Skip to main content

Advertisement

Log in

Effects of Bone Marrow Mesenchymal Stem Cell-Derived Exosomes in Central Nervous System Diseases

  • Reviews
  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Central nervous system (CNS) diseases are one of the diseases that threaten human health. The delivery of drugs targeting the CNS has always been a significant challenge; the blood–brain barrier (BBB) is the main obstacle that must be overcome. The rise of bone marrow mesenchymal stem cell (BMSC) therapy has brought hope for the treatment of CNS diseases. However, the problems of low homing rate, susceptibility differentiation into astrocytes, immune rejection, and formation of iatrogenic tumors of transplanted BMSCs limit their clinical application. Bone marrow mesenchymal stem cell-derived exosomes (BMSC-Exos) have become a hot research topic in the treatment of CNS diseases in recent years because of their excellent histocompatibility, low immunogenicity, ease of crossing the BBB, and their ability to serve as natural carriers for treatment. This article reviews the mechanisms of BMSC-Exos in CNS diseases and provides direction for further research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

All the ideas and illustrations for the figures in this review were conceived and created independently by the authors. The datasets analyzed in this review are available in the GEO repository, https://www.ncbi.nlm.nih.gov.

References

  1. Xia X, Zhou Y, Gao H (2021) Prodrug strategy for enhanced therapy of central nervous system disease. Chem Commun (Camb) 57:8842–8855. https://doi.org/10.1039/d1cc02940a

    Article  CAS  PubMed  Google Scholar 

  2. Terstappen GC, Meyer AH, Bell RD, Zhang W (2021) Strategies for delivering therapeutics across the blood-brain barrier. Nat Rev Drug Discov 20:362–383. https://doi.org/10.1038/s41573-021-00139-y

    Article  CAS  PubMed  Google Scholar 

  3. Miura Y (2016) Human bone marrow mesenchymal stromal/stem cells: current clinical applications and potential for hematology. Int J Hematol 103:122–128. https://doi.org/10.1007/s12185-015-1920-z

    Article  CAS  PubMed  Google Scholar 

  4. Kuroda S (2016) Current opinion of bone marrow stromal cell transplantation for ischemic stroke. Neurol Med Chir (Tokyo) 56:293–301. https://doi.org/10.2176/nmc.ra.2015-0349

    Article  PubMed  Google Scholar 

  5. Kandeel M, Morsy MA, Alkhodair KM, Alhojaily S (2023) Mesenchymal stem cell-derived extracellular vesicles: an emerging diagnostic and therapeutic biomolecules for neurodegenerative disabilities. Biomolecules 13(8):1250. https://doi.org/10.3390/biom13081250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Cai Y, Liu W, Lian L, Xu Y, Bai X, Xu S, Zhang J (2020) Stroke treatment: is exosome therapy superior to stem cell therapy? Biochimie 179:190–204. https://doi.org/10.1016/j.biochi.2020.09.025

    Article  CAS  PubMed  Google Scholar 

  7. Liu W, Wang Y, Gong F, Rong Y, Luo Y, Tang P, Zhou Z, Zhou Z, Xu T, Jiang T, Yang S, Yin G, Chen J, Fan J, Cai W (2019) Exosomes derived from bone mesenchymal stem cells repair traumatic spinal cord injury by suppressing the activation of A1 neurotoxic reactive astrocytes. J Neurotrauma 36:469–484. https://doi.org/10.1089/neu.2018.5835

    Article  PubMed  Google Scholar 

  8. Pegtel DM, Gould SJ (2019) Exosomes. Annu Rev Biochem 88:487–514. https://doi.org/10.1146/annurev-biochem-013118-111902

    Article  CAS  PubMed  Google Scholar 

  9. Ludwig N, Whiteside TL, Reichert TE (2019) Challenges in exosome isolation and analysis in health and disease. Int J Mol Sci 20(19):4684. https://doi.org/10.3390/ijms20194684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lai JJ, Chau ZL, Chen SY, Hill JJ, Korpany KV, Liang NW, Lin LH, Lin YH, Liu JK, Liu YC, Lunde R, Shen WT (2022) Exosome processing and characterization approaches for research and technology development. Adv Sci 9:e2103222. https://doi.org/10.1002/advs.202103222

