Skip to main content

Advertisement

Log in

Effects of Intestinal M Cells on Intestinal Barrier and Neuropathological Properties in an AD Mouse Model

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Intestinal microfold cells (M cells) play a critical role in the immune response of the intestinal mucosa by actively taking up antigens, facilitating antigen presentation to immune cells, and promoting the production of secretory immunoglobulin A by B cells. Despite their known important functions in the gut, the effect of M cells on the central nervous system remains unclear. We investigated the expression of M cell-related factor genes and protein levels in Peyer’s patches (PPs) of 3-month-old and 9-month-old APP/PS1 mice, as well as the expression of intestinal barrier proteins in the ileum and colon of these mice. Furthermore, we employed intestinal M cell conditional ablation mice (i.e., RankΔIEC mice) to assess the influence of M cells on the intestinal barrier and Alzheimer’s disease (AD)-like behavioral and pathological features. Our findings revealed that compared to wild-type mice, APP/PS1 mice showed altered M cell-related genes and disrupted intestinal barriers. In addition, there is a significant decrease in glycoprotein 2 (GP2) mRNA levels in the PPs of 3-month-old APP/PS1 mice, with the relative expression of GP2 mRNA tending to zero. Parameters related to the intestinal barrier (IgA, MUC2, Claudin-5, ZO-1) were significantly downregulated in both 3-month-old and 9-month-old APP/PS1 mice compared to wild-type controls, and the differences were more pronounced in the 9-month-old mice. Moreover, M cell ablation in APP/PS1 mice (i.e., APP/PS1ΔMC mice) resulted in more severe intestinal barrier destruction. Notably, we observed through water maze experiments that APP/PS1ΔMC mice at 6 months of age exhibited significantly poorer spatial learning memory compared to APP/PS1 mice. And the neuropathological alterations were also observed in APP/PS1ΔMC mice at 6 months of age that when intestinal M cells are damaged in APP/PS1 mice, brain microglia are activated, Tau phosphorylation is exacerbated, and the number of neurons is reduced. Our results suggest for the first time that the absence of intestinal M cells might further aggravate intestinal leakage, lead to neuropathological damage, and subsequently cause the impairment of learning memory ability in AD mice. Our research highlights the impact of intestinal M cells on the intestinal barrier and AD neuropathogenesis in AD mouse model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article. And the datasets used and/or analyzed in the current study are available from the corresponding authors on reasonable request.

Abbreviations

M cell:

Microfold cell

SIgA:

Secretory immunoglobulin A

AD:

Alzheimer’s disease

Aβ:

Amyloid beta

FAE:

Follicle-associated epithelium

PPs:

Peyer’s patches

GP2:

Glycoprotein 2

Ig:

Immunoglobulin

PBS:

Phosphate-buffered saline

MUC2:

Mucin-2

ZO-1:

Zonula occludens-1

MAP 2:

Microtubule-associated protein 2

AT8:

p-Tau(Ser202, Thr205)

pT231:

Phospho-Tau (Thr231)

pS396:

Phospho-Tau (Ser396)

GSK-3β:

Glycogen synthase kinase 3 beta

qRT-PCR:

Quantitative real-time polymerase chain reaction

WT:

Wild type

Rank:

Receptor activator of nuclear factor κB

Tnfaip2:

Tumor necrosis factor alpha-induced protein 2

LPS:

Lipopolysaccharide

References

  1. Pocevičiūtė D, Nuñez-Diaz C, Roth B, Janelidze S, Giannisis A, Hansson O, Wennström M (2022) Increased plasma and brain immunoglobulin A in Alzheimer's disease is lost in apolipoprotein E ε4 carriers. Alzheimers Res Ther 14(1):117. https://doi.org/10.1186/s13195-022-01062-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Li ZL, Ma HT, Wang M, Qian YH (2022) Research trend of microbiota-gut-brain axis in Alzheimer's disease based on CiteSpace (2012-2021): A bibliometrics analysis of 608 articles. Front Aging Neurosci 14:1036120. https://doi.org/10.3389/fnagi.2022.1036120

    Article  PubMed  PubMed Central  Google Scholar 

  3. Wiatrak B, Balon K, Jawień P, Bednarz D, Jęśkowiak I, Szeląg A (2022) The role of the microbiota-gut-brain axis in the development of Alzheimer's disease. Int J Mol Sci 23(9). https://doi.org/10.3390/ijms23094862

  4. Hao W, Hao C, Wu C, Xu Y, Jin C (2022) Aluminum induced intestinal dysfunction via mechanical, immune, chemical and biological barriers. Chemosphere 288(Pt 2):132556. https://doi.org/10.1016/j.chemosphere.2021.132556

