Skip to main content

Advertisement

Log in

Cross-Talking Pathways of Rapidly Accelerated Fibrosarcoma-1 (RAF-1) in Alzheimer’s Disease

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Alzheimer’s disease (AD) becomes one of the main global burden diseases with the aging population. This study was to investigate the potential molecular mechanisms of rapidly accelerated fibrosarcoma-1 (RAF-1) in AD through bioinformatics analysis. Differential gene expression analysis was performed in GSE132903 dataset. We used weight gene correlation network analysis (WGCNA) to evaluate the relations among co-expression modules and construct global regulatory network. Cross-talking pathways of RAF-1 in AD were identified by functional enrichment analysis. Totally, 2700 differentially expressed genes (DEGs) were selected between AD versus non-dementia control and RAF-1-high versus low group. Among them, DEGs in turquoise module strongly associated with AD and high expression of RAF-1 were enriched in vascular endothelial growth factor (VEGF), neurotrophin, mitogen-activated protein kinase (MAPK) signaling pathway, oxidative phosphorylation, GABAergic synapse, and axon guidance. Moreover, cross-talking pathways of RAF-1, including MAPK, VEGF, neurotrophin signaling pathways, and axon guidance, were identified by global regulatory network. The performance evaluation of AUC was 84.2%. The gene set enrichment analysis (GSEA) indicated that oxidative phosphorylation and synapse-related biological processes were enriched in RAF-1-high and AD group. Our findings strengthened the potential roles of high RAF-1 level in AD pathogenesis, which were mediated by MAPK, VEGF, neurotrophin signaling pathways, and axon guidance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The RNA expression data from GSE132903, GSE33000, and GSE18553 datasets are available freely at GEO repository (https://www.ncbi.nlm.nih.gov/geo).

References

  1. Lane CA, Hardy J, Schott JM (2018) Alzheimer’s disease. Eur J Neurol 25(1):59–70. https://doi.org/10.1111/ene.13439

    Article  CAS  PubMed  Google Scholar 

  2. Scheltens P, De Strooper B, Kivipelto M, Holstege H, Chetelat G, Teunissen CE, Cummings J, van der Flier WM (2021) Alzheimer’s disease. Lancet 397(10284):1577–1590. https://doi.org/10.1016/S0140-6736(20)32205-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Arvanitakis Z, Shah RC, Bennett DA (2019) Diagnosis and management of dementia: review. JAMA 322(16):1589–1599. https://doi.org/10.1001/jama.2019.4782

    Article  PubMed  PubMed Central  Google Scholar 

  4. Diseases GBD, Injuries C (2020) Global burden of 369 diseases and injuries in 204 countries and territories, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet 396(10258):1204–1222. https://doi.org/10.1016/S0140-6736(20)30925-9

    Article  Google Scholar 

  5. Jabbar A, Pingitore A, Pearce SH, Zaman A, Iervasi G, Razvi S (2017) Thyroid hormones and cardiovascular disease. Nat Rev Cardiol 14(1):39–55. https://doi.org/10.1038/nrcardio.2016.174

    Article  CAS  PubMed  Google Scholar 

  6. Breijyeh Z, Karaman R (2020) Comprehensive review on Alzheimer’s disease: causes and treatment. Molecules 25(24). https://doi.org/10.3390/molecules25245789

  7. Atri A (2019) The Alzheimer’s disease clinical spectrum: diagnosis and management. Med Clin North Am 103(2):263–293. https://doi.org/10.1016/j.mcna.2018.10.009

    Article  PubMed  Google Scholar 

  8. Chen Y, Fu AKY, Ip NY (2019) Synaptic dysfunction in Alzheimer’s disease: mechanisms and therapeutic strategies. Pharmacol Ther 195:186–198. https://doi.org/10.1016/j.pharmthera.2018.11.006

    Article  CAS  PubMed  Google Scholar 

  9. Morton H, Kshirsagar S, Orlov E, Bunquin LE, Sawant N, Boleng L, George M, Basu T et al (2021) Defective mitophagy and synaptic degeneration in Alzheimer’s disease: focus on aging, mitochondria and synapse. Free Radic Biol Med 172:652–667. https://doi.org/10.1016/j.freeradbiomed.2021.07.013

    Article  CAS  PubMed  Google Scholar 

  10. De Strooper B, Karran E (2016) The cellular phase of Alzheimer’s disease. Cell 164(4):603–615. https://doi.org/10.1016/j.cell.2015.12.056

