Skip to main content
Log in

Atypical Modes of CTCF Binding Facilitate Tissue-Specific and Neuronal Activity-Dependent Gene Expression States

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Multivalent binding of CTCF to variable DNA sequences is thought to underlie its ability to mediate diverse cellular functions. CTCF typically binds a 20 base-pair consensus DNA sequence, but the full diversity of CTCF binding sites (CBS) within the genome has not been interrogated. We assessed CTCF occupancy in cultured cortical neurons and observed surprisingly that ~ 22% of CBS lack the consensus CTCF motif. We report here that sequence diversity at most of these atypical CBS involves degeneracy at specific nucleotide positions within the consensus CTCF motif, which likely affect the binding of CTCF zinc fingers 6 and 7. This mode of atypical CTCF binding defines most CBS at gene promoters, as well as CBS that are dynamically altered during neural differentiation and following neuronal stimulation, revealing how atypical CTCF binding could influence gene activity. Dynamic CBS are distributed both within and outside loop anchors and TAD boundaries, suggesting both looping-dependent and independent roles for CTCF. Finally, we describe a second mode of atypical CTCF binding to DNA sequences that are completely unrelated to the consensus CTCF motif, which are enriched within the bodies of tissue-specific genes. These tissue-specific atypical CBS are also enriched in H3K27ac, which marks cis-regulatory elements within chromatin, including enhancers. Overall, these results indicate how atypical CBS could dynamically regulate gene activity patterns during differentiation, development, and in response to environmental cues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

Original data produced for this manuscript, including raw and processed CTCF and SMC1 ChIP-seq data, are openly available from the NCBI GEO database at https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE235972, reference number GSE235972.

References

  1. Kim TH, Abdullaev ZK, Smith AD et al (2007) Analysis of the vertebrate insulator protein CTCF-binding sites in the human genome. Cell 128:1231–1245. https://doi.org/10.1016/j.cell.2006.12.048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Chen H, Tian Y, Shu W et al (2012) Comprehensive identification and annotation of cell type-specific and ubiquitous CTCF-binding sites in the human genome. PLoS ONE 7:e41374. https://doi.org/10.1371/journal.pone.0041374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Rubio ED, Reiss DJ, Welcsh PL et al (2008) CTCF physically links cohesin to chromatin. PNAS 105:8309–8314. https://doi.org/10.1073/pnas.0801273105

    Article  PubMed  PubMed Central  Google Scholar 

  4. Pugacheva EM, Kubo N, Loukinov D et al (2020) CTCF mediates chromatin looping via N-terminal domain-dependent cohesin retention. PNAS 117:2020–2031. https://doi.org/10.1073/pnas.1911708117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Davidson IF, Bauer B, Goetz D et al (2019) DNA loop extrusion by human cohesin. Science 366:1338–1345. https://doi.org/10.1126/science.aaz3418

    Article  CAS  PubMed  Google Scholar 

  6. Kim Y, Shi Z, Zhang H et al (2019) Human cohesin compacts DNA by loop extrusion. Science 366:1345–1349. https://doi.org/10.1126/science.aaz4475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hansen AS (2020) CTCF as a boundary factor for cohesin-mediated loop extrusion: evidence for a multi-step mechanism. Nucleus 11:132–148. https://doi.org/10.1080/19491034.2020.1782024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Nora EP, Goloborodko A, Valton AL et al (2017) Targeted degradation of CTCF decouples local insulation of chromosome domains from genomic compartmentalization. Cell 169:930-944.e22. https://doi.org/10.1016/j.cell.2017.05.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Aljahani A, Hua P, Karpinska MA et al (2022) Analysis of sub-kilobase chromatin topology reveals nano-scale regulatory interactions with variable dependence on cohesin and CTCF. Nat Commun 13:1–13. https://doi.org/10.1038/s41467-022-29696-5

    Article  CAS  Google Scholar 

  10. Braccioli L, De Wit E (2019) CTCF: A Swiss-army knife for genome organization and transcription regulation. Essays Biochem 63:157–165. https://doi.org/10.1042/EBC20180069

    Article  CAS  PubMed  Google Scholar 

  11. Kim S, Yu NK, Kaang BK (2015) CTCF as a multifunctional protein in genome regulation and gene expression. Exp Mol Med 47:1–5. https://doi.org/10.1038/emm.2015.33

