Skip to main content

Advertisement

Log in

Novel Programmed Death Ligand 1-AKT-engineered Mesenchymal Stem Cells Promote Neuroplasticity to Target Stroke Therapy

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Although tissue plasminogen activator (t-PA) and endovascular thrombectomy are well-established treatments for acute ischemic stroke, over half of patients with stroke remain disabled for a long time. Thus, a significant unmet need exists to develop an effective strategy for treating acute stroke. We developed a combination of programmed cell death-ligand 1 (PD-L1) and AKT-modified umbilical cord mesenchymal stem cells (UMSC-PD-L1-AKT) implanted through intravenous (IV) and intracarotid (IA) routes to enhance therapeutic efficacy in a murine stroke model for overcoming the hypoxic environment of the ischemic brain, to prolong stem cell survival, and to attenuate systemic inflammation to protect neuroglial cells from ischemic injury. Higher cellular proliferation and survival upon exposure to toxic agents were observed in UMSC-PD-L1-AKT cells than in UMSCs in vitro. Moreover, increased attenuation of CFSE+ cell proliferation and increased survival of primary cortical cells were verified by the interaction with UMSC-PD-L1-AKT. Consistently, dual-route administration (IV + IA) of UMSC-PD-L1-AKT resulted in a significant reduction in infarction volume and improvement of neurological dysfunction in a stroke model. Furthermore, enhancing CD8+CD122+IL-10+ T-regulatory (Treg) cells and reducing CD11b+CD80+ microglial/macrophages and CD3+CD8+TNF-α+ and CD3+CD8+ IFN-α+ cytotoxic T cells induced an anti-inflammatory microenvironment to protect neuroglial cells in the ischemic brain. Collectively, therapeutic intervention using UMSC-PD-L1-AKT could provide a niche for inducing neuroplastic regeneration in brains after stroke.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article.

References

  1. Adeoye O, Hornung R, Khatri P, Kleindorfer D (2011) Recombinant tissue-type plasminogen activator use for ischemic stroke in the United States: a doubling of treatment rates over the course of 5 years. Stroke 42(7):1952–1955. https://doi.org/10.1161/STROKEAHA.110.612358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Zivin JA (2009) Acute stroke therapy with tissue plasminogen activator (tPA) since it was approved by the U.S. Food and Drug Administration (FDA). Ann Neurol 66 (1):6–10. https://doi.org/10.1002/ana.21750

  3. Campbell BC, Mitchell PJ, Kleinig TJ, Dewey HM, Churilov L, Yassi N, Yan B, Dowling RJ et al. (2015) Endovascular therapy for ischemic stroke with perfusion-imaging selection. N Engl J Med 372(11):1009–1018. https://doi.org/10.1056/NEJMoa1414792

    Article  CAS  PubMed  Google Scholar 

  4. Zhang ZG, Chopp M (2009) Neurorestorative therapies for stroke: underlying mechanisms and translation to the clinic. Lancet Neurol 8(5):491–500. https://doi.org/10.1016/S1474-4422(09)70061-4

    Article  PubMed  PubMed Central  Google Scholar 

  5. Saver JL, Goyal M, Bonafe A, Diener HC, Levy EI, Pereira VM, Albers GW, Cognard C et al. (2015) Stent-retriever thrombectomy after intravenous t-PA vs. t-PA alone in stroke. N Engl J Med 372(24):2285–2295. https://doi.org/10.1056/NEJMoa1415061

    Article  CAS  PubMed  Google Scholar 

  6. Casetta I, Fainardi E, Saia V, Pracucci G, Padroni M, Renieri L, Nencini P, Inzitari D et al. (2020) Endovascular thrombectomy for acute ischemic stroke beyond 6 hours from onset: a real-world experience. Stroke 51(7):2051–2057. https://doi.org/10.1161/STROKEAHA.119.027974

    Article  PubMed  Google Scholar 

  7. Hess DC, Wechsler LR, Clark WM, Savitz SI, Ford GA, Chiu D, Yavagal DR, Uchino K et al. (2017) Safety and efficacy of multipotent adult progenitor cells in acute ischaemic stroke (MASTERS): a randomised, double-blind, placebo-controlled, phase 2 trial. Lancet Neurol 16(5):360–368. https://doi.org/10.1016/S1474-4422(17)30046-7