    Article  CAS  PubMed  Google Scholar 

  11. Tonnies E, Trushina E (2017) Oxidative stress, synaptic dysfunction, and Alzheimer’s disease. J Alzheimers Dis 57(4):1105–1121. https://doi.org/10.3233/JAD-161088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Dhillon AS, von Kriegsheim A, Grindlay J, Kolch W (2007) Phosphatase and feedback regulation of Raf-1 signaling. Cell Cycle 6(1):3–7. https://doi.org/10.4161/cc.6.1.3593

    Article  CAS  PubMed  Google Scholar 

  13. Feng S, Wang S, Sun S, Su H, Zhang L (2021) Effects of combination treatment with transcranial magnetic stimulation and bone marrow mesenchymal stem cell transplantation or Raf inhibition on spinal cord injury in rats. Mol Med Rep 23(4). https://doi.org/10.3892/mmr.2021.11934

  14. Yu W, Zheng Z, Wei W, Li L, Zhang Y, Sun Y, Cao J, Zang W et al (2021) Raf1 interacts with OIP5 to participate in oxaliplatin-induced neuropathic pain. Life Sci 281:119804. https://doi.org/10.1016/j.lfs.2021.119804

    Article  CAS  PubMed  Google Scholar 

  15. Burgess S, Echeverria V (2010) Raf inhibitors as therapeutic agents against neurodegenerative diseases. CNS Neurol Disord Drug Targets 9(1):120–127. https://doi.org/10.2174/187152710790966632

    Article  CAS  PubMed  Google Scholar 

  16. Mei M, Su B, Harrison K, Chao M, Siedlak SL, Previll LA, Jackson L, Cai DX et al (2006) Distribution, levels and phosphorylation of Raf-1 in Alzheimer’s disease. J Neurochem 99(5):1377–1388. https://doi.org/10.1111/j.1471-4159.2006.04174.x

    Article  CAS  PubMed  Google Scholar 

  17. Klysik J, Theroux SJ, Sedivy JM, Moffit JS, Boekelheide K (2008) Signaling crossroads: the function of Raf kinase inhibitory protein in cancer, the central nervous system and reproduction. Cell Signal 20(1):1–9. https://doi.org/10.1016/j.cellsig.2007.07.003

    Article  CAS  PubMed  Google Scholar 

  18. Yeung KC, Rose DW, Dhillon AS, Yaros D, Gustafsson M, Chatterjee D, McFerran B, Wyche J et al (2001) Raf kinase inhibitor protein interacts with NF-kappaB-inducing kinase and TAK1 and inhibits NF-kappaB activation. Mol Cell Biol 21(21):7207–7217. https://doi.org/10.1128/MCB.21.21.7207-7217.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zuo H, Liu X, Wang D, Li Y, Xu X, Peng R, Song T (2018) RKIP-Mediated NF-kappaB Signaling is involved in ELF-MF-mediated improvement in AD rat. Int J Med Sci 15(14):1658–1666. https://doi.org/10.7150/ijms.28411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zuo H, Lin T, Wang D, Peng R, Wang S, Gao Y, Xu X, Zhao L et al (2015) RKIP regulates neural cell apoptosis induced by exposure to microwave radiation partly through the MEK/ERK/CREB pathway. Mol Neurobiol 51(3):1520–1529. https://doi.org/10.1007/s12035-014-8831-5

    Article  CAS  PubMed  Google Scholar 

  21. Narayanan M, Huynh JL, Wang K, Yang X, Yoo S, McElwee J, Zhang B, Zhang C et al (2014) Common dysregulation network in the human prefrontal cortex underlies two neurodegenerative diseases. Mol Syst Biol 10:743. https://doi.org/10.15252/msb.20145304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, Smyth GK (2015) limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res 43(7):e47. https://doi.org/10.1093/nar/gkv007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Law CW, Chen Y, Shi W, Smyth GK (2014) voom: precision weights unlock linear model analysis tools for RNA-seq read counts. Genome Biol 15(2):R29. https://doi.org/10.1186/gb-2014-15-2-r29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Horvath S, Zhang B, Carlson M, Lu KV, Zhu S, Felciano RM, Laurance MF, Zhao W et al (2006) Analysis of oncogenic signaling networks in glioblastoma identifies ASPM as a molecular target. Proc Natl Acad Sci U S A 103(46):17402–17407. https://doi.org/10.1073/pnas.0608396103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wan Q, Tang J, Han Y, Wang D (2018) Co-expression modules construction by WGCNA and identify potential prognostic markers of uveal melanoma. Exp Eye Res 166:13–20. https://doi.org/10.1016/j.exer.2017.10.007

