Skip to main content
Log in

Age-Dependent Phenomena of 6-Hz Corneal Kindling Model in Mice

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Although numerous studies have acknowledged disparities in epilepsy-related disease processes between young and aged animals, little is known about how epilepsy changes from young adulthood to middle age. This study investigates the impact of aging on 6-Hz corneal kindling in young-adult mice and middle-aged mice. We found that the kindling acquisition of the 6-Hz corneal kindling model was delayed in middle-aged mice when compared to young-adult mice. While the seizure stage and incidence of generalized seizures (GS) were similar between the two age groups, the duration of GS in the kindled middle-aged mice was shorter than that in the kindled young-adult mice. Besides, all kindled mice, regardless of age, were resistant to phenytoin sodium (PHT), valproate sodium (VPA), and lamotrigine (LGT), whereas middle-aged mice exhibited higher levetiracetam (LEV) resistance compared to young-adult mice. Both age groups of kindled mice displayed hyperactivity and impaired memory, which are common behavioral characteristics associated with epilepsy. Furthermore, middle-aged mice displayed more pronounced astrogliosis in the hippocampus. Additionally, the expression of Brain-Derived Neurotrophic Factor (BDNF) was lower in middle-aged mice than in young-adult mice prior to kindling. These data demonstrate that both the acquisition and expression of 6-Hz corneal kindling are attenuated in middle-aged mice, while hippocampal astrogliosis and pharmacological resistance are more pronounced in this age group. These results underscore the importance of considering age-related factors when utilizing the 6-Hz corneal kindling model in mice of varying age groups.

Highlights

Middle-aged mice showed delayed corneal kindling and milder kindled seizure.

Kindled middle-aged mice showed an increased drug resistance to levetiracetam.

Kindling induced similar cognitive and psychiatric comorbidities in both groups.

Kindled middle-aged mice displayed more pronounced astrogliosis in the hippocampus.

Hippocampal BDNF levels were lower in middle-aged mice before kindling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The authors confirm that the data supporting the findings of this study are available within the article or its supplementary materials. The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Guekht A, Brodie M, Secco M et al (2021) The road to a World Health Organization global action plan on epilepsy and other neurological disorders. Epilepsia 62(5):1057–1063. https://doi.org/10.1111/epi.16856

    Article  PubMed  Google Scholar 

  2. Fisher RS, Acevedo C, Arzimanoglou A et al (2014) ILAE official report: a practical clinical definition of epilepsy. Epilepsia 55(4) 475 – 82. https://doi.org/10.1111/epi.12550

  3. Manford M (2017) Recent advances in epilepsy. J Neurol 264(8):1811–1824. https://doi.org/10.1007/s00415-017-8394-2

    Article  PubMed  PubMed Central  Google Scholar 

  4. Sultana B, Panzini MA, Veilleux Carpentier A et al (2021) Incidence and prevalence of Drug-Resistant Epilepsy: a systematic review and Meta-analysis. Neurology 96(17):805–817. https://doi.org/10.1212/WNL.0000000000011839

    Article  PubMed  Google Scholar 

  5. Sheng J, Liu S, Qin H et al (2018) Drug-Resistant Epilepsy and surgery. Curr Neuropharmacol 16(1):17–28. https://doi.org/10.2174/1570159X15666170504123316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lopez Gonzalez FJ, Rodriguez Osorio X, Gil-Nagel Rein A et al (2015) Drug-resistant epilepsy: definition and treatment alternatives. Neurologia 30(7) 439 – 46. https://doi.org/10.1016/j.nrl.2014.04.012

  7. Sen A, Jette N, Husain M et al (2020) Epilepsy in older people. Lancet 395(10225):735–748. https://doi.org/10.1016/S0140-6736(19)33064-8

    Article  PubMed  Google Scholar 

  8. Stover KR, Lim S, Zhou TL et al (2017) Susceptibility to hippocampal kindling seizures is increased in aging C57 black mice. IBRO Rep 3:33–44. https://doi.org/10.1016/j.ibror.2017.08.001

    Article  PubMed  PubMed Central  Google Scholar 

  9. Kuruba R, Hattiangady B, Parihar VK et al (2011) Differential susceptibility of interneurons expressing neuropeptide Y or parvalbumin in the aged hippocampus to acute seizure activity. PLoS ONE 6(9):e24493. https://doi.org/10.1371/journal.pone.0024493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Landfield PW, Pitler TA, Applegate MD (1986) The effects of high Mg2+-to-Ca2 + ratios on frequency potentiation in hippocampal slices of young and aged rats, J Neurophysiol 56(3) 797–811. https://doi.org/0.1152/jn.1986.56.3.797

  11. Sinha P, Verma B, Ganesh S (2022) Age-Dependent reduction in the expression levels of genes involved in Progressive Myoclonus Epilepsy Correlates with increased neuroinflammation and seizure susceptibility in mouse models. Mol Neurobiol 59(9):5532–5548. https://doi.org/10.1007/s12035-022-02928-x