    Article  PubMed  Google Scholar 

  8. Wislet-Gendebien S, Hans G, Leprince P, Rigo JM, Moonen G, Rogister B (2005) Plasticity of cultured mesenchymal stem cells: switch from nestin-positive to excitable neuron-like phenotype. Stem Cells 23(3):392–402. https://doi.org/10.1634/stemcells.2004-0149

    Article  CAS  PubMed  Google Scholar 

  9. Caplan AI, Correa D (2011) The MSC: an injury drugstore. Cell Stem Cell 9(1):11–15. https://doi.org/10.1016/j.stem.2011.06.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kuo YR, Chen CC, Goto S, Lin PY, Wei FC, Chen CL (2012) Mesenchymal stem cells as immunomodulators in a vascularized composite allotransplantation. Clin Dev Immunol 2012:854846. https://doi.org/10.1155/2012/854846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Li Y, Chen J, Wang L, Lu M, Chopp M (2001) Treatment of stroke in rat with intracarotid administration of marrow stromal cells. Neurology 56(12):1666–1672. https://doi.org/10.1212/wnl.56.12.1666

    Article  CAS  PubMed  Google Scholar 

  12. Li Y, Chen J, Zhang CL, Wang L, Lu D, Katakowski M, Gao Q, Shen LH et al. (2005) Gliosis and brain remodeling after treatment of stroke in rats with marrow stromal cells. Glia 49(3):407–417. https://doi.org/10.1002/glia.20126

    Article  PubMed  Google Scholar 

  13. Sarmah D, Agrawal V, Rane P, Bhute S, Watanabe M, Kalia K, Ghosh Z, Dave KR et al. (2018) Mesenchymal stem cell therapy in ischemic stroke: a meta-analysis of preclinical studies. Clin Pharmacol Ther 103(6):990–998. https://doi.org/10.1002/cpt.927

    Article  PubMed  Google Scholar 

  14. Savitz SI, Cramer SC, Wechsler L, Consortium S (2014) Stem cells as an emerging paradigm in stroke 3: enhancing the development of clinical trials. Stroke 45(2):634–639. https://doi.org/10.1161/STROKEAHA.113.003379

    Article  PubMed  Google Scholar 

  15. Mougiakakos D, Jitschin R, Johansson CC, Okita R, Kiessling R, Le Blanc K (2011) The impact of inflammatory licensing on heme oxygenase-1-mediated induction of regulatory T cells by human mesenchymal stem cells. Blood 117(18):4826–4835. https://doi.org/10.1182/blood-2010-12-324038

    Article  CAS  PubMed  Google Scholar 

  16. Francisco LM, Salinas VH, Brown KE, Vanguri VK, Freeman GJ, Kuchroo VK, Sharpe AH (2009) PD-L1 regulates the development, maintenance, and function of induced regulatory T cells. J Exp Med 206(13):3015–3029. https://doi.org/10.1084/jem.20090847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kroner A, Mehling M, Hemmer B, Rieckmann P, Toyka KV, Maurer M, Wiendl H (2005) A PD-1 polymorphism is associated with disease progression in multiple sclerosis. Ann Neurol 58(1):50–57. https://doi.org/10.1002/ana.20514

    Article  CAS  PubMed  Google Scholar 

  18. Ren X, Akiyoshi K, Vandenbark AA, Hurn PD, Offner H (2011) Programmed death-1 pathway limits central nervous system inflammation and neurologic deficits in murine experimental stroke. Stroke 42(9):2578–2583. https://doi.org/10.1161/STROKEAHA.111.613182

    Article  PubMed  PubMed Central  Google Scholar 

  19. Saresella M, Calabrese E, Marventano I, Piancone F, Gatti A, Farina E, Alberoni M, Clerici M (2012) A potential role for the PD1/PD-L1 pathway in the neuroinflammation of Alzheimer’s disease. Neurobiol Aging 33(3):624 e611–622. https://doi.org/10.1016/j.neurobiolaging.2011.03.004

    Article  CAS  Google Scholar 

  20. Chen J, Crawford R, Chen C, Xiao Y (2013) The key regulatory roles of the PI3K/Akt signaling pathway in the functionalities of mesenchymal stem cells and applications in tissue regeneration. Tissue Eng Part B Rev 19(6):516–528. https://doi.org/10.1089/ten.TEB.2012.0672

    Article  CAS  PubMed  Google Scholar 

  21. Lim SY, Kim YS, Ahn Y, Jeong MH, Hong MH, Joo SY, Nam KI, Cho JG et al. (2006) The effects of mesenchymal stem cells transduced with Akt in a porcine myocardial infarction model. Cardiovasc Res 70(3):530–542. https://doi.org/10.1016/j.cardiores.2006.02.016