    Article  CAS  PubMed  Google Scholar 

  26. Langfelder P, Horvath S (2008) WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 9:559. https://doi.org/10.1186/1471-2105-9-559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Fredlund E, Staaf J, Rantala JK, Kallioniemi O, Borg A, Ringner M (2012) The gene expression landscape of breast cancer is shaped by tumor protein p53 status and epithelial-mesenchymal transition. Breast Cancer Res 14(4):R113. https://doi.org/10.1186/bcr3236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Szklarczyk D, Morris JH, Cook H, Kuhn M, Wyder S, Simonovic M, Santos A, Doncheva NT et al (2017) The STRING database in 2017: quality-controlled protein-protein association networks, made broadly accessible. Nucleic Acids Res 45(D1):D362–D368. https://doi.org/10.1093/nar/gkw937

    Article  CAS  PubMed  Google Scholar 

  29. Otasek D, Morris JH, Boucas J, Pico AR, Demchak B (2019) Cytoscape Automation: empowering workflow-based network analysis. Genome Biol 20(1):185. https://doi.org/10.1186/s13059-019-1758-4

    Article  PubMed  PubMed Central  Google Scholar 

  30. Ma DM, Wang Z, Wang L, Alejos-Gonzales F, Sun MA, Xie DY (2015) A genome-wide scenario of terpene pathways in self-pollinated artemisia annua. Mol Plant 8(11):1580–1598. https://doi.org/10.1016/j.molp.2015.07.004

    Article  CAS  PubMed  Google Scholar 

  31. Sun H, Zhou Y, Skaro MF, Wu Y, Qu Z, Mao F, Zhao S, Xu Y (2020) Metabolic reprogramming in cancer is induced to increase proton production. Cancer Res 80(5):1143–1155. https://doi.org/10.1158/0008-5472.CAN-19-3392

    Article  CAS  PubMed  Google Scholar 

  32. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL et al (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A 102(43):15545–15550. https://doi.org/10.1073/pnas.0506580102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Forner S, Baglietto-Vargas D, Martini AC, Trujillo-Estrada L, LaFerla FM (2017) Synaptic impairment in Alzheimer’s disease: a dysregulated symphony. Trends Neurosci 40(6):347–357. https://doi.org/10.1016/j.tins.2017.04.002

    Article  CAS  PubMed  Google Scholar 

  34. de Wilde MC, Overk CR, Sijben JW, Masliah E (2016) Meta-analysis of synaptic pathology in Alzheimer’s disease reveals selective molecular vesicular machinery vulnerability. Alzheimers Dement 12(6):633–644. https://doi.org/10.1016/j.jalz.2015.12.005

    Article  PubMed  Google Scholar 

  35. Ovsepian SV, O'Leary VB, Zaborszky L, Ntziachristos V, Dolly JO (2018) Synaptic vesicle cycle and amyloid beta: Biting the hand that feeds. Alzheimers Dement 14(4):502–513. https://doi.org/10.1016/j.jalz.2018.01.011

    Article  PubMed  Google Scholar 

  36. Rajmohan R, Reddy PH (2017) Amyloid-beta and phosphorylated tau accumulations cause abnormalities at synapses of Alzheimer’s disease Neurons. J Alzheimers Dis 57(4):975–999. https://doi.org/10.3233/JAD-160612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. John A, Reddy PH (2021) Synaptic basis of Alzheimer’s disease: focus on synaptic amyloid beta, P-tau and mitochondria. Ageing Res Rev 65:101208. https://doi.org/10.1016/j.arr.2020.101208

    Article  CAS  PubMed  Google Scholar 

  38. Falcicchia C, Tozzi F, Arancio O, Watterson DM, Origlia N (2020) Involvement of p38 MAPK in synaptic function and dysfunction. Int J Mol Sci 21(16). https://doi.org/10.3390/ijms21165624

  39. Hasegawa Y, Toyama K, Uekawa K, Ichijo H, Kim-Mitsuyama S (2018) Role of ASK1/p38 cascade in a mouse model of Alzheimer’s disease and brain aging. J Alzheimers Dis 61(1):259–263. https://doi.org/10.3233/JAD-170645

