Skip to main content

Advertisement

Log in

Does COVID-19 Trigger the Risk for the Development of Parkinson’s Disease? Therapeutic Potential of Vitamin C

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19), which was proclaimed a pandemic by the World Health Organization (WHO) in March 2020. There is mounting evidence that older patients with multimorbidity are more susceptible to COVID-19 complications than are younger, healthy people. Having neuroinvasive potential, SARS-CoV-2 infection may increase susceptibility toward the development of Parkinson’s disease (PD), a progressive neurodegenerative disorder with extensive motor deficits. PD is characterized by the aggregation of α-synuclein in the form of Lewy bodies and the loss of dopaminergic neurons in the dorsal striatum and substantia nigra pars compacta (SNpc) of the nigrostriatal pathway in the brain. Increasing reports suggest that SARS-CoV-2 infection is linked with the worsening of motor and non-motor symptoms with high rates of hospitalization and mortality in PD patients. Common pathological changes in both diseases involve oxidative stress, mitochondrial dysfunction, neuroinflammation, and neurodegeneration. COVID-19 exacerbates the damage ensuing from the dysregulation of those processes, furthering neurological complications, and increasing the severity of PD symptomatology. Phytochemicals have antioxidant, anti-inflammatory, and anti-apoptotic properties. Vitamin C supplementation is found to ameliorate the common pathological changes in both diseases to some extent. This review aims to present the available evidence on the association between COVID-19 and PD, and discusses the therapeutic potential of vitamin C for its better management.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

No data and materials are used in this review.

Abbreviations

ACE-2:

Angiotensin-converting enzyme 2

COVID-19:

Coronavirus disease 2019

DA-ergic:

Dopaminergic

DHAA:

Dehydroascorbic acid

ER:

Endoplasmic reticulum

IL-1:

Interleukin-1

LB:

Lewy bodies

MMP:

Mitochondrial membrane potential

NF-κB:

Nuclear factor kappa B

NLRP3 inflammasome:

NOD-, LRR-, and pyrin domain–containing protein 3 inflammasome

NOX:

Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase

NRF2:

Nuclear factor erythroid 2–related factor 2

ORF3a:

Open reading frame 3a

PD:

Parkinson’s disease

ROS:

Reactive oxygen species

S protein:

Spike protein

SARS-CoV-2:

Severe acute respiratory syndrome-coronavirus-2

SNpc:

Substantia nigra pars compacta

TMPRSS2:

Type 2 transmembrane serine protease

TNF-α:

Tumor necrosis factor alpha

α-syn:

α-Synuclein

References

  1. Chen X, Laurent S, Onur OA, Kleineberg NN, Fink GR, Schweitzer F, Warnke C (2021) A systematic review of neurological symptoms and complications of COVID-19. J Neurol 268(2):392–402. https://doi.org/10.1007/s00415-020-10067-3

    Article  CAS  PubMed  Google Scholar 

  2. Boika AV, Sialitski MM, Chyzhyk VA, Ponomarev VV, Fomina EG (2021) Post-COVID worsening of a Parkinson’s disease patient. Clin Case Rep 9(7):e04409. https://doi.org/10.1002/ccr3.4409

    Article  PubMed  PubMed Central  Google Scholar 

  3. Cilia R, Bonvegna S, Straccia G, Andreasi NG, Elia AE, Romito LM, Devigili G, Cereda E et al (2020) Effects of COVID-19 on Parkinson’s disease clinical features: a community-based case-control study. Mov Disord 35(8):1287–1292. https://doi.org/10.1002/mds.28170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kamel WA, Ismail II, Ibrahim M, Al-Hashel JY (2021) Unexplained worsening of parkinsonian symptoms in a patient with advanced Parkinson’s disease as the sole initial presentation of COVID-19 infection: a case report. Egypt J Neurol Psychiatr Neurosurg 57(1):60. https://doi.org/10.1186/s41983-021-00314-3