    Article  CAS  PubMed  Google Scholar 

  22. Noiseux N, Gnecchi M, Lopez-Ilasaca M, Zhang L, Solomon SD, Deb A, Dzau VJ, Pratt RE (2006) Mesenchymal stem cells overexpressing Akt dramatically repair infarcted myocardium and improve cardiac function despite infrequent cellular fusion or differentiation. Mol Ther 14(6):840–850. https://doi.org/10.1016/j.ymthe.2006.05.016

    Article  CAS  PubMed  Google Scholar 

  23. Wu SM, Lin SL, Lee KY, Chuang HC, Feng PH, Cheng WL, Liao CJ, Chi HC et al. (2017) Hepatoma cell functions modulated by NEK2 are associated with liver cancer progression. Int J Cancer 140(7):1581–1596. https://doi.org/10.1002/ijc.30559

    Article  CAS  PubMed  Google Scholar 

  24. Noth U, Osyczka AM, Tuli R, Hickok NJ, Danielson KG, Tuan RS (2002) Multilineage mesenchymal differentiation potential of human trabecular bone-derived cells. J Orthop Res 20(5):1060–1069. https://doi.org/10.1016/S0736-0266(02)00018-9

    Article  PubMed  Google Scholar 

  25. Laczka-Osyczka A, Laczka M, Kasugai S, Ohya K (1998) Behavior of bone marrow cells cultured on three different coatings of gel-derived bioactive glass-ceramics at early stages of cell differentiation. J Biomed Mater Res 42(3):433–442

    Article  CAS  PubMed  Google Scholar 

  26. Urbani S, Caporale R, Lombardini L, Bosi A, Saccardi R (2006) Use of CFDA-SE for evaluating the in vitro proliferation pattern of human mesenchymal stem cells. Cytotherapy 8(3):243–253. https://doi.org/10.1080/14653240600735834

    Article  CAS  PubMed  Google Scholar 

  27. Nold P, Hackstein H, Riedlinger T, Kasper C, Neumann A, Mernberger M, Folsch C, Schmitt J et al. (2015) Immunosuppressive capabilities of mesenchymal stromal cells are maintained under hypoxic growth conditions and after gamma irradiation. Cytotherapy 17(2):152–162. https://doi.org/10.1016/j.jcyt.2014.10.004

    Article  CAS  PubMed  Google Scholar 

  28. Chen ST, Hsu CY, Hogan EL, Maricq H, Balentine JD (1986) A model of focal ischemic stroke in the rat: reproducible extensive cortical infarction. Stroke 17(4):738–743

    Article  CAS  PubMed  Google Scholar 

  29. Shyu WC, Lin SZ, Yang HI, Tzeng YS, Pang CY, Yen PS, Li H (2004) Functional recovery of stroke rats induced by granulocyte colony-stimulating factor-stimulated stem cells. Circulation 110(13):1847–1854. https://doi.org/10.1161/01.CIR.0000142616.07367.66

    Article  CAS  PubMed  Google Scholar 

  30. Johnson PD, Besselsen DG (2002) Practical aspects of experimental design in animal research. ILAR J 43(4):202–206. https://doi.org/10.1093/ilar.43.4.202

    Article  CAS  PubMed  Google Scholar 

  31. Shyu WC, Liu DD, Lin SZ, Li WW, Su CY, Chang YC, Wang HJ, Wang HW, Tsai CH, Li H (2008) Implantation of olfactory ensheathing cells promotes neuroplasticity in murine models of stroke. J Clin Invest 118(7):2482–2495. https://doi.org/10.1172/JCI34363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bain CC, Scott CL, Uronen-Hansson H, Gudjonsson S, Jansson O, Grip O, Guilliams M, Malissen B et al. (2013) Resident and pro-inflammatory macrophages in the colon represent alternative context-dependent fates of the same Ly6Chi monocyte precursors. Mucosal Immunol 6(3):498–510. https://doi.org/10.1038/mi.2012.89