    Article  CAS  PubMed  Google Scholar 

  40. Albert-Gasco H, Ros-Bernal F, Castillo-Gomez E, Olucha-Bordonau FE (2020) MAP/ERK Signaling in developing cognitive and emotional function and its effect on pathological and neurodegenerative processes. Int J Mol Sci 21(12). https://doi.org/10.3390/ijms21124471

  41. Lee JK, Kim NJ (2017) Recent advances in the inhibition of p38 MAPK as a potential strategy for the treatment of Alzheimer’s disease. Molecules 22(8). https://doi.org/10.3390/molecules22081287

  42. Ullah R, Yin Q, Snell AH, Wan L (2022) RAF-MEK-ERK pathway in cancer evolution and treatment. Semin Cancer Biol 85:123–154. https://doi.org/10.1016/j.semcancer.2021.05.010

    Article  CAS  PubMed  Google Scholar 

  43. Hu CT, Mandal JP, Wu WS (2021) Regulation on tumor metastasis by Raf kinase inhibitory protein: New insight with reactive oxygen species signaling. Tzu Chi Med J 33(4):332–338. https://doi.org/10.4103/tcmj.tcmj_296_20

    Article  PubMed  PubMed Central  Google Scholar 

  44. Gravandi MM, Abdian S, Tahvilian M, Iranpanah A, Moradi SZ, Fakhri S, Echeverria J (2023) Therapeutic targeting of Ras/Raf/MAPK pathway by natural products: a systematic and mechanistic approach for neurodegeneration. Phytomedicine 115:154821. https://doi.org/10.1016/j.phymed.2023.154821

    Article  CAS  PubMed  Google Scholar 

  45. Lange C, Storkebaum E, de Almodovar CR, Dewerchin M, Carmeliet P (2016) Vascular endothelial growth factor: a neurovascular target in neurological diseases. Nat Rev Neurol 12(8):439–454. https://doi.org/10.1038/nrneurol.2016.88

    Article  CAS  PubMed  Google Scholar 

  46. Religa P, Cao R, Religa D, Xue Y, Bogdanovic N, Westaway D, Marti HH, Winblad B et al (2013) VEGF significantly restores impaired memory behavior in Alzheimer’s mice by improvement of vascular survival. Sci Rep 3:2053. https://doi.org/10.1038/srep02053

    Article  PubMed  PubMed Central  Google Scholar 

  47. Tubi MA, Kothapalli D, Hapenney M, Feingold FW, Mack WJ, King KS, Thompson PM, Braskie MN, for Alzheimer's Disease Neuroimaging I (2021) Regional relationships between CSF VEGF levels and Alzheimer’s disease brain biomarkers and cognition. Neurobiol Aging 105:241–251. https://doi.org/10.1016/j.neurobiolaging.2021.04.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Patel NS, Mathura VS, Bachmeier C, Beaulieu-Abdelahad D, Laporte V, Weeks O, Mullan M, Paris D (2010) Alzheimer’s beta-amyloid peptide blocks vascular endothelial growth factor mediated signaling via direct interaction with VEGFR-2. J Neurochem 112(1):66–76. https://doi.org/10.1111/j.1471-4159.2009.06426.x

    Article  CAS  PubMed  Google Scholar 

  49. Xiao ZH, Wang L, Gan P, He J, Yan BC, Ding LD (2020) Dynamic changes in miR-126 Expression in the hippocampus and penumbra following experimental transient global and focal cerebral ischemia-reperfusion. Neurochem Res 45(5):1107–1119. https://doi.org/10.1007/s11064-020-02986-4

    Article  CAS  PubMed  Google Scholar 

  50. Wang J, Fu X, Jiang C, Yu L, Wang M, Han W, Liu L, Wang J (2014) Bone marrow mononuclear cell transplantation promotes therapeutic angiogenesis via upregulation of the VEGF-VEGFR2 signaling pathway in a rat model of vascular dementia. Behav Brain Res 265:171–180. https://doi.org/10.1016/j.bbr.2014.02.033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Chen XQ, Sawa M, Mobley WC (2018) Dysregulation of neurotrophin signaling in the pathogenesis of Alzheimer disease and of Alzheimer disease in Down syndrome. Free Radic Biol Med 114:52–61. https://doi.org/10.1016/j.freeradbiomed.2017.10.341