    Article  CAS  PubMed  Google Scholar 

  12. Zhang XM, Zhu SW, Duan RS et al (2008) Gender differences in susceptibility to kainic acid-induced neurodegeneration in aged C57BL/6 mice. Neurotoxicology 29(3) 406 – 12. https://doi.org/10.1016/j.neuro.2008.01.006

  13. Thomas AX, Cruz Y, Del Angel MI, Gonzalez AJ et al (2016) Rapid increases in proBDNF after Pilocarpine-Induced Status Epilepticus in mice are Associated with reduced proBDNF cleavage Machinery. eNeuro 3(1). https://doi.org/10.1523/ENEURO.0020-15.2016

  14. Danzer SC, Crooks KR, Lo DC et al (2002) Increased expression of brain-derived neurotrophic factor induces formation of basal dendrites and axonal branching in dentate granule cells in hippocampal explant cultures. J Neurosci 22(22):9754–9763. https://doi.org/10.1523/JNEUROSCI.22-22-09754.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chmielewska N, Wawer A, Maciejak P et al (2020) The role of REST/NRSF, TrkB and BDNF in neurobiological mechanisms of different susceptibility to seizure in a PTZ model of epilepsy. Brain Res Bull 158:108–115. https://doi.org/10.1016/j.brainresbull.2020.03.007

    Article  CAS  PubMed  Google Scholar 

  16. Leclercq K, Matagne A, Kaminski RM (2014) Low potency and limited efficacy of antiepileptic drugs in the mouse 6 hz corneal kindling model. Epilepsy Res 108(4) 675 – 83. https://doi.org/10.1016/j.eplepsyres.2014.02.013

  17. Albertini G, Walrave L, Demuyser T et al (2018) 6 hz corneal kindling in mice triggers neurobehavioral comorbidities accompanied by relevant changes in c-Fos immunoreactivity throughout the brain. Epilepsia 59(1):67–78. https://doi.org/10.1111/epi.13943

    Article  CAS  PubMed  Google Scholar 

  18. Metcalf CS, Klein BD, Smith MD et al (2018) Potent and selective pharmacodynamic synergy between the metabotropic glutamate receptor subtype 2-positive allosteric modulator JNJ-46356479 and levetiracetam in the mouse 6-Hz (44-mA) model. Epilepsia 59(3):724–735. https://doi.org/10.1111/epi.14005

    Article  CAS  PubMed  Google Scholar 

  19. Jin Y, Cai S, Jiang Y et al (2019) Tetramethylpyrazine reduces Epileptogenesis Progression in Electrical Kindling models by modulating hippocampal excitatory neurotransmission. ACS Chem Neurosci 10(12):4854–4863. https://doi.org/10.1021/acschemneuro.9b00575

    Article  CAS  PubMed  Google Scholar 

  20. Racine RJ (1972) Modification of seizure activity by electrical stimulation. II. Motor seizure, Electroencephalogr Clin Neurophysiol 32(3) 281 – 94. https://doi.org/10.1016/0013-4694(72)90177-0

  21. Mishra A, Goel RK (2012) Age dependent learning and memory deficit in Pentylenetetrazol kindled mice. Eur J Pharmacol 674(2–3) 315 – 20. https://doi.org/10.1016/j.ejphar.2011.11.010

  22. Rowley NM, White HS (2010) Comparative anticonvulsant efficacy in the corneal kindled mouse model of partial epilepsy: correlation with other seizure and epilepsy models. Epilepsy Res 92(2–3):163–169. https://doi.org/10.1016/j.eplepsyres.2010.09.002

    Article  CAS  PubMed  Google Scholar 

  23. Walrave L, Maes K, Coppens J et al (2015) Validation of the 6 hz refractory seizure mouse model for intracerebroventricularly administered compounds. Epilepsy Res 115:67–72. https://doi.org/10.1016/j.eplepsyres.2015.06.003

    Article  PubMed  Google Scholar 

  24. Löscher W (2011) Critical review of current animal models of seizures and epilepsy used in the discovery and development of new antiepileptic drugs. Seizure 20(5):359–368. https://doi.org/10.1016/j.seizure.2011.01.003

    Article  PubMed  Google Scholar 

  25. Potschka H, Loscher W (1999) Corneal kindling in mice: behavioral and pharmacological differences to conventional kindling, Epilepsy Res 37(2) 109 – 20. https://doi.org/10.1016/s0920-1211(99)00062-5