    Article  CAS  PubMed  Google Scholar 

  5. Martel J, Chang SH, Ko YF, Hwang TL, Young JD, Ojcius DM (2022) Gut barrier disruption and chronic disease. Trends Endocrinol. Metab: TEM 33(4):247–265. https://doi.org/10.1016/j.tem.2022.01.002

    Article  CAS  PubMed  Google Scholar 

  6. Yuan S, Yang J, Jian Y, Lei Y, Yao S, Hu Z, Liu X, Tang C, Liu W (2022) Treadmill exercise modulates intestinal microbes and suppresses LPS displacement to alleviate neuroinflammation in the brains of APP/PS1 mice. Nutrients 14(19). https://doi.org/10.3390/nu14194134

  7. Wang X, Liu GJ, Gao Q, Li N, Wang RT (2020) C-type lectin-like receptor 2 and zonulin are associated with mild cognitive impairment and Alzheimer's disease. Acta Neurol Scand 141(3):250–255. https://doi.org/10.1111/ane.13196

    Article  CAS  PubMed  Google Scholar 

  8. de Lau W, Kujala P, Schneeberger K, Middendorp S, Li VS, Barker N, Martens A, Hofhuis F, DeKoter RP, Peters PJ, Nieuwenhuis E, Clevers H (2012) Peyer's patch M cells derived from Lgr5(+) stem cells require SpiB and are induced by RankL in cultured "miniguts". Mol Cell Biol 32(18):3639–3647. https://doi.org/10.1128/mcb.00434-12

    Article  PubMed  PubMed Central  Google Scholar 

  9. Rios D, Wood MB, Li J, Chassaing B, Gewirtz AT, Williams IR (2016) Antigen sampling by intestinal M cells is the principal pathway initiating mucosal IgA production to commensal enteric bacteria. Mucosal Immunol 9(4):907–916. https://doi.org/10.1038/mi.2015.121

    Article  CAS  PubMed  Google Scholar 

  10. Kimura S, Kobayashi N, Nakamura Y, Kanaya T, Takahashi D, Fujiki R, Mutoh M, Obata Y, Iwanaga T, Nakagawa T, Kato N, Sato S, Kaisho T, Ohno H, Hase K (2019) Sox8 is essential for M cell maturation to accelerate IgA response at the early stage after weaning in mice. J Exp Med 216(4):831–846. https://doi.org/10.1084/jem.20181604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kanaya T, Sakakibara S, Jinnohara T, Hachisuka M, Tachibana N, Hidano S, Kobayashi T, Kimura S, Iwanaga T, Nakagawa T, Katsuno T, Kato N, Akiyama T, Sato T, Williams IR, Ohno H (2018) Development of intestinal M cells and follicle-associated epithelium is regulated by TRAF6-mediated NF-κB signaling. J Exp Med 215(2):501–519. https://doi.org/10.1084/jem.20160659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sehgal A, Kobayashi A, Donaldson DS, Mabbott NA (2017) c-Rel is dispensable for the differentiation and functional maturation of M cells in the follicle-associated epithelium. Immunobiology 222(2):316–326. https://doi.org/10.1016/j.imbio.2016.09.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ohno H, Hase K (2010) Glycoprotein 2 (GP2): grabbing the FimH bacteria into M cells for mucosal immunity. Gut Microbes 1(6):407–410. https://doi.org/10.4161/gmic.1.6.14078

    Article  PubMed  PubMed Central  Google Scholar 

  14. Yanagihara S, Kanaya T, Fukuda S, Nakato G, Hanazato M, Wu XR, Yamamoto N, Ohno H (2017) Uromodulin-SlpA binding dictates Lactobacillus acidophilus uptake by intestinal epithelial M cells. Int Immunol 29(8):357–363. https://doi.org/10.1093/intimm/dxx043

    Article  CAS  PubMed  Google Scholar 

  15. Komban RJ, Strömberg A, Biram A, Cervin J, Lebrero-Fernández C, Mabbott N, Yrlid U, Shulman Z, Bemark M, Lycke N (2019) Activated Peyer's patch B cells sample antigen directly from M cells in the subepithelial dome. Nat Commun 10(1):2423. https://doi.org/10.1038/s41467-019-10144-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Reboldi A, Arnon TI, Rodda LB, Atakilit A, Sheppard D, Cyster JG (2016) IgA production requires B cell interaction with subepithelial dendritic cells in Peyer's patches. Science (New York, NY) 352(6287):aaf4822. https://doi.org/10.1126/science.aaf4822