  11. Wang X, Xia J, Yang L, Dai J, He L (2023) Recent progress in exosome research: isolation, characterization and clinical applications. Cancer Gene Ther 30:1051–1065. https://doi.org/10.1038/s41417-023-00617-y

    Article  CAS  PubMed  Google Scholar 

  12. Zhang Y, Bi J, Huang J, Tang Y, Du S, Li P (2020) Exosome: a review of its classification, isolation techniques, storage, diagnostic and targeted therapy applications. Int J Nanomed 15:6917–6934. https://doi.org/10.2147/IJN.S264498

    Article  CAS  Google Scholar 

  13. Xunian Z, Kalluri R (2020) Biology and therapeutic potential of mesenchymal stem cell-derived exosomes. Cancer Sci 111:3100–3110. https://doi.org/10.1111/cas.14563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Nazari S, Pourmand SM, Motevaseli E, Hassanzadeh G (2023) Mesenchymal stem cells (MSCs) and MSC-derived exosomes in animal models of central nervous system diseases: targeting the NLRP3 inflammasome. IUBMB Life 75:794–810. https://doi.org/10.1002/iub.2759

    Article  CAS  PubMed  Google Scholar 

  15. Stephenson J, Nutma E, van der Valk P, Amor S (2018) Inflammation in CNS neurodegenerative diseases. Immunology 154:204–219. https://doi.org/10.1111/imm.12922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Xu S, Lu J, Shao A, Zhang JH, Zhang J (2020) Glial cells: role of the immune response in ischemic stroke. Front Immunol 11:294. https://doi.org/10.3389/fimmu.2020.00294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Colonna M, Butovsky O (2017) Microglia function in the central nervous system during health and neurodegeneration. Annu Rev Immunol 35:441–468. https://doi.org/10.1146/annurev-immunol-051116-052358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Liu X, Zhang M, Liu H, Zhu R, He H, Zhou Y, Zhang Y, Li C, Liang D, Zeng Q, Huang G (2021) Bone marrow mesenchymal stem cell-derived exosomes attenuate cerebral ischemia-reperfusion injury-induced neuroinflammation and pyroptosis by modulating microglia M1/M2 phenotypes. Exp Neurol 341:113700. https://doi.org/10.1016/j.expneurol.2021.113700

    Article  CAS  PubMed  Google Scholar 

  19. Li Z, Liu F, He X, Yang X, Shan F, Feng J (2019) Exosomes derived from mesenchymal stem cells attenuate inflammation and demyelination of the central nervous system in EAE rats by regulating the polarization of microglia. Int Immunopharmacol 67:268–280. https://doi.org/10.1016/j.intimp.2018.12.001

    Article  CAS  PubMed  Google Scholar 

  20. Li Y, Li Z, Gu J, Xu X, Chen H, Gui Y (2022) Exosomes isolated during dopaminergic neuron differentiation suppressed neuronal inflammation in a rodent model of Parkinson’s disease. Neurosci Lett 771:136414. https://doi.org/10.1016/j.neulet.2021.136414

    Article  CAS  PubMed  Google Scholar 

  21. Xie X, Cao Y, Dai L, Zhou D (2023) Bone marrow mesenchymal stem cell-derived exosomal lncRNA KLF3-AS1 stabilizes Sirt1 protein to improve cerebral ischemia/reperfusion injury via miR-206/USP22 axis. Mol Med 29:3. https://doi.org/10.1186/s10020-022-00595-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhao Y, Gan Y, Xu G, Yin G, Liu D (2020) MSCs-derived exosomes attenuate acute brain injury and inhibit microglial inflammation by reversing CysLT2R-ERK1/2 mediated microglia M1 polarization. Neurochem Res 45:1180–1190. https://doi.org/10.1007/s11064-020-02998-0