    Article  PubMed  PubMed Central  Google Scholar 

  5. Chaudhry ZL, Klenja D, Janjua N, Cami-Kobeci G, Ahmed BY (2020) COVID-19 and Parkinson’s disease: shared inflammatory pathways under oxidative stress. Brain Sci 10(11):807. https://doi.org/10.3390/brainsci10110807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Demeke CA, Woldeyohanins AE, Kifle ZD (2021) Herbal medicine use for the management of COVID-19: a review article. Metabol Open 12:100141. https://doi.org/10.1016/j.metop.2021.100141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Rahman MM, Wang X, Islam MR, Akash S, Supti FA, Mitu MI, Harun-Or-Rashid M, Aktar MN et al (2022) Multifunctional role of natural products for the treatment of Parkinson’s disease: at a glance. Front Pharmacol 13:976385. https://doi.org/10.3389/fphar.2022.976385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Melrose J, Smith MM (2022) Natural and semi-synthetic flavonoid anti-SARS-CoV-2 agents for the treatment of long COVID-19 disease and neurodegenerative disorders of cognitive decline. Front Biosci (Elite Ed) 14(4):27. https://doi.org/10.31083/j.fbe1404027

    Article  CAS  PubMed  Google Scholar 

  9. Al-Kuraishy HM, Al-Gareeb AI, El-Saber Batiha G (2022) The possible role of ursolic acid in Covid-19: a real game changer. Clin Nutr ESPEN 47:414–417. https://doi.org/10.1016/j.clnesp.2021.12.030

    Article  PubMed  PubMed Central  Google Scholar 

  10. Rai SN, Yadav SK, Singh D, Singh SP (2016) Ursolic acid attenuates oxidative stress in nigrostriatal tissue and improves neurobehavioral activity in MPTP-induced Parkinsonian mouse model. J Chem Neuroanat 71:41–49. https://doi.org/10.1016/j.jchemneu.2015.12.002

    Article  CAS  PubMed  Google Scholar 

  11. Mrityunjaya M, Pavithra V, Neelam R, Janhavi P, Halami PM, Ravindra PV (2020) Immune-boosting, antioxidant and anti-inflammatory food supplements targeting pathogenesis of COVID-19. Front Immunol 11:570122. https://doi.org/10.3389/fimmu.2020.570122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Di Pierro F, Iqtadar S, Khan A, Ullah Mumtaz S, Masud Chaudhry M, Bertuccioli A, Derosa G et al (2021) Potential clinical benefits of quercetin in the early stage of COVID-19: results of a second, pilot, randomized, controlled and open-label clinical trial. Int J Gen Med 14:2807–2816. https://doi.org/10.2147/IJGM.S318949

    Article  PubMed  PubMed Central  Google Scholar 

  13. Hassaniazad M, Eftekhar E, Inchehsablagh BR, Kamali H, Tousi A, Jaafari MR, Rafat M, Fathalipour M et al (2021) A triple-blind, placebo-controlled, randomized clinical trial to evaluate the effect of curcumin-containing nanomicelles on cellular immune responses subtypes and clinical outcome in COVID-19 patients. Phytother Res 35(11):6417–6427. https://doi.org/10.1002/ptr.7294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Duarte-Jurado AP, Gopar-Cuevas Y, Saucedo-Cardenas O, Loera-Arias MJ, Montes-de-Oca-Luna R, Garcia-Garcia A, Rodriguez-Rocha H (2021) Antioxidant therapeutics in Parkinson’s disease: current challenges and opportunities. Antioxidants (Basel) 10(3):453. https://doi.org/10.3390/antiox10030453

    Article  CAS  PubMed  Google Scholar 

  15. Vollbracht C, Kraft K (2021) Feasibility of vitamin C in the treatment of post viral fatigue with focus on long COVID, based on a systematic review of IV vitamin C on fatigue. Nutrients 13(4):1154. https://doi.org/10.3390/nu13041154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Alyami HS, Orabi MAA, Aldhabbah FM, Alturki HN, Aburas WI, Alfayez AI, Alharbi AS, Almasuood RA et al (2020) Knowledge about COVID-19 and beliefs about and use of herbal products during the COVID-19 pandemic: a cross-sectional study in Saudi Arabia. Saudi Pharm J 28(11):1326–1332. https://doi.org/10.1016/j.jsps.2020.08.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Barmaki H, Morovati A, Eydivandi Z, Jafari Naleshkenani F, Saedi S, Musavi H, Abbasi M, Hemmati-Dinarvand M (2021) The association between serum oxidative stress indexes and pathogenesis of Parkinson’s disease in the Northwest of Iran. Iran J Public Health 50(3):606–615. https://doi.org/10.18502/ijph.v50i3.5621