    Article  CAS  Google Scholar 

  17. Kobayashi A, Donaldson DS, Erridge C, Kanaya T, Williams IR, Ohno H, Mahajan A, Mabbott NA (2013) The functional maturation of M cells is dramatically reduced in the Peyer's patches of aged mice. Mucosal Immunol 6(5):1027–1037. https://doi.org/10.1038/mi.2012.141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Pietrzak B, Tomela K, Olejnik-Schmidt A, Mackiewicz A, Schmidt M (2020) Secretory IgA in intestinal mucosal secretions as an adaptive barrier against microbial cells. Int J Mol Sci 21(23). https://doi.org/10.3390/ijms21239254

  19. de la Rubia Ortí JE, Prado-Gascó V, Sancho Castillo S, Julián-Rochina M, Romero Gómez FJ, García-Pardo MP (2019) Cortisol and IgA are involved in the progression of Alzheimer's disease. A Pilot Study. Cell Mol Neurobiol 39(7):1061–1065. https://doi.org/10.1007/s10571-019-00699-z

    Article  PubMed  Google Scholar 

  20. Corthésy B (2013) Role of secretory IgA in infection and maintenance of homeostasis. Autoimmun Rev 12(6):661–665. https://doi.org/10.1016/j.autrev.2012.10.012

    Article  CAS  PubMed  Google Scholar 

  21. Donaldson DS, Sehgal A, Rios D, Williams IR, Mabbott NA (2016) Increased abundance of M cells in the gut epithelium dramatically enhances oral prion disease susceptibility. PLoS Pathog 12(12):e1006075. https://doi.org/10.1371/journal.ppat.1006075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kraeuter AK, Guest PC, Sarnyai Z (2019) The y-maze for assessment of spatial working and reference memory in mice. Methods Mol Biol 1916:105–111. https://doi.org/10.1007/978-1-4939-8994-2_10

    Article  CAS  PubMed  Google Scholar 

  23. Donaldson DS, Shih BB, Mabbott NA (2021) Aging-related impairments to M cells in Peyer's patches coincide with disturbances to paneth cells. Front Immunol 12:761949. https://doi.org/10.3389/fimmu.2021.761949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Belz GT, Almeida FF (2017) Unusual suspects: dancing with stromal cells. Nat Immunol 18(6):601–602. https://doi.org/10.1038/ni.3741

    Article  CAS  PubMed  Google Scholar 

  25. Guzman-Martinez L, Calfío C, Farias GA, Vilches C, Prieto R, Maccioni RB (2021) New frontiers in the prevention, diagnosis, and treatment of Alzheimer's disease. J. Alzheimer’s Dis: JAD 82(s1):S51–s63. https://doi.org/10.3233/jad-201059

    Article  CAS  PubMed  Google Scholar 

  26. Donaldson DS, Pollock J, Vohra P, Stevens MP, Mabbott NA (2020) Microbial stimulation reverses the age-related decline in M cells in aged mice. iScience 23(6):101147. https://doi.org/10.1016/j.isci.2020.101147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Mabbott NA, Donaldson DS, Ohno H, Williams IR, Mahajan A (2013) Microfold (M) cells: important immunosurveillance posts in the intestinal epithelium. Mucosal Immunol 6(4):666–677. https://doi.org/10.1038/mi.2013.30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Yu Y (2018) Application of stem cell technology in antiaging and aging-related diseases. Adv Exp Med Biol 1086:255–265. https://doi.org/10.1007/978-981-13-1117-8_16

    Article  CAS  PubMed  Google Scholar 

  29. Choi J, Rakhilin N, Gadamsetty P, Joe DJ, Tabrizian T, Lipkin SM, Huffman DM, Shen X, Nishimura N (2019) Author correction: intestinal crypts recover rapidly from focal damage with coordinated motion of stem cells that is impaired by aging. Sci Rep 9(1):13992. https://doi.org/10.1038/s41598-019-43805-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Nalapareddy K, Nattamai KJ, Kumar RS, Karns R, Wikenheiser-Brokamp KA, Sampson LL, Mahe MM, Sundaram N, Yacyshyn MB, Yacyshyn B, Helmrath MA, Zheng Y, Geiger H (2017) Canonical Wnt signaling ameliorates aging of intestinal stem cells. Cell Rep 18(11):2608–2621. https://doi.org/10.1016/j.celrep.2017.02.056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sehgal A, Donaldson DS, Pridans C, Sauter KA, Hume DA, Mabbott NA (2018) The role of CSF1R-dependent macrophages in control of the intestinal stem-cell niche. Nat Commun 9(1):1272. https://doi.org/10.1038/s41467-018-03638-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Schmucker DL (2002) Intestinal mucosal immunosenescence in rats. Exp Gerontol 37(2-3):197–203. https://doi.org/10.1016/s0531-5565(01)00184-x