    Article  CAS  PubMed  Google Scholar 

  23. Klionsky DJ, Petroni G, Amaravadi RK, Baehrecke EH, Ballabio A, Boya P, Bravo-San Pedro JM, Cadwell K, Cecconi F, Choi AMK, Choi ME, Chu CT, Codogno P, Colombo MI, Cuervo AM, Deretic V, Dikic I, Elazar Z, Eskelinen EL, Fimia GM, Gewirtz DA, Green DR, Hansen M, Jäättelä M, Johansen T, Juhász G, Karantza V, Kraft C, Kroemer G, Ktistakis NT, Kumar S, Lopez-Otin C, Macleod KF, Madeo F, Martinez J, Meléndez A, Mizushima N, Münz C, Penninger JM, Perera RM, Piacentini M, Reggiori F, Rubinsztein DC, Ryan KM, Sadoshima J, Santambrogio L, Scorrano L, Simon HU, Simon AK, Simonsen A, Stolz A, Tavernarakis N, Tooze SA, Yoshimori T, Yuan J, Yue Z, Zhong Q, Galluzzi L, Pietrocola F (2021) Autophagy in major human diseases. EMBO J 40:e108863. https://doi.org/10.15252/embj.2021108863

  24. Peng L, Hu G, Yao Q, Wu J, He Z, Law BY, Hu G, Zhou X, Du J, Wu A, Yu L (2022) Microglia autophagy in ischemic stroke: a double-edged sword. Front Immunol 13:1013311. https://doi.org/10.3389/fimmu.2022.1013311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Xu Q, Zhou D, Yu D (2023) Bone marrow mesenchymal stem cells-derived exosomal long non-coding RNA KLF3 antisense RNA 1 enhances autophagy to protect against cerebral ischemia/reperfusion injury via ETS variant transcription factor 4/silent information regulator 1 axis. Neuroscience 521:44–57. https://doi.org/10.1016/j.neuroscience.2023.02.021

    Article  CAS  PubMed  Google Scholar 

  26. Liu S, Fan M, Xu JX, Yang LJ, Qi CC, Xia QR, Ge JF (2022) Exosomes derived from bone-marrow mesenchymal stem cells alleviate cognitive decline in AD-like mice by improving BDNF-related neuropathology. J Neuroinflammation 19:35. https://doi.org/10.1186/s12974-022-02393-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sica A, Erreni M, Allavena P, Porta C (2015) Macrophage polarization in pathology. Cell Mol Life Sci 72:4111–4126. https://doi.org/10.1007/s00018-015-1995-y

    Article  CAS  PubMed  Google Scholar 

  28. Li C, Qin T, Zhao J, He R, Wen H, Duan C, Lu H, Cao Y, Hu J (2021) Bone marrow mesenchymal stem cell-derived exosome-educated macrophages promote functional healing after spinal cord injury. Front Cell Neurosci 15:725573. https://doi.org/10.3389/fncel.2021.725573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sheng X, Zhao J, Li M, Xu Y, Zhou Y, Xu J, He R, Lu H, Wu T, Duan C, Cao Y, Hu J (2021) Bone marrow mesenchymal stem cell-derived exosomes accelerate functional recovery after spinal cord injury by promoting the phagocytosis of macrophages to clean myelin debris. Front Cell Dev Biol 9:772205. https://doi.org/10.3389/fcell.2021.772205

    Article  PubMed  PubMed Central  Google Scholar 

  30. Salim S (2017) Oxidative stress and the central nervous system. J Pharmacol Exp Ther 360:201–205. https://doi.org/10.1124/jpet.116.237503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Singh A, Kukreti R, Saso L, Kukreti S (2019) Oxidative stress: a key modulator in neurodegenerative diseases. Molecules (Basel, Switzerland) 24(8):1583. https://doi.org/10.3390/molecules24081583

    Article  CAS  PubMed  Google Scholar 

  32. Safakheil M, Safakheil H (2020) The effect of exosomes derived from bone marrow stem cells in combination with rosuvastatin on functional recovery and neuroprotection in rats after ischemic stroke. J Mol Neurosci 70:724–737. https://doi.org/10.1007/s12031-020-01483-1

    Article  CAS  PubMed  Google Scholar 

  33. El-Mahalaway AM, El-Azab NE (2020) The potential neuroprotective role of mesenchymal stem cell-derived exosomes in cerebellar cortex lipopolysaccharide-induced neuroinflammation in rats: a histological and immunohistochemical study. Ultrastruct Pathol 44:159–173. https://doi.org/10.1080/01913123.2020.1726547

    Article  CAS  PubMed  Google Scholar 

  34. Faruk EM, Fouad H, Hasan RAA, Taha NM, El-Shazly AM (2022) Inhibition of gene expression and production of iNOS and TNF-alpha in experimental model of neurodegenerative disorders stimulated microglia by Soy nano-isoflavone/stem cell-exosomes. Tissue Cell 76:101758. https://doi.org/10.1016/j.tice.2022.101758