    Article  CAS  PubMed  Google Scholar 

  33. Bodhankar S, Chen Y, Vandenbark AA, Murphy SJ, Offner H (2013) IL-10-producing B-cells limit CNS inflammation and infarct volume in experimental stroke. Metab Brain Dis 28(3):375–386. https://doi.org/10.1007/s11011-013-9413-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Chou WH, Choi DS, Zhang H, Mu D, McMahon T, Kharazia VN, Lowell CA, Ferriero DM, Messing RO (2004) Neutrophil protein kinase Cdelta as a mediator of stroke-reperfusion injury. J Clin Invest 114(1):49–56. https://doi.org/10.1172/JCI21655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Li Y, Lu Z, Keogh CL, Yu SP, Wei L (2007) Erythropoietin-induced neurovascular protection, angiogenesis, and cerebral blood flow restoration after focal ischemia in mice. J Cereb Blood Flow Metab 27(5):1043–1054. https://doi.org/10.1038/sj.jcbfm.9600417

    Article  CAS  PubMed  Google Scholar 

  36. Jiang MQ, Zhao YY, Cao W, Wei ZZ, Gu X, Wei L, Yu SP (2017) Long-term survival and regeneration of neuronal and vasculature cells inside the core region after ischemic stroke in adult mice. Brain Pathol 27(4):480–498. https://doi.org/10.1111/bpa.12425

    Article  CAS  PubMed  Google Scholar 

  37. D’Ippolito G, Diabira S, Howard GA, Menei P, Roos BA, Schiller PC (2004) Marrow-isolated adult multilineage inducible (MIAMI) cells, a unique population of postnatal young and old human cells with extensive expansion and differentiation potential. J Cell Sci 117(Pt 14):2971–2981. https://doi.org/10.1242/jcs.01103

    Article  CAS  PubMed  Google Scholar 

  38. Deschepper M, Oudina K, David B, Myrtil V, Collet C, Bensidhoum M, Logeart-Avramoglou D, Petite H (2011) Survival and function of mesenchymal stem cells (MSCs) depend on glucose to overcome exposure to long-term, severe and continuous hypoxia. J Cell Mol Med 15(7):1505–1514. https://doi.org/10.1111/j.1582-4934.2010.01138.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. McCombe PA, Read SJ (2008) Immune and inflammatory responses to stroke: good or bad? Int J Stroke 3(4):254–265. https://doi.org/10.1111/j.1747-4949.2008.00222.x

    Article  CAS  PubMed  Google Scholar 

  40. Mangi AA, Noiseux N, Kong D, He H, Rezvani M, Ingwall JS, Dzau VJ (2003) Mesenchymal stem cells modified with Akt prevent remodeling and restore performance of infarcted hearts. Nat Med 9(9):1195–1201. https://doi.org/10.1038/nm912

    Article  CAS  PubMed  Google Scholar 

  41. Liu X, Duan B, Cheng Z, Jia X, Mao L, Fu H, Che Y, Ou L et al. (2011) SDF-1/CXCR4 axis modulates bone marrow mesenchymal stem cell apoptosis, migration and cytokine secretion. Protein Cell 2(10):845–854. https://doi.org/10.1007/s13238-011-1097-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Gnecchi M, He H, Noiseux N, Liang OD, Zhang L, Morello F, Mu H, Melo LG et al. (2006) Evidence supporting paracrine hypothesis for Akt-modified mesenchymal stem cell-mediated cardiac protection and functional improvement. FASEB J 20(6):661–669. https://doi.org/10.1096/fj.05-5211com

    Article  CAS  PubMed  Google Scholar 

  43. Jin W, Liang X, Brooks A, Futrega K, Liu X, Doran MR, Simpson MJ, Roberts MS, Wang H (2018) Modelling of the SDF-1/CXCR4 regulated in vivo homing of therapeutic mesenchymal stem/stromal cells in mice. PeerJ 6:e6072. https://doi.org/10.7717/peerj.6072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ponte AL, Marais E, Gallay N, Langonne A, Delorme B, Herault O, Charbord P, Domenech J (2007) The in vitro migration capacity of human bone marrow mesenchymal stem cells: comparison of chemokine and growth factor chemotactic activities. Stem Cells 25(7):1737–1745. https://doi.org/10.1634/stemcells.2007-0054

    Article  CAS  PubMed  Google Scholar 

  45. Shi M, Li J, Liao L, Chen B, Li B, Chen L, Jia H, Zhao RC (2007) Regulation of CXCR4 expression in human mesenchymal stem cells by cytokine treatment: role in homing efficiency in NOD/SCID mice. Haematologica 92(7):897–904. https://doi.org/10.3324/haematol.10669

    Article  PubMed  Google Scholar 

  46. Fu X, Liu G, Halim A, Ju Y, Luo Q, Song AG (2019) Mesenchymal stem cell migration and tissue repair. Cells 8 (8). https://doi.org/10.3390/cells8080784