    Article  CAS  Google Scholar 

  12. Kubo N, Ishii H, Xiong X et al (2021) Promoter-proximal CTCF binding promotes distal enhancer-dependent gene activation. Nat Struct Mol Biol 28:152–161. https://doi.org/10.1038/s41594-020-00539-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ohlsson R, Renkawitz R, Lobanenkov V (2001) CTCF is a uniquely versatile transcription regulator linked to epigenetics and disease. Trends Genet 17:520–527. https://doi.org/10.1016/S0168-9525(01)02366-6

    Article  CAS  PubMed  Google Scholar 

  14. Filippova GN, Qi C-F, Ulmer JE et al (2002) Tumor-associated zinc finger mutations in the CTCF transcription factor selectively alter its DNA-binding specificity. Cancer Res 62:48–52

    CAS  PubMed  Google Scholar 

  15. Renda M, Baglivo I, Burgess-Beusse B et al (2007) Critical DNA binding interactions of the insulator protein CTCF: a small number of zinc fingers mediate strong binding, and a single finger-DNA interaction controls binding at imprinted loci. J Biol Chem 282:33336–33345. https://doi.org/10.1074/jbc.m706213200

    Article  CAS  PubMed  Google Scholar 

  16. Nakahashi H, Kwon KRK, Resch W et al (2013) A genome-wide map of CTCF multivalency redefines the CTCF code. Cell Rep 3:1678–1689. https://doi.org/10.1016/j.celrep.2013.04.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yin M, Wang J, Wang M et al (2017) Molecular mechanism of directional CTCF recognition of a diverse range of genomic sites. Cell Res 27:1365–1377. https://doi.org/10.1038/cr.2017.131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Guo J, Li N, Han J et al (2018) DNA recognition patterns of the multi-zinc-finger protein CTCF: a mutagenesis study. Acta Pharm Sin B 8:900–908. https://doi.org/10.1016/j.apsb.2018.08.007

    Article  PubMed  PubMed Central  Google Scholar 

  19. Essien K, Vigneau S, Apreleva S et al (2009) CTCF binding site classes exhibit distinct evolutionary, genomic, epigenomic and transcriptomic features. Genome Biol 10:1–15. https://doi.org/10.1186/gb-2009-10-11-r131

    Article  CAS  Google Scholar 

  20. Plasschaert RN, Vigneau S, Tempera I et al (2014) CTCF binding site sequence differences are associated with unique regulatory and functional trends during embryonic stem cell differentiation. Nucleic Acids Res 42:774–789. https://doi.org/10.1093/nar/gkt910

    Article  CAS  PubMed  Google Scholar 

  21. Arzate-Mejía RG, Recillas-Targa F, Corces VG (2018) Developing in 3D: the role of CTCF in cell differentiation. Development 145:1–16. https://doi.org/10.1242/dev.137729/48856

    Article  Google Scholar 

  22. Moore JM, Rabaia NA, Smith LE et al (2012) Loss of maternal CTCF Is associated with peri-implantation lethality of Ctcf null embryos. PLoS ONE 7:e34915. https://doi.org/10.1371/journal.pone.0034915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kim S, Yu NK, Shim KW et al (2018) Remote memory and cortical synaptic plasticity require neuronal CCCTC-binding factor (CTCF). J Neurosci 38:5042–5052. https://doi.org/10.1523/jneurosci.2738-17.2018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Il CD, Kim M, Kim S et al (2021) Conditional knock out of transcription factor CTCF in excitatory neurons induces cognitive deficiency. Mol Brain 14:1–4. https://doi.org/10.1186/s13041-020-00716-z

    Article  CAS  Google Scholar 

  25. Sams DS, Nardone S, Getselter D et al (2016) Neuronal CTCF is necessary for basal and experience-dependent gene regulation, memory formation, and genomic structure of BDNF and Arc. Cell Rep 17:2418–2430. https://doi.org/10.1016/j.celrep.2016.11.004

    Article  CAS  PubMed  Google Scholar 

  26. Watson LA, Wang X, Elbert A et al (2014) Dual effect of CTCF loss on neuroprogenitor differentiation and survival. J Neurosci 34:2860–2870. https://doi.org/10.1523/jneurosci.3769-13.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Landt SG, Marinov GK, Kundaje A et al (2012) ChIP-seq guidelines and practices of the ENCODE and modENCODE consortia. Genome Res 22:1813–1831. https://doi.org/10.1101/gr.136184.111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhang Y, Liu T, Meyer CA et al (2008) Model-based analysis of ChIP-Seq (MACS). Genome Biol 9:1–9. https://doi.org/10.1186/gb-2008-9-9-r137