    Article  CAS  PubMed  Google Scholar 

  35. Guo XF, Gu SS, Wang J, Sun H, Zhang YJ, Yu PF, Zhang JS, Jiang L (2022) Protective effect of mesenchymal stem cell-derived exosomal treatment of hippocampal neurons against oxygen-glucose deprivation/reperfusion-induced injury. World J Emerg Med 13:46–53. https://doi.org/10.5847/wjem.j.1920-8642.2022.015

    Article  PubMed  PubMed Central  Google Scholar 

  36. Wang QS, Xiao RJ, Peng J, Yu ZT, Fu JQ, Xia Y (2023) Bone marrow mesenchymal stem cell-derived exosomal KLF4 alleviated ischemic stroke through inhibiting N6-methyladenosine modification level of Drp1 by targeting lncRNA-ZFAS1. Mol Neurobiol 60:3945–3962. https://doi.org/10.1007/s12035-023-03301-2

    Article  CAS  PubMed  Google Scholar 

  37. Xu X, Lai Y, Hua ZC (2019) Apoptosis and apoptotic body: disease message and therapeutic target potentials. Biosci Rep 39(1):BSR20180992. https://doi.org/10.1042/bsr20180992

  38. Liu Z, Li X, Ye Z, Lin H (2022) Neuroprotective effect of exosomes derived from bone marrow mesenchymal stem cells via activating TGR5 and suppressing apoptosis. Biochem Biophys Res Commun 593:13–19. https://doi.org/10.1016/j.bbrc.2022.01.039

    Article  CAS  PubMed  Google Scholar 

  39. Li X, Bi T, Yang S (2022) Exosomal microRNA-150-5p from bone marrow mesenchymal stromal cells mitigates cerebral ischemia/reperfusion injury via targeting toll-like receptor 5. Bioengineered 13:3030–3043. https://doi.org/10.1080/21655979.2021.2012402

    Article  CAS  PubMed  Google Scholar 

  40. Gan C, Ouyang F (2022) Exosomes released from bone-marrow stem cells ameliorate hippocampal neuronal injury through transferring miR-455-3p. J Stroke Cerebrovasc Dis 31:106142. https://doi.org/10.1016/j.jstrokecerebrovasdis.2021.106142

    Article  PubMed  Google Scholar 

  41. Yu P, Zhang X, Liu N, Tang L, Peng C, Chen X (2021) Pyroptosis: mechanisms and diseases. Signal Transduct Target Ther 6:128. https://doi.org/10.1038/s41392-021-00507-5

    Article  PubMed  PubMed Central  Google Scholar 

  42. VandeWalle L, Lamkanfi M (2016) Pyroptosis. Curr Biol 26:R568–R572. https://doi.org/10.1016/j.cub.2016.02.019

    Article  CAS  Google Scholar 

  43. Kang X, Jiang L, Chen X, Wang X, Gu S, Wang J, Zhu Y, Xie X, Xiao H, Zhang J (2021) Exosomes derived from hypoxic bone marrow mesenchymal stem cells rescue OGD-induced injury in neural cells by suppressing NLRP3 inflammasome-mediated pyroptosis. Exp Cell Res 405:112635. https://doi.org/10.1016/j.yexcr.2021.112635

    Article  CAS  PubMed  Google Scholar 

  44. Wang Y, Chen H, Fan X, Xu C, Li M, Sun H, Song J, Jia F, Wei W, Jiang F, Li G, Zhong D (2023) Bone marrow mesenchymal stem cell-derived exosomal miR-193b-5p reduces pyroptosis after ischemic stroke by targeting AIM2. J Stroke Cerebrovasc Dis 32:107235. https://doi.org/10.1016/j.jstrokecerebrovasdis.2023.107235

    Article  PubMed  Google Scholar 

  45. Mizushima N, Komatsu M (2011) Autophagy: renovation of cells and tissues. Cell 147:728–741. https://doi.org/10.1016/j.cell.2011.10.026

    Article  CAS  PubMed  Google Scholar 

  46. Gu J, Jin ZS, Wang CM, Yan XF, Mao YQ, Chen S (2020) Bone marrow mesenchymal stem cell-derived exosomes improves spinal cord function after injury in rats by activating autophagy. Drug Des Dev Ther 14:1621–1631. https://doi.org/10.2147/DDDT.S237502