  26. Jiang YP, Jin Y, Bao J et al (2021) Inconsistent Time-Dependent effects of Tetramethylpyrazine on Primary Neurological disorders and Psychiatric comorbidities. Front Pharmacol 12:708517. https://doi.org/10.3389/fphar.2021.708517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Clasadonte J, Dong J, Hines DJ et al (2013) Astrocyte control of synaptic NMDA receptors contributes to the progressive development of temporal lobe epilepsy. Proc Natl Acad Sci U S A 110(43):17540–17545. https://doi.org/10.1073/pnas.1311967110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Boison D, Steinhauser C (2018) Epilepsy and astrocyte energy metabolism. Glia 66(6):1235–1243. https://doi.org/10.1002/glia.23247

    Article  PubMed  Google Scholar 

  29. Robel S (2017) Astroglial scarring and seizures: a cell Biological Perspective on Epilepsy. Neuroscientist 23(2):152–168. https://doi.org/10.1177/1073858416645498

    Article  PubMed  Google Scholar 

  30. Wilcox KS, Gee JM, Gibbons MB et al (2015) Altered structure and function of astrocytes following status epilepticus. Epilepsy Behav 49:17–19. https://doi.org/10.1016/j.yebeh.2015.05.002

    Article  PubMed  PubMed Central  Google Scholar 

  31. Ohno Y, Kinboshi M, Shimizu S (2018) Inwardly rectifying Potassium Channel Kir4.1 as a Novel Modulator of BDNF expression in astrocytes. Int J Mol Sci 19(11). https://doi.org/10.3390/ijms19113313

  32. Wang JQ, Mao L (2019) The ERK Pathway: Molecular mechanisms and Treatment of Depression. Mol Neurobiol 56(9):6197–6205. https://doi.org/10.1007/s12035-019-1524-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Xu B, Michalski B, Racine RJ et al (2004) The effects of brain-derived neurotrophic factor (BDNF) administration on kindling induction, trk expression and seizure-related morphological changes. Neuroscience 126(3):521–531. https://doi.org/10.1016/j.neuroscience.2004.03.044

    Article  CAS  PubMed  Google Scholar 

  34. Zhou D (2019) Teamwork aids management and raises new issues in epilepsy. Nat Rev Neurol 15(2):66–67. https://doi.org/10.1038/s41582-018-0130-8

    Article  PubMed  Google Scholar 

  35. Trinka E, Kwan P, Lee B, Dash A (2019) Epilepsy in Asia: Disease burden, management barriers, and challenges, Epilepsia 60 suppl 1. 7–21. https://doi.org/10.1111/epi.14458

  36. McCord MC, Lorenzana A, Bloom CS et al (2008) Effect of age on kainate-induced seizure severity and cell death. Neuroscience 154(3):1143–1153. https://doi.org/10.1016/j.neuroscience.2008.03.082

    Article  CAS  PubMed  Google Scholar 

  37. Nokubo M, Kitani K, Ohta M et al (1986) Age-dependent increase in the threshold for pentylenetetrazole induced maximal seizure in mice. Life Sci 38(22):1999–2007. https://doi.org/10.1016/0024-3205(86)90147-5

    Article  CAS  PubMed  Google Scholar 

  38. Shoji H, Takao K, Hattori S et al (2016) Age-related changes in behavior in C57BL/6J mice from young adulthood to middle age. Mol Brain 9:11. https://doi.org/10.1186/s13041-016-0191-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kaminski RM, Rogawski MA, Klitgaard H (2014) The potential of antiseizure drugs and agents that act on novel molecular targets as antiepileptogenic treatments. Neurotherapeutics 11(2):385–400. https://doi.org/10.1007/s13311-014-0266-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Becker AJ (2018) Review: animal models of acquired epilepsy: insights into mechanisms of human epileptogenesis. Neuropathol Appl Neurobiol 44(1):112–129. https://doi.org/10.1111/nan.12451

    Article  CAS  PubMed  Google Scholar 

  41. White (2014) W. Löscher Searching for the ideal antiepileptogenic agent in experimental models: single treatment versus combinatorial treatment strategies. Neurotherapeutics 11 2 373–384 https://doi.org/10.1007/s13311-013-0250-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hauser, Annegers, Kurland (1993) Incidence of epilepsy and unprovoked seizures in Rochester, Minnesota: 1935–1984. Epilepsia 34(3):453–468. https://doi.org/10.1111/j.1528-1157.1993.tb02586.x

    Article  CAS  PubMed  Google Scholar 

  43. Medel-Matus JS, Orozco-Suárez S, Escalante RG (2022) Factors not considered in the study of drug-resistant epilepsy: Psychiatric comorbidities, age, and gender. Epilepsia Open 7:S81–s93. https://doi.org/10.1002/epi4.12576