    Article  CAS  Google Scholar 

  29. Li Q, Brown JB, Huang H, Bickel PJ (2011) Measuring reproducibility of high-throughput experiments. Ann Appl Stat 5:1752–1779. https://doi.org/10.1214/11-aoas466

    Article  Google Scholar 

  30. Bonev B, Mendelson Cohen N, Szabo Q et al (2017) Multiscale 3D genome rewiring during mouse neural development. Cell 171:557-572.e24. https://doi.org/10.1016/j.cell.2017.09.043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Durand NC, Shamim MS, Machol I et al (2016) Juicer provides a one-click system for analyzing loop-resolution Hi-C experiments. Cell Syst 3:95–98. https://doi.org/10.1016/j.cels.2016.07.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ma W, Noble WS, Bailey TL (2014) Motif-based analysis of large nucleotide data sets using MEME-ChIP. Nat Protoc 9:1428–1450. https://doi.org/10.1038/nprot.2014.083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Quinlan AR, Hall IM (2010) BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26:841–842. https://doi.org/10.1093/bioinformatics/btq033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Fornes O, Castro-Mondragon JA, Khan A et al (2020) JASPAR 2020: update of the open-access database of transcription factor binding profiles. Nucleic Acids Res 48:D87–D92. https://doi.org/10.1093/nar/gkz1001

    Article  CAS  PubMed  Google Scholar 

  35. Ambrosini G, Groux R, Bucher P (2018) PWMScan: a fast tool for scanning entire genomes with a position-specific weight matrix. Bioinformatics 34:2483–2484. https://doi.org/10.1093/bioinformatics/bty127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Fu S, Wang Q, Moore JE et al (2018) Differential analysis of chromatin accessibility and histone modifications for predicting mouse developmental enhancers. Nucleic Acids Res 46:11184–11201. https://doi.org/10.1093/NAR/GKY753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Yu G, Wang LG, He QY (2015) ChIPseeker: an R/Bioconductor package for ChIP peak annotation, comparison and visualization. Bioinformatics 31:2382–2383. https://doi.org/10.1093/bioinformatics/btv145

    Article  CAS  PubMed  Google Scholar 

  38. Ernst J (2017) Kellis M (2017) Chromatin-state discovery and genome annotation with ChromHMM. Nat Protoc 1212(12):2478–2492. https://doi.org/10.1038/nprot.2017.124

    Article  CAS  Google Scholar 

  39. Abascal F, Acosta R, Addleman NJ et al (2020) Expanded encyclopaedias of DNA elements in the human and mouse genomes. Nature 583:699–710. https://doi.org/10.1038/s41586-020-2493-4

    Article  CAS  Google Scholar 

  40. Wu T, Hu E, Xu S et al (2021) clusterProfiler 4.0: a universal enrichment tool for interpreting omics data. Innov 2:100141. https://doi.org/10.1016/j.xinn.2021.100141

    Article  CAS  Google Scholar 

  41. Ramírez F, Dündar F, Diehl S et al (2014) deepTools: a flexible platform for exploring deep-sequencing data. Nucleic Acids Res 42:W187–W191. https://doi.org/10.1093/NAR/GKU365

    Article  PubMed  PubMed Central  Google Scholar 

  42. Kuhn RM, Haussler D, James Kent W (2013) The UCSC genome browser and associated tools. Brief Bioinform 14:144–161. https://doi.org/10.1093/bib/bbs038

    Article  CAS  PubMed  Google Scholar 

  43. Weth O, Renkawitz R (2011) CTCF function is modulated by neighboring DNA binding factors. Biochem Cell Biol 89:459–468. https://doi.org/10.1139/O11-033