    Article  PubMed  PubMed Central  Google Scholar 

  18. Sinnberg T, Lichtensteiger C, Hill-Mündel K, Leischner C, Niessner H, Busch C, Renner O, Wyss N et al (2022) Vitamin C deficiency in blood samples of COVID-19 patients. Antioxidants (Basel) 11(8):1580. https://doi.org/10.3390/antiox11081580

    Article  CAS  PubMed  Google Scholar 

  19. Fasano A, Cereda E, Barichella M, Cassani E, Ferri V, Zecchinelli AL, Pezzoli G (2020) COVID-19 in Parkinson’s disease patients living in Lombardy. Italy Mov Disord 35(7):1089–1093. https://doi.org/10.1002/mds.28176

    Article  CAS  PubMed  Google Scholar 

  20. Del Prete E, Francesconi A, Palermo G, Mazzucchi S, Frosini D, Morganti R, Coleschi P, Raglione LM et al (2021) Prevalence and impact of COVID-19 in Parkinson’s disease: evidence from a multi-center survey in Tuscany region. J Neurol 268(4):1179–1187. https://doi.org/10.1007/s00415-020-10002-6

    Article  CAS  PubMed  Google Scholar 

  21. Scherbaum R, Kwon EH, Richter D, Bartig D, Gold R, Krogias C, Tönges L (2021) Clinical profiles and mortality of COVID-19 inpatients with Parkinson’s disease in Germany. Mov Disord 36(5):1049–1057. https://doi.org/10.1002/mds.28586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhang Q, Schultz JL, Aldridge GM, Simmering JE, Narayanan NS (2020) Coronavirus disease 2019 case fatality and Parkinson’s disease. Mov Disord 35(11):1914–1915. https://doi.org/10.1002/mds.28325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chambergo-Michilot D, Barros-Sevillano S, Rivera-Torrejón O, De la Cruz-Ku GA, Custodio N (2021) Factors associated with COVID-19 in people with Parkinson’s disease: a systematic review and meta-analysis. Eur J Neurol 28(10):3467–3477. https://doi.org/10.1111/ene.14912

    Article  PubMed  PubMed Central  Google Scholar 

  24. Brown EG, Chahine LM, Goldman SM, Korell M, Mann E, Kinel DR, Arnedo V, Marek KL et al (2020) The effect of the COVID-19 pandemic on people with Parkinson’s disease. J Parkinsons Dis 10(4):1365–1377. https://doi.org/10.3233/JPD-202249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Xu Y, Surface M, Chan AK, Halpern J, Vanegas-Arroyave N, Ford B, Feeney MP, Kwei KT et al (2022) COVID-19 manifestations in people with Parkinson’s disease: a USA cohort. J Neurol 269(3):1107–1113. https://doi.org/10.1007/s00415-021-10784-3

    Article  CAS  PubMed  Google Scholar 

  26. Fasano A, Elia AE, Dallocchio C, Canesi M, Alimonti D, Sorbera C, Alonso-Canovas A, Pezzoli G (2020) Predictors of COVID-19 outcome in Parkinson’s disease. Parkinsonism Relat Disord 78:134–137. https://doi.org/10.1016/j.parkreldis.2020.08.012

    Article  PubMed  PubMed Central  Google Scholar 

  27. Lee MY, Oh BM, Seo HG (2021) Prolonged dysphagia after a COVID-19 infection in a patient with Parkinson disease. Am J Phys Med Rehabil 100(9):837–839. https://doi.org/10.1097/PHM.0000000000001825

    Article  PubMed  PubMed Central  Google Scholar 

  28. Touihmi S, El Hassouni A, Rkain I (2021) Sars-Cov-19 associated with aspiration pneumonia in a patient with Parkinson disease: a case report. Eur J Radiol Open 8:100379. https://doi.org/10.1016/j.ejro.2021.100379