  47. Hu S, Li J, Xu X, Liu A, He H, Xu J, Chen Q, Liu S et al. (2016) The hepatocyte growth factor-expressing character is required for mesenchymal stem cells to protect the lung injured by lipopolysaccharide in vivo. Stem Cell Res Ther 7(1):66. https://doi.org/10.1186/s13287-016-0320-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zhu A, Kang N, He L, Li X, Xu X, Zhang H (2016) MiR-221 and miR-26b regulate chemotactic migration of MSCs toward HGF through activation of Akt and FAK. J Cell Biochem 117(6):1370–1383. https://doi.org/10.1002/jcb.25428

    Article  CAS  PubMed  Google Scholar 

  49. Park BW, Jung SH, Das S, Lee SM, Park JH, Kim H, Hwang JW, Lee S et al. (2020) In vivo priming of human mesenchymal stem cells with hepatocyte growth factor-engineered mesenchymal stem cells promotes therapeutic potential for cardiac repair. Sci Adv 6(13):eaay6994. https://doi.org/10.1126/sciadv.aay6994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zhou K, Guo S, Tong S, Sun Q, Li F, Zhang X, Qiao Y, Liang G (2018) Immunosuppression of human adipose-derived stem cells on T cell subsets via the reduction of NF-kappaB activation mediated by PD-L1/PD-1 and Gal-9/TIM-3 pathways. Stem Cells Dev 27(17):1191–1202. https://doi.org/10.1089/scd.2018.0033

    Article  CAS  PubMed  Google Scholar 

  51. Ma S, Chen X, Wang L, Wei Y, Ni Y, Chu Y, Liu Y, Zhu H et al. (2017) Repairing effects of ICAM-1-expressing mesenchymal stem cells in mice with autoimmune thyroiditis. Exp Ther Med 13(4):1295–1302. https://doi.org/10.3892/etm.2017.4131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Han R, Luo J, Shi Y, Yao Y, Hao J (2017) PD-L1 (Programmed Death Ligand 1) protects against experimental intracerebral hemorrhage-induced brain injury. Stroke 48(8):2255–2262. https://doi.org/10.1161/STROKEAHA.117.016705

    Article  CAS  PubMed  Google Scholar 

  53. Bodhankar S, Chen Y, Lapato A, Dotson AL, Wang J, Vandenbark AA, Saugstad JA, Offner H (2015) PD-L1 monoclonal antibody treats ischemic stroke by controlling central nervous system inflammation. Stroke 46(10):2926–2934. https://doi.org/10.1161/STROKEAHA.115.010592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Modlich U, Baum C (2009) Preventing and exploiting the oncogenic potential of integrating gene vectors. J Clin Invest 119(4):755–758. https://doi.org/10.1172/jci38831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Dave UP, Akagi K, Tripathi R, Cleveland SM, Thompson MA, Yi M et al. (2009) Murine leukemias with retroviral insertions at Lmo2 are predictive of the leukemias induced in SCID-X1 patients following retroviral gene therapy. PLoS Genet 5(5):e1000491. https://doi.org/10.1371/journal.pgen.1000491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Ding S, Wu X, Li G, Han M, Zhuang Y, Xu T (2005) Efficient transposition of the piggyBac (PB) transposon in mammalian cells and mice. Cell 122(3):473–483. https://doi.org/10.1016/j.cell.2005.07.013

    Article  CAS  PubMed  Google Scholar 

  57. Li X, Burnight ER, Cooney AL, Malani N, Brady T, Sander JD, Staber J, Wheelan SJ et al. (2013) piggyBac transposase tools for genome engineering. Proc Natl Acad Sci U S A 110(25):E2279-2287. https://doi.org/10.1073/pnas.1305987110

    Article  PubMed  PubMed Central  Google Scholar 

  58. Chung JW, Chang WH, Bang OY, Moon GJ, Kim SJ, Kim SK, Lee JS et al. (2021) Efficacy and safety of intravenous mesenchymal stem cells for ischemic stroke. Neurology 96(7):e1012–e1023. https://doi.org/10.1212/WNL.0000000000011440

    Article  CAS  PubMed  Google Scholar 

  59. Guzman R, Janowski M, Walczak P (2018) Intra-arterial delivery of cell therapies for stroke. Stroke 49(5):1075–1082. https://doi.org/10.1161/STROKEAHA.117.018288