    Article  CAS  PubMed  Google Scholar 

  33. Schmucker DL, Thoreux K, Owen RL (2001) Aging impairs intestinal immunity. Mech Ageing Dev 122(13):1397–1411. https://doi.org/10.1016/s0047-6374(01)00276-7

    Article  CAS  PubMed  Google Scholar 

  34. Zheng H, Zhang C, Wang Q, Feng S, Fang Y, Zhang S (2022) The impact of aging on intestinal mucosal immune function and clinical applications. Front Immunol 13:1029948. https://doi.org/10.3389/fimmu.2022.1029948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Mabbott NA, Kobayashi A, Sehgal A, Bradford BM, Pattison M, Donaldson DS (2015) Aging and the mucosal immune system in the intestine. Biogerontology 16(2):133–145. https://doi.org/10.1007/s10522-014-9498-z

    Article  CAS  PubMed  Google Scholar 

  36. Planer JD, Peng Y, Kau AL, Blanton LV, Ndao IM, Tarr PI, Warner BB, Gordon JI (2016) Development of the gut microbiota and mucosal IgA responses in twins and gnotobiotic mice. Nature 534(7606):263–266. https://doi.org/10.1038/nature17940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Nagafusa H, Sayama K (2020) Age-related chemokine alterations affect IgA secretion and gut immunity in female mice. Biogerontology 21(5):609–618. https://doi.org/10.1007/s10522-020-09877-9

    Article  CAS  PubMed  Google Scholar 

  38. Reboldi A, Cyster JG (2016) Peyer's patches: organizing B-cell responses at the intestinal frontier. Immunol Rev 271(1):230–245. https://doi.org/10.1111/imr.12400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Nagashima K, Sawa S, Nitta T, Tsutsumi M, Okamura T, Penninger JM, Nakashima T, Takayanagi H (2017) Identification of subepithelial mesenchymal cells that induce IgA and diversify gut microbiota. Nat Immunol 18(6):675–682. https://doi.org/10.1038/ni.3732

    Article  CAS  PubMed  Google Scholar 

  40. Knoop KA, Kumar N, Butler BR, Sakthivel SK, Taylor RT, Nochi T, Akiba H, Yagita H, Kiyono H, Williams IR (2009) RANKL is necessary and sufficient to initiate development of antigen-sampling M cells in the intestinal epithelium. J Immunol (Baltimore, Md: 1950) 183(9):5738–5747. https://doi.org/10.4049/jimmunol.0901563

    Article  CAS  Google Scholar 

  41. Pabst O, Cerovic V, Hornef M (2016) Secretory IgA in the coordination of establishment and maintenance of the microbiota. Trends Immunol 37(5):287–296. https://doi.org/10.1016/j.it.2016.03.002

    Article  CAS  PubMed  Google Scholar 

  42. Zhang Y, Ding N, Hao X, Zhao J, Zhao Y, Li Y, Li Z (2022) Manual acupuncture benignly regulates blood-brain barrier disruption and reduces lipopolysaccharide loading and systemic inflammation, possibly by adjusting the gut microbiota. Front Aging Neurosci 14:1018371. https://doi.org/10.3389/fnagi.2022.1018371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hao X, Ding N, Zhang Y, Yang Y, Zhao Y, Zhao J, Li Y, Li Z (2022) Benign regulation of the gut microbiota: the possible mechanism through which the beneficial effects of manual acupuncture on cognitive ability and intestinal mucosal barrier function occur in APP/PS1 mice. Front Neurosci 16:960026. https://doi.org/10.3389/fnins.2022.960026

    Article  PubMed  PubMed Central  Google Scholar 

  44. Kim HS, Kim S, Shin SJ, Park YH, Nam Y, Kim CW, Lee KW, Kim SM, Jung ID, Yang HD, Park YM, Moon M (2021) Gram-negative bacteria and their lipopolysaccharides in Alzheimer's disease: pathologic roles and therapeutic implications. Transl Neurodegener 10(1):49. https://doi.org/10.1186/s40035-021-00273-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kumar M, Babaei P, Ji B, Nielsen J (2016) Human gut microbiota and healthy aging: recent developments and future prospective. Nutr Healthy Aging 4(1):3–16. https://doi.org/10.3233/nha-150002