    Article  CAS  Google Scholar 

  47. Zeng Q, Zhou Y, Liang D, He H, Liu X, Zhu R, Zhang M, Luo X, Wang Y, Huang G (2020) Exosomes secreted from bone marrow mesenchymal stem cells attenuate oxygen-glucose deprivation/reoxygenation-induced pyroptosis in PC12 cells by promoting AMPK-dependent autophagic flux. Front Cell Neurosci 14:182. https://doi.org/10.3389/fncel.2020.00182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Yang X, Xu J, Lan S, Tong Z, Chen K, Liu Z, Xu S (2023) Exosomal miR-133a-3p derived from BMSCs alleviates cerebral ischemia-reperfusion injury via targeting DAPK2. Int J Nanomed 18:65–78. https://doi.org/10.2147/ijn.S385395

    Article  CAS  Google Scholar 

  49. Yu X, Sun M, He J, Wang H, Yu M, Dong L (2021) Accelerated neurite outgrowth and neurogenesis of PC12 cells on an Fe-doped TiO(2) nanorod film triggered by visible light. ACS Biomater Sci Eng 7:577–585. https://doi.org/10.1021/acsbiomaterials.0c01742

    Article  CAS  PubMed  Google Scholar 

  50. Lu Y, Zhou Y, Zhang R, Wen L, Wu K, Li Y, Yao Y, Duan R, Jia Y (2019) Bone mesenchymal stem cell-derived extracellular vesicles promote recovery following spinal cord injury via improvement of the integrity of the blood-spinal cord barrier. Front Neurosci 13:209. https://doi.org/10.3389/fnins.2019.00209

    Article  PubMed  PubMed Central  Google Scholar 

  51. Yan Q, Yin Y, Li X, Li M (2023) Exosome-shuttled MYCBPAP from bone marrow mesenchymal stem cells regulates synaptic remodeling and ameliorates ischemic stroke in rats. J Chem Neuroanat 132:102309. https://doi.org/10.1016/j.jchemneu.2023.102309

    Article  CAS  PubMed  Google Scholar 

  52. Umlauf BJ, Shusta EV (2019) Exploiting BBB disruption for the delivery of nanocarriers to the diseased CNS. Curr Opin Biotechnol 60:146–152. https://doi.org/10.1016/j.copbio.2019.01.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Gussenhoven R, Klein L, Ophelders D, Habets DHJ, Giebel B, Kramer BW, Schurgers LJ, Reutelingsperger CPM, Wolfs T (2019) Annexin A1 as neuroprotective determinant for blood-brain barrier integrity in neonatal hypoxic-ischemic encephalopathy. J Clin Med 8(2):137. https://doi.org/10.3390/jcm8020137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Pan Q, Kuang X, Cai S, Wang X, Du D, Wang J, Wang Y, Chen Y, Bihl J, Chen Y, Zhao B, Ma X (2020) miR-132-3p priming enhances the effects of mesenchymal stromal cell-derived exosomes on ameliorating brain ischemic injury. Stem Cell Res Ther 11:260. https://doi.org/10.1186/s13287-020-01761-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Venkat P, Zacharek A, Landschoot-Ward J, Wang F, Culmone L, Chen Z, Chopp M, Chen J (2020) Exosomes derived from bone marrow mesenchymal stem cells harvested from type two diabetes rats promotes neurorestorative effects after stroke in type two diabetes rats. Exp Neurol 334:113456. https://doi.org/10.1016/j.expneurol.2020.113456

    Article  CAS  PubMed  Google Scholar 

  56. Cai XJ, Zhao JJ, Lu Y, Zhang JP, Ren BY, Cao TT, Xi GJ, Li ZW (2018) The microenvironment following oxygen glucose deprivation/re-oxygenation-induced BSCB damage in vitro. Brain Res Bull 143:171–180. https://doi.org/10.1016/j.brainresbull.2018.08.005

    Article  PubMed  Google Scholar 

  57. Xin W, Qiang S, Jianing D, Jiaming L, Fangqi L, Bin C, Yuanyuan C, Guowang Z, Jianguang X, Xiaofeng L (2021) Human bone marrow mesenchymal stem cell-derived exosomes attenuate blood-spinal cord barrier disruption via the TIMP2/MMP pathway after acute spinal cord injury. Mol Neurobiol 58:6490–6504. https://doi.org/10.1007/s12035-021-02565-w