    Article  PubMed  PubMed Central  Google Scholar 

  60. Wang S, Guo L, Ge J, Yu L, Cai T, Tian R, Jiang Y, Zhao R et al. (2015) Excess integrins cause lung entrapment of mesenchymal stem cells. Stem Cells 33(11):3315–3326. https://doi.org/10.1002/stem.2087

    Article  CAS  PubMed  Google Scholar 

  61. Fischer UM, Harting MT, Jimenez F, Monzon-Posadas WO, Xue H, Savitz SI, Laine GA, Cox CS Jr (2009) Pulmonary passage is a major obstacle for intravenous stem cell delivery: the pulmonary first-pass effect. Stem Cells Dev 18(5):683–692. https://doi.org/10.1089/scd.2008.0253

    Article  CAS  PubMed  Google Scholar 

  62. Gronberg NV, Johansen FF, Kristiansen U, Hasseldam H (2013) Leukocyte infiltration in experimental stroke. J Neuroinflammation 10:115. https://doi.org/10.1186/1742-2094-10-115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Jin WN, Gonzales R, Feng Y, Wood K, Chai Z, Dong JF, La Cava A, Shi FD et al. (2018) Brain ischemia induces diversified neuroantigen-specific T-Cell responses that exacerbate brain injury. Stroke 49(6):1471–1478. https://doi.org/10.1161/STROKEAHA.118.020203

    Article  PubMed  PubMed Central  Google Scholar 

  64. Lei TY, Ye YZ, Zhu XQ, Smerin D, Gu LJ, Xiong XX, Zhang HF, Jian ZH (2021) The immune response of T cells and therapeutic targets related to regulating the levels of T helper cells after ischaemic stroke. J Neuroinflammation 18(1):25. https://doi.org/10.1186/s12974-020-02057-z

    Article  PubMed  PubMed Central  Google Scholar 

  65. Chen AQ, Fang Z, Chen XL, Yang S, Zhou YF, Mao L, Xia YP, Jin HJ et al. (2019) Microglia-derived TNF-alpha mediates endothelial necroptosis aggravating blood brain-barrier disruption after ischemic stroke. Cell Death Dis 10(7):487. https://doi.org/10.1038/s41419-019-1716-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Cai W, Shi L, Zhao J, Xu F, Dufort C, Ye Q, Yang T, Dai X et al. (2022) Neuroprotection against ischemic stroke requires a specific class of early responder T cells in mice. J Clin Invest 132 (15). https://doi.org/10.1172/JCI157678

Download references

Acknowledgements

The authors thank the National Science and Technology Council for research grants from NSTC-111-2320-B-039-076 and China Medical University Hospital (DMR-111-141).

Funding

This work was supported by grant from the National Science and Technology Council (NSTC-111–2320-B-039–076) and China Medical University Hospital, Taichung, Taiwan (DMR-111–141).

Author information

Authors and Affiliations

Authors

Contributions

SLL performed most experiments and wrote the manuscript. WL and YWC contributed experience on methods. WCS supervised and reviewed the manuscripts.

Corresponding authors

Correspondence to Yi-Wen Chang, Long-Bin Jeng or Woei-Cherng Shyu.

Ethics declarations

Ethics Approval

The collected human umbilical cord tissues were approved by the Institutional Review Board (IRB) of the China Medical University Hospital, Taichung.

Consent to Participate

Not applicable.

Consent for Publication

All authors consent to the publication of this manuscript.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 The gating strategy of flow cytometry (GIF 252 KB)

12035_2023_3779_MOESM2_ESM.gif

Supplementary file2 The superior proliferation and anti-apoptotic abilities of UMSCs-PD-L1-AKT compared to UMSCs-AKT (A) Western blotting of UMSC-AKT cells showed that overexpression of AKT level. (B) Cell proliferation was enhanced in the UMSC-PD-L1-AKT than UMSC-AKT and UMSCs by the CCK-8 assay. (C) CCK-8 assay showed the cell viability of UMSCs, UMSC-PD-L1-AKT, and UMSC-AKT were added 0, 80, 100, 200 and 300μM H2O2 for 24, 48, and 72h. Quantization of cell viability showed that UMSC-PD-L1-AKT substantially reduced H2O2-induced cell death in a dose- and time-dependent manner. (GIF 112 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, SL., Lee, W., Liu, SP. et al. Novel Programmed Death Ligand 1-AKT-engineered Mesenchymal Stem Cells Promote Neuroplasticity to Target Stroke Therapy. Mol Neurobiol (2023). https://doi.org/10.1007/s12035-023-03779-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12035-023-03779-w

Keywords

Navigation