    Article  CAS  PubMed  Google Scholar 

  52. Ruiz-Gonzalez D, Hernandez-Martinez A, Valenzuela PL, Morales JS, Soriano-Maldonado A (2021) Effects of physical exercise on plasma brain-derived neurotrophic factor in neurodegenerative disorders: a systematic review and meta-analysis of randomized controlled trials. Neurosci Biobehav Rev 128:394–405. https://doi.org/10.1016/j.neubiorev.2021.05.025

    Article  CAS  PubMed  Google Scholar 

  53. Ng TKS, Ho CSH, Tam WWS, Kua EH, Ho RC (2019) Decreased serum brain-derived neurotrophic factor (BDNF) levels in patients with Alzheimer’s disease (AD): a systematic review and meta-analysis. Int J Mol Sci 20(2). https://doi.org/10.3390/ijms20020257

  54. Miranda M, Morici JF, Zanoni MB, Bekinschtein P (2019) Brain-derived neurotrophic factor: a key molecule for memory in the healthy and the pathological brain. Front Cell Neurosci 13:363. https://doi.org/10.3389/fncel.2019.00363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Liu MY, Wang S, Yao WF, Zhang ZJ, Zhong X, Sha L, He M, Zheng ZH et al (2014) Memantine improves spatial learning and memory impairments by regulating NGF signaling in APP/PS1 transgenic mice. Neuroscience 273:141–151. https://doi.org/10.1016/j.neuroscience.2014.05.011

    Article  CAS  PubMed  Google Scholar 

  56. Price RD, Yamaji T, Yamamoto H, Higashi Y, Hanaoka K, Yamazaki S, Ishiye M, Aramori I et al (2005) FK1706, a novel non-immunosuppressive immunophilin: neurotrophic activity and mechanism of action. Eur J Pharmacol 509(1):11–19. https://doi.org/10.1016/j.ejphar.2004.12.023

    Article  CAS  PubMed  Google Scholar 

  57. Gao W, Yang H, Xu L, Huang W, Yang Y (2021) The neurotrophic effects and mechanism of action for FK1706 in neurorrhaphy rat models and SH-SY5Y cells. Neurochem Res 46(11):2897–2908. https://doi.org/10.1007/s11064-021-03391-1

    Article  CAS  PubMed  Google Scholar 

  58. Zhang L, Qi Z, Li J, Li M, Du X, Wang S, Zhou G, Xu B et al (2021) Roles and mechanisms of axon-guidance molecules in Alzheimer’s disease. Mol Neurobiol 58(7):3290–3307. https://doi.org/10.1007/s12035-021-02311-2

    Article  CAS  PubMed  Google Scholar 

  59. Zhou Y, Fu Y, Bai Z, Li P, Zhao B, Han Y, Xu T, Zhang N et al (2019) Neural differentiation of mouse neural stem cells as a tool to assess developmental neurotoxicity of drinking water in Taihu Lake. Biol Trace Elem Res 190(1):172–186. https://doi.org/10.1007/s12011-018-1533-5

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Shenyang Science and Technology Planning Project (21-173-9-13) to Dr. Hong Hong.

Author information

Authors and Affiliations

Authors

Contributions

HH and LJY contribute equally to this work. LJY, KXK, and ZKZ conceived and designed the study. ZKZ, WQC and HH collected data and conducted the analysis. LJY, QG, and YZG wrote the original draft. XM, HYZ, and ZKZ reviewed and edited the paper. All authors reviewed and approved the final manuscript.

Corresponding author

Correspondence to Zhike Zhou.

Ethics declarations

Ethics Approval and Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Figure S1:

Expression difference of RAF-1 and ROC curve. The expression level of RAF-1 in AD and control in GSE33000 (A). Prediction evaluation of ROC analysis in GSE33000 (B). The expression level of RAF-1 in AD and control in GSE118553 (C). Prediction evaluation of ROC analysis in GSE118553 (D).

Figure S2:

Scatter diagram of module membership versus gene significance for AD

Tables S1:

Signature genes of the four pathways

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hong, H., Yu, L., Cong, W. et al. Cross-Talking Pathways of Rapidly Accelerated Fibrosarcoma-1 (RAF-1) in Alzheimer’s Disease. Mol Neurobiol 61, 2798–2807 (2024). https://doi.org/10.1007/s12035-023-03765-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-023-03765-2

Keywords

Navigation