    Article  CAS  PubMed  Google Scholar 

  58. Zhou Y, Wen LL, Li YF, Wu KM, Duan RR, Yao YB, Jing LJ, Gong Z, Teng JF, Jia YJ (2022) Exosomes derived from bone marrow mesenchymal stem cells protect the injured spinal cord by inhibiting pericyte pyroptosis. Neural Regen Res 17:194–202. https://doi.org/10.4103/1673-5374.314323

    Article  CAS  PubMed  Google Scholar 

  59. Augustin HG, Koh GY (2017) Organotypic vasculature: From descriptive heterogeneity to functional pathophysiology. Science 357(6353):eaal2379. https://doi.org/10.1126/science.aal2379

  60. Li XT, Zhao J, Xu DS, Zhang Y, Zhou ST (2020) Bone marrow mesenchymal stem cell exosomes promote brain microvascular endothelial cell proliferation and migration in rats. Sichuan da xue xue bao Yi xue ban = Journal of Sichuan University Medical science edition 51:599–604. https://doi.org/10.12182/20200960207

  61. Gao W, He R, Ren J, Zhang W, Wang K, Zhu L, Liang T (2021) Exosomal HMGB1 derived from hypoxia-conditioned bone marrow mesenchymal stem cells increases angiogenesis via the JNK/HIF-1alpha pathway. FEBS Open Bio 11:1364–1373. https://doi.org/10.1002/2211-5463.13142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Xiao R, Wang Q, Peng J, Yu Z, Zhang J, Xia Y (2023) BMSC-derived exosomal Egr2 ameliorates ischemic stroke by directly upregulating SIRT6 to suppress notch signaling. Mol Neurobiol 60:1–17. https://doi.org/10.1007/s12035-022-03037-5

    Article  CAS  PubMed  Google Scholar 

  63. Hou K, Li G, Zhao J, Xu B, Zhang Y, Yu J, Xu K (2020) Bone mesenchymal stem cell-derived exosomal microRNA-29b-3p prevents hypoxic-ischemic injury in rat brain by activating the PTEN-mediated Akt signaling pathway. J Neuroinflammation 17(1):46. https://doi.org/10.1186/s12974-020-1725-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Pan Q, Kuang X, Cai S, Wang X, Du D, Wang J, Wang Y, Chen Y, Bihl J, Chen Y, Zhao B, Ma X (2020) MiR-132-3p priming enhances the effects of mesenchymal stromal cell-derived exosomes on ameliorating brain ischemic injury. Stem Cell Res Ther 11(1):260. https://doi.org/10.1186/s13287-020-01761-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Simons M, Nave KA (2015) Oligodendrocytes: myelination and axonal support. Cold Spring Harb Perspect Biol 8:a020479. https://doi.org/10.1101/cshperspect.a020479

    Article  PubMed  Google Scholar 

  66. Xiao Y, Geng F, Wang G, Li X, Zhu J, Zhu W (2018) Bone marrow-derived mesenchymal stem cells-derived exosomes prevent oligodendrocyte apoptosis through exosomal miR-134 by targeting caspase-8. J Cell Biochem 120(2):2109–2118. https://doi.org/10.1002/jcb.27519

    Article  CAS  PubMed  Google Scholar 

  67. Zhang J, Buller BA, Zhang ZG, Zhang Y, Lu M, Rosene DL, Medalla M, Moore TL, Chopp M (2022) Exosomes derived from bone marrow mesenchymal stromal cells promote remyelination and reduce neuroinflammation in the demyelinating central nervous system. Exp Neurol 347:113895. https://doi.org/10.1016/j.expneurol.2021.113895

    Article  CAS  PubMed  Google Scholar 

  68. Han Y, Seyfried D, Meng Y, Yang D, Schultz L, Chopp M, Seyfried D (2018) Multipotent mesenchymal stromal cell-derived exosomes improve functional recovery after experimental intracerebral hemorrhage in the rat. J Neurosurg 131:290–300. https://doi.org/10.3171/2018.2.JNS171475

    Article  PubMed  Google Scholar 

  69. Matsumoto J, Stewart T, Banks WA, Zhang J (2017) The transport mechanism of extracellular vesicles at the blood-brain barrier. Curr Pharm Des 23:6206–6214. https://doi.org/10.2174/1381612823666170913164738