    Article  CAS  PubMed  Google Scholar 

  44. Ohlsson R, Lobanenkov V, Klenova E (2010) Does CTCF mediate between nuclear organization and gene expression? BioEssays 32:37–50. https://doi.org/10.1002/bies.200900118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ya Guo A, Xu Q, Canzio D et al (2015) CRISPR inversion of CTCF sites alters genome topology and enhancer/promoter function. Cell 162:900–910. https://doi.org/10.1016/j.cell.2015.07.038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ren G, Jin W, Cui K et al (2017) CTCF-mediated enhancer-promoter interaction is a critical regulator of cell-to-cell variation of gene expression. Mol Cell 67:1049–1058. https://doi.org/10.1016/j.molcel.2017.08.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Song Y, Ahn J, Suh Y et al (2013) Identification of novel tissue-specific genes by analysis of microarray databases: a human and mouse model. PLoS ONE 8:e64483. https://doi.org/10.1371/JOURNAL.PONE.0064483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Dubois-Chevalier J, Staels B, Lefebvre P, Eeckhoute J (2015) The ubiquitous transcription factor CTCF promotes lineage-specific epigenomic remodeling and establishment of transcriptional networks driving cell differentiation. Nucleus 6:15–18. https://doi.org/10.1080/19491034.2015.1004258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Balakrishnan SK, Witcher M, Berggren TW, Emerson BM (2012) Functional and molecular characterization of the role of CTCF in human embryonic stem cell biology. PLoS ONE 7:e42424. https://doi.org/10.1371/journal.pone.0042424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Phillips-Cremins JE, Sauria MEG, Sanyal A et al (2013) Architectural protein subclasses shape 3D organization of genomes during lineage commitment. Cell 153:1281–1295. https://doi.org/10.1016/j.cell.2013.04.053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Nora EP, Caccianini L, Fudenberg G et al (2020) Molecular basis of CTCF binding polarity in genome folding. Nat Commun 11:1–13. https://doi.org/10.1038/s41467-020-19283-x

    Article  CAS  Google Scholar 

  52. Beagan JA, Pastuzyn ED, Fernandez LR et al (2020) Three-dimensional genome restructuring across timescales of activity-induced neuronal gene expression. Nat Neurosci 23:707–717. https://doi.org/10.1038/s41593-020-0634-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Davidson IF, Barth R, Zaczek M et al (2023) CTCF is a DNA-tension-dependent barrier to cohesin-mediated loop extrusion. Nature 616:822–827. https://doi.org/10.1038/s41586-023-05961-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Corless S, Gilbert N (2016) Effects of DNA supercoiling on chromatin architecture. Biophys Rev 8:245–258. https://doi.org/10.1007/s12551-016-0210-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Lee R, Kang MK, Kim YJ et al (2022) CTCF-mediated chromatin looping provides a topological framework for the formation of phase-separated transcriptional condensates. Nucleic Acids Res 50:207–226. https://doi.org/10.1093/NAR/GKAB1242

    Article  CAS  PubMed  Google Scholar 

  56. Chowdhary S, Kainth AS, Paracha S et al (2022) Inducible transcriptional condensates drive 3D genome reorganization in the heat shock response. Mol Cell 82:4386-4399.e7. https://doi.org/10.1016/j.molcell.2022.10.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Hsieh THS, Cattoglio C, Slobodyanyuk E et al (2022) Enhancer–promoter interactions and transcription are largely maintained upon acute loss of CTCF, cohesin, WAPL or YY1. Nat Genet 54:1919–1932. https://doi.org/10.1038/s41588-022-01223-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank our colleges in the Madabhushi Lab, Lance Heady, Lahiri Konada, and Ilse Delint-Ramirez, for their helpful feedback on this manuscript.

Funding

This work was supported by NIMH under grant number MH120132 (RM) and CPRIT under grant number RP210041(MC).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation and data collection were performed by Morgan Crewe and Richard Rueda. Data analysis was performed by Morgan Crewe, Amir Segev, and Ram Madabhushi. The first draft of the manuscript was written by Morgan Crewe and Ram Madabhushi, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Ram Madabhushi.

Ethics declarations

Ethics Approval

This study was performed in line with the principles outlined in the “Guide for the Care and Use of Laboratory Animals” and in accordance with all federal and state policies. Approval was granted by the UT Southwestern Institutional Care and Use Committee (IACUC).

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Crewe, M., Segev, A., Rueda, R. et al. Atypical Modes of CTCF Binding Facilitate Tissue-Specific and Neuronal Activity-Dependent Gene Expression States. Mol Neurobiol 61, 3240–3257 (2024). https://doi.org/10.1007/s12035-023-03762-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-023-03762-5

Keywords

Navigation