    Article  PubMed  PubMed Central  Google Scholar 

  46. Boren E, Gershwin ME (2004) Inflamm-aging: autoimmunity, and the immune-risk phenotype. Autoimmun Rev 3(5):401–406. https://doi.org/10.1016/j.autrev.2004.03.004

    Article  CAS  PubMed  Google Scholar 

  47. Cirillo C, Sarnelli G, Turco F, Mango A, Grosso M, Aprea G, Masone S, Cuomo R (2011) Proinflammatory stimuli activates human-derived enteroglial cells and induces autocrine nitric oxide production. Neurogastroenterol Motil 23(9):e372–e382. https://doi.org/10.1111/j.1365-2982.2011.01748.x

    Article  CAS  PubMed  Google Scholar 

  48. Cani PD, Osto M, Geurts L, Everard A (2012) Involvement of gut microbiota in the development of low-grade inflammation and type 2 diabetes associated with obesity. Gut Microbes 3(4):279–288. https://doi.org/10.4161/gmic.19625

    Article  PubMed  PubMed Central  Google Scholar 

  49. Park JC, Noh J, Jang S, Kim KH, Choi H, Lee D, Kim J, Chung J, Lee DY, Lee Y, Lee H, Yoo DK, Lee AC, Byun MS, Yi D, Han SH, Kwon S, Mook-Jung I (2022) Association of B cell profile and receptor repertoire with the progression of Alzheimer's disease. Cell Rep 40(12):111391. https://doi.org/10.1016/j.celrep.2022.111391

    Article  CAS  PubMed  Google Scholar 

  50. Kim K, Wang X, Ragonnaud E, Bodogai M, Illouz T, DeLuca M, McDevitt RA, Gusev F, Okun E, Rogaev E, Biragyn A (2021) Therapeutic B-cell depletion reverses progression of Alzheimer's disease. Nat Commun 12(1):2185. https://doi.org/10.1038/s41467-021-22479-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Pröbstel A-K, Zhou X, Baumann R, Wischnewski S, Kutza M, Rojas OL, Sellrie K, Bischof A, Kim K, Ramesh A, Dandekar R, Greenfield AL, Schubert RD, Bisanz JE, Vistnes S, Khaleghi K, Landefeld J, Kirkish G, Liesche-Starnecker F et al (2020) Gut microbiota-specific IgA(+) B cells traffic to the CNS in active multiple sclerosis. Sci Immunol 5(53). https://doi.org/10.1126/sciimmunol.abc7191

  52. Fitzpatrick Z, Frazer G, Ferro A, Clare S, Bouladoux N, Ferdinand J, Tuong ZK, Negro-Demontel ML, Kumar N, Suchanek O, Tajsic T, Harcourt K, Scott K, Bashford-Rogers R, Helmy A, Reich DS, Belkaid Y, Lawley TD, McGavern DB, Clatworthy MR (2020) Gut-educated IgA plasma cells defend the meningeal venous sinuses. Nature 587(7834):472–476. https://doi.org/10.1038/s41586-020-2886-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Enrique J, de la Rubia O, Castillo SS, Benlloch M, Rochina MJ, Arreche SC, García-Pardo MP (2017) Impact of the relationship of stress and the immune system in the appearance of Alzheimer's disease. J. Alzheimer’s Dis: JAD 55(3):899–903. https://doi.org/10.3233/jad-160903

    Article  Google Scholar 

Download references

Acknowledgements

We appreciate the help from Gempharmatech Co., Ltd. and Shanghai Model Organisms Center, Inc.

Funding

This work was supported by Clinic and Basic Research Project of Guangdong Medical University (grant number 4SG23284G), the Science and Technology Planning Project of Zhanjiang (grant number 2021A05071 and 2020B01395), and of GDMU (grant number GDMUQ2021047 and GDMU2021122).

Author information

Authors and Affiliations

Authors

Contributions

ZL conceived the conception and contributed to literature search and drafting. SJW, LH, and ZBH performed the experiments and analyzed the data. SJW, YWF, and YTC prepared the manuscript with contributions from all authors. ZL and HLL supervised the project and contributed to the revision of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Huiliang Li or Zhou Liu.

Ethics declarations

Ethics approval and consent to participate

All the animal experimental procedures were performed in accordance with the Guide for the Care and Use of Laboratory Animals and approved by the laboratory animal ethical committee of Guangdong Medical University.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, S., Hu, L., Fu, Y. et al. Effects of Intestinal M Cells on Intestinal Barrier and Neuropathological Properties in an AD Mouse Model. Mol Neurobiol (2023). https://doi.org/10.1007/s12035-023-03807-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12035-023-03807-9

Keywords

Navigation