    Article  CAS  PubMed  Google Scholar 

  70. Cheng C, Chen X, Wang Y, Cheng W, Zuo X, Tang W, Huang W (2021) MSCs-derived exosomes attenuate ischemia-reperfusion brain injury and inhibit microglia apoptosis might via exosomal miR-26a-5p mediated suppression of CDK6. Mol Med 27:67. https://doi.org/10.1186/s10020-021-00324-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Hou K, Li G, Zhao J, Xu B, Zhang Y, Yu J, Xu K (2020) Bone mesenchymal stem cell-derived exosomal microRNA-29b-3p prevents hypoxic-ischemic injury in rat brain by activating the PTEN-mediated Akt signaling pathway. J Neuroinflammation 17:46. https://doi.org/10.1186/s12974-020-1725-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Yan T, Wu M, Lv S, Hu Q, Xu W, Zeng A, Huang K, Zhu X (2021) Exosomes derived from microRNA-512–5p-transfected bone mesenchymal stem cells inhibit glioblastoma progression by targeting JAG1. Aging 13:9911–9926. https://doi.org/10.18632/aging.202747

  73. Zhao Y, Gan Y, Xu G, Hua K, Liu D (2020) Exosomes from MSCs overexpressing microRNA-223-3p attenuate cerebral ischemia through inhibiting microglial M1 polarization mediated inflammation. Life Sci 260:118403. https://doi.org/10.1016/j.lfs.2020.118403

    Article  CAS  PubMed  Google Scholar 

  74. Deng Y, Chen D, Gao F, Lv H, Zhang G, Sun X, Liu L, Mo D, Ma N, Song L, Huo X, Yan T, Zhang J, Miao Z (2019) Exosomes derived from microRNA-138-5p-overexpressing bone marrow-derived mesenchymal stem cells confer neuroprotection to astrocytes following ischemic stroke via inhibition of LCN2. J Biol Eng 13:71. https://doi.org/10.1186/s13036-019-0193-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Yi F, Xiao H, Song M, Huang L, Huang Q, Deng J, Yang H, Zheng L, Wang H, Gu W (2023) BMSC-derived exosomal miR-148b-3p attenuates OGD/R-induced HMC3 cell activation by targeting DLL4 and Notch1. Neuroscience research 21:S0168–0102(23)00187–6. https://doi.org/10.1016/j.neures.2023.09.005

  76. Wang J, Sun H, Guo R, Guo J, Tian X, Wang J, Sun S, Han Y, Wang Y (2023) Exosomal miR-23b-3p from bone mesenchymal stem cells alleviates experimental autoimmune encephalomyelitis by inhibiting microglial pyroptosis. Exp Neurol 363:114374. https://doi.org/10.1016/j.expneurol.2023.114374

    Article  CAS  PubMed  Google Scholar 

  77. Fan J, Han Y, Sun H, Sun S, Wang Y, Guo R, Guo J, Tian X, Wang J, Wang J (2023) Mesenchymal stem cell-derived exosomal microRNA-367–3p alleviates experimental autoimmune encephalomyelitis via inhibition of microglial ferroptosis by targeting EZH2. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie 162:114593. https://doi.org/10.1016/j.biopha.2023.114593

  78. Hu LT, Wang BY, Fan YH, He ZY, Zheng WX (2023) Exosomal miR-23b from bone marrow mesenchymal stem cells alleviates oxidative stress and pyroptosis after intracerebral hemorrhage. Neural Regen Res 18:560–567. https://doi.org/10.4103/1673-5374.346551

    Article  CAS  PubMed  Google Scholar 

  79. Luo Y, Xu T, Liu W, Rong Y, Wang J, Fan J, Yin G, Cai W (2021) Exosomes derived from GIT1-overexpressing bone marrow mesenchymal stem cells promote traumatic spinal cord injury recovery in a rat model. Int J Neurosci 131:170–182. https://doi.org/10.1080/00207454.2020.1734598

    Article  CAS  PubMed  Google Scholar 

  80. Jia Y, Lu T, Chen Q, Pu X, Ji L, Yang J, Luo C (2021) Exosomes secreted from sonic hedgehog-modified bone mesenchymal stem cells facilitate the repair of rat spinal cord injuries. Acta Neurochir (Wien) 163:2297–2306. https://doi.org/10.1007/s00701-021-04829-9