    Article  PubMed  PubMed Central  Google Scholar 

  44. Pardoe HR, Berg AT, Jackson GD (2013) Sodium valproate use is associated with reduced parietal lobe thickness and brain volume. Neurology 80(20):1895–1900. https://doi.org/10.1212/WNL.0b013e318292a2e5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Matveeva EA, Vanaman TC, Whiteheart SW et al (2008) Levetiracetam prevents kindling-induced asymmetric accumulation of hippocampal 7S SNARE complexes. Epilepsia 49(10):1749–1758. https://doi.org/10.1111/j.1528-1167.2008.01687.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kanner AM (2016) Management of psychiatric and neurological comorbidities in epilepsy. Nat Rev Neurol 12(2) 106 – 16. https://doi.org/10.1038/nrneurol.2015.243

  47. Kanner AM (2013) Do psychiatric comorbidities have a negative impact on the course and treatment of seizure disorders? Curr Opin Neurol 26(2) 208 – 13. https://doi.org/10.1097/WCO.0b013e32835ee579

  48. Madar AD, Pfammatter JA, Bordenave J et al (2021) Deficits in behavioral and neuronal pattern separation in temporal lobe Epilepsy. J Neurosci 41(46):9669–9686. https://doi.org/10.1523/JNEUROSCI.2439-20.2021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. García-Morales I, de la Peña P, Mayor AM, Kanner (2008) Psychiatric comorbidities in epilepsy: identification and treatment. Neurologist 14(6 Suppl 1):S15–25. https://doi.org/10.1097/01.nrl.0000340788.07672.51

    Article  PubMed  Google Scholar 

  50. Ferlazzo E, Sueri C, Gasparini S et al (2016) Challenges in the pharmacological management of epilepsy and its causes in the elderly. Pharmacol Res 106:21–26. https://doi.org/10.1016/j.phrs.2016.02.013

    Article  CAS  PubMed  Google Scholar 

  51. Liu H, Stover KR, Sivanenthiran N et al (2019) Impaired spatial learning and memory in Middle-aged mice with Kindling-Induced spontaneous recurrent seizures. Front Pharmacol 10:1077. https://doi.org/

    Article  PubMed  PubMed Central  Google Scholar 

  52. Brodie MJ, Elder AT, Kwan P (2009) Epilepsy in later life. Lancet Neurol 8(11):1019–1030. https://doi.org/10.1016/S1474-4422(09)70240-6

    Article  PubMed  Google Scholar 

  53. Remigio GJ, Loewen JL, Heuston S et al (2017) Corneal kindled C57BL/6 mice exhibit saturated dentate gyrus long-term potentiation and associated memory deficits in the absence of overt neuron loss. Neurobiol Dis 105:221–234. https://doi.org/10.1016/j.nbd.2017.06.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Peng J, Wu S, Guo C et al (2019) Effect of Ibuprofen on Autophagy of astrocytes during Pentylenetetrazol-Induced Epilepsy and its significance: an experimental study. Neurochem Res 44(11):2566–2576. https://doi.org/007/s11064-019-02875-5

    Article  CAS  PubMed  Google Scholar 

  55. Seifert G, Steinhäuser C (2013) Neuron-astrocyte signaling and epilepsy. Exp Neurol 244:4–10. https://doi.org/10.1016/j.expneurol.2011.08.024

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by The Natural Science Foundation of Zhejiang, (Grant/Award Number: LY22H280007 and LYY22H310002); The National Natural Science Foundation of China, (Grant/Award Number: 82174005 and 82003720); Special Fund for the Incubation of Young Clinical Scientist, The Children’s Hospital of Zhejiang University School of Medicine, (Grant/Award Number: CHZJU2023YS006).

Funding

The Natural Science Foundation of Zhejiang, Grant/ Award Number: LY22H280007 and LYY22H310002; The National Natural Science Foundation of China, Grant/ Award Number: 82174005 and 82003720. Special Fund for the Incubation of Young Clinical Scientist, The Children’s Hospital of Zhejiang University School of Medicine, (Grant/Award Number: CHZJU2023YS006).

Author information

Authors and Affiliations

Authors

Contributions

Z-HX and H-WZ designed the study. X.Y did the experimental validation. H.Y, H-ML and H-JL helped to check data and do the subgroup analyses. Z-HX and X.Y. wrote the manuscript.

Corresponding authors

Correspondence to Huawei Zhao or Zhenghao Xu.

Ethics declarations

Ethical Approval

This study was approved by the Institutional Animal Care and Use Committee of Zhejiang Chinese Medical University (202204-0367). We confirm that we have read the Molecular neurobiology’s publishing policies involved in ethical publication and affirm that this report is consistent with those guidelines.

Consent to Participate

Not applicable.

Consent to Publication

Not applicable.

Conflict of Interest

None of the authors has any conflict of interest to disclose.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, X., Yang, H., Lv, H. et al. Age-Dependent Phenomena of 6-Hz Corneal Kindling Model in Mice. Mol Neurobiol (2024). https://doi.org/10.1007/s12035-024-03934-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12035-024-03934-x

Keywords

Navigation