Med 11 (4). https://doi.org/10.3390/jcm11040949
Li M, Yao M, Shao K, Shen X, Ge Z, Li Y (2023) Serum cold-inducible RNA-binding protein (CIRP) levels as a prognostic indicator in patients with acute ischemic stroke. Front Neurol 14:1211108. https://doi.org/10.3389/fneur.2023.1211108
Artero-Castro A, Callejas FB, Castellvi J, Kondoh H, Carnero A, Fernandez-Marcos PJ, Serrano M, Ramon y Cajal S, Lleonart ME (2009) Cold-inducible RNA-binding protein bypasses replicative senescence in primary cells through extracellular signal-regulated kinase 1 and 2 activation. Mol Cell Biol 29(7):1855–1868. https://doi.org/10.1128/MCB.01386-08
Feng J, Long M, Zhao X, Yan P, Lin Y, Wang M, Huang W (2024) RBM3 accelerates wound healing of skin in diabetes through ERK1/2 signaling. Curr Mol Pharmacol 17(1):e18761429260980. https://doi.org/10.2174/0118761429260980231005105929
Liu Y, Liu P, Hu Y, Cao Y, Lu J, Yang Y, Lv H, Lian S, Xu B, Li S (2021) Cold-induced RNA-binding protein promotes glucose metabolism and reduces apoptosis by increasing AKT phosphorylation in mouse skeletal muscle under acute cold exposure. Front Mol Biosci 8:685993. https://doi.org/10.3389/fmolb.2021.685993
Ma R, Zhao LN, Yang H, Wang YF, Hu J, Zang J, Mao JG, Xiao JJ, Shi M (2018) RNA binding motif protein 3 (RBM3) drives radioresistance in nasopharyngeal carcinoma by reducing apoptosis via the PI3K/AKT/Bcl-2 signaling pathway. American journal of translational research 10(12):4130–4140
Brochu C, Cabrita MA, Melanson BD, Hamill JD, Lau R, Pratt MA, McKay BC (2013) NF-kappaB-dependent role for cold-inducible RNA binding protein in regulating interleukin 1beta. PLoS ONE 8(2):e57426. https://doi.org/10.1371/journal.pone.0057426
Fujita Y, Yago T, Matsumoto H, Asano T, Matsuoka N, Temmoku J, Sato S, Yashiro-Furuya M, Suzuki E, Watanabe H, Kawakami A, Migita K (2021) Cold-inducible RNA-binding protein (CIRP) potentiates uric acid-induced IL-1beta production. Arthritis Res Ther 23(1):128. https://doi.org/10.1186/s13075-021-02508-9
Long F, Hu L, Chen Y, Duan X, Xie K, Feng J, Wang M (2023) RBM3 is associated with acute lung injury in septic mice and patients via the NF-kappaB/NLRP3 pathway. Inflamm Res : Off J Eur Histamine Res Soc [et al] 72(4):731–744. https://doi.org/10.1007/s00011-023-01705-3
Saito K, Fukuda N, Matsumoto T, Iribe Y, Tsunemi A, Kazama T, Yoshida-Noro C, Hayashi N (2010) Moderate low temperature preserves the stemness of neural stem cells and suppresses apoptosis of the cells via activation of the cold-inducible RNA binding protein. Brain Res 1358:20–29. https://doi.org/10.1016/j.brainres.2010.08.048
Kizil C, Kyritsis N, Brand M (2015) Effects of inflammation on stem cells: together they strive? EMBO reports 16(4):416–426. https://doi.org/10.15252/embr.201439702
Gesteira TF, Coulson-Thomas YM, Coulson-Thomas VJ (2016) Anti-inflammatory properties of the glial scar. Neural Regen Res 11(11):1742–1743. https://doi.org/10.4103/1673-5374.194710
Acknowledgements
The authors thank Dr. Xianyuan Xiang (Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences) for scientific discussion.
Funding
This study was supported by the National Natural Science Foundation of China (No. 32100774), Shenzhen Key Laboratory of Neuroimmunomodulation for Neurological Diseases (No. ZDSYS20220304163558001) and the Foundation of Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions (No. NSY889021031).
Author information
Authors and Affiliations
Contributions
XZ designed the study, performed experiments, analyzed data, and wrote the manuscript. JZ, KL, YY, and YZ performed in vitro experiments and assisted with data analysis. SL and KL performed in vivo experiments and assisted with data analysis. All authors approved for the final version of manuscript.
Corresponding author
Ethics declarations
Ethics Approval
All animal experimental procedures were approved by the Institutional Animal Care and Use Committee (IACUC) in Shenzhen Institute of Advanced Technology (SIAT) with the license number SIAT-IACUC-20210909-NS-NTPZX-ZXZ-A1231-08.
The omics data from patients were collected from the Gene Expression Omnibus (GEO) public database. Institutional Review Board in SIAT confirmed that no ethical approval was required.
Consent to Participate
Not applicable.
Consent for Publication
Not applicable.
Competing Interests
The authors declare no competing interests.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary Information
Below is the link to the electronic supplementary material.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Zhao, J., Liu, S., Li, K. et al. RBM3 Promotes Anti-inflammatory Responses in Microglia and Serves as a Neuroprotective Target of Ischemic Stroke. Mol Neurobiol 61, 7384–7402 (2024). https://doi.org/10.1007/s12035-024-04052-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12035-024-04052-4