    Article  PubMed  Google Scholar 

  81. Wei R, Zhang L, Hu W, Shang X, He Y, Zhang W (2022) Zeb2/Axin2-enriched BMSC-derived exosomes promote post-stroke functional recovery by enhancing neurogenesis and neural plasticity. J Mol Neurosci 72:69–81. https://doi.org/10.1007/s12031-021-01887-7

    Article  CAS  PubMed  Google Scholar 

  82. Li X, Zhang Y, Wang Y, Zhao D, Sun C, Zhou S, Xu D, Zhao J (2020) Exosomes derived from CXCR4-overexpressing BMSC promoted activation of microvascular endothelial cells in cerebral ischemia/reperfusion injury. Neural Plast 2020:8814239. https://doi.org/10.1155/2020/8814239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Tian T, Zhang HX, He CP, Fan S, Zhu YL, Qi C, Huang NP, Xiao ZD, Lu ZH, Tannous BA, Gao J (2018) Surface functionalized exosomes as targeted drug delivery vehicles for cerebral ischemia therapy. Biomaterials 150:137–149. https://doi.org/10.1016/j.biomaterials.2017.10.012

    Article  CAS  PubMed  Google Scholar 

  84. Liu Y, Fu N, Su J, Wang X, Li X (2019) Rapid enkephalin delivery using exosomes to promote neurons recovery in ischemic stroke by inhibiting neuronal p53/caspase-3. Biomed Res Int 2019:4273290. https://doi.org/10.1155/2019/4273290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Zhang G, Xu B, Mao J, Liu R (2023) Bone marrow mesenchymal stem cells-derived exosomes mediated delivery of tetramethylpyrazine attenuate cerebral ischemic injury. J Stroke Cerebrovasc Dis 32:107369. https://doi.org/10.1016/j.jstrokecerebrovasdis.2023.107369

    Article  PubMed  Google Scholar 

  86. Yang J, Zhang X, Chen X, Wang L, Yang G (2017) Exosome mediated delivery of miR-124 promotes neurogenesis after ischemia. Mol Ther Nucleic Acids 7:278–287. https://doi.org/10.1016/j.omtn.2017.04.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Zhang M, Zhang R, Chen H, Zhang X, Zhang Y, Liu H, Li C, Chen Y, Zeng Q, Huang G (2023) Injectable supramolecular hybrid hydrogel delivers IL-1β-stimulated exosomes to target neuroinflammation. ACS Appl Mater Interfaces 15:6486–6498. https://doi.org/10.1021/acsami.2c19997

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (31870335); the Natural Science Foundation of Gansu Provincial Department of Science and Technology (20JR5RA344); the Health Industry Planning Project of Gansu Provincial (GSWSKY2021-017); Science and Technology Planing Project of Chengguan District of Lanzhou City (2021–9-3); the “Cuiying Technology Innovation” Planning Project of Lanzhou University Second Hospital (CY2021-MS-B01); the Lanzhou Science and Technology Development Guiding Plan Project (2019-ZD-51); Chinese Stroke Society cerebrovascular disease management project-Qihang Fund; Cuiying Graduate Supervisor Applicant Training Program Of Lanzhou University Second Hospital (201802); Medical Innovation and Development Project of Lanzhou University (lzuyxcx-2022–195); Medical Innovation and Development Project of Lanzhou University (lzuyxcx-2022–107); Natural Science Foundation of Science and Technology Department of Gansu Province (22JR5RA509); and NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor Open Project (NLDTG2020005).

Author information

Authors and Affiliations

Authors

Contributions

MC had the idea for the review and collected the articles. The first draft of the manuscript was written by MC. WC, JG, QW, and JS contributed to the revision of the review. GS and ZZ edited the review and performed proofreading and final editing. All authors have read and approved the final manuscript.

Corresponding author

Correspondence to Zhenchang Zhang.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chai, M., Su, G., Chen, W. et al. Effects of Bone Marrow Mesenchymal Stem Cell-Derived Exosomes in Central Nervous System Diseases. Mol Neurobiol (2024). https://doi.org/10.1007/s12035-024-04032-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12035-024-04032-8

Keywords

Navigation