    Article  PubMed  PubMed Central  Google Scholar 

  29. Gultekin M, Tufekcioglu Z (2022) COVID-19 infection presented as severe dyskinesia in a patient with Parkinson’s disease: a case with daily video recording. Neurol Sci 43(5):2961–2963. https://doi.org/10.1007/s10072-022-05912-4

    Article  PubMed  PubMed Central  Google Scholar 

  30. Flores-Silva FD, García-Grimshaw M, Valdés-Ferrer SI, Vigueras-Hernández AP, Domínguez-Moreno R, Tristán-Samaniego DP, Michel-Chávez A, González-Duarte A et al (2021) Neurologic manifestations in hospitalized patients with COVID-19 in Mexico City. PLoS ONE 16(4):e0247433. https://doi.org/10.1371/journal.pone.0247433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. El-Qushayri AE, Ghozy S, Reda A, Kamel AMA, Abbas AS, Dmytriw AA (2022) The impact of Parkinson’s disease on manifestations and outcomes of Covid-19 patients: a systematic review and meta-analysis. Rev Med Virol 32(2):e2278. https://doi.org/10.1002/rmv.2278

    Article  CAS  PubMed  Google Scholar 

  32. Jaiswal V, Alquraish D, Sarfraz Z, Sarfraz A, Nagpal S, Singh Shrestha P, Mukherjee D, Guntipalli P et al (2021) The influence of coronavirus disease-2019 (COVID-19) on Parkinson’s disease: an updated systematic review. J Prim Care Community Health 12:21501327211039708. https://doi.org/10.1177/21501327211039709

    Article  PubMed  PubMed Central  Google Scholar 

  33. Tahira AC, Verjovski-Almeida S, Ferreira ST (2021) Dementia is an age-independent risk factor for severity and death in COVID-19 inpatients. Alzheimers Dement 17(11):1818–1831. https://doi.org/10.1002/alz.12352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Artusi CA, Romagnolo A, Ledda C, Zibetti M, Rizzone MG, Montanaro E, Bozzali M, Lopiano L (2021) COVID-19 and Parkinson’s disease: what do we know so far? J Parkinsons Dis 11(2):445–454. https://doi.org/10.3233/JPD-202463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Putri C, Hariyanto TI, Hananto JE, Christian K, Situmeang RFV, Kurniawan A (2021) Parkinson’s disease may worsen outcomes from coronavirus disease 2019 (COVID-19) pneumonia in hospitalized patients: a systematic review, meta-analysis, and meta-regression. Parkinsonism Relat Disord 87:155–161. https://doi.org/10.1016/j.parkreldis.2021.04.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Smadi M, Kaburis M, Schnapper Y, Reina G, Molero P, Molendijk ML (2023) SARS-CoV-2 susceptibility and COVID-19 illness course and outcome in people with pre-existing neurodegenerative disorders: systematic review with frequentist and Bayesian meta-analyses. Br J Psychiatry 1–14. https://doi.org/10.1192/bjp.2023.43

  37. Buccafusca M, Micali C, Autunno M, Versace AG, Nunnari G, Musumeci O (2021) Favourable course in a cohort of Parkinson’s disease patients infected by SARS-CoV-2: a single-centre experience. Neurol Sci 42(3):811–816. https://doi.org/10.1007/s10072-020-05001-4

    Article  PubMed  PubMed Central  Google Scholar 

  38. Nwabuobi L, Zhang C, Henchcliffe C, Shah H, Sarva H, Lee A, Kamel H (2021) Characteristics and outcomes of Parkinson’s disease individuals hospitalized with COVID-19 in a New York City Hospital System. Mov Disord Clin Pract 8(7):1100–1106. https://doi.org/10.1002/mdc3.13309

    Article  PubMed  PubMed Central  Google Scholar 

  39. Parihar R, Ferastraoaru V, Galanopoulou AS, Geyer HL, Kaufman DM (2021) Outcome of hospitalized Parkinson’s disease patients with and without COVID-19. Mov Disord Clin Pract 8(6):859–867. https://doi.org/10.1002/mdc3.13231

    Article  PubMed  PubMed Central  Google Scholar 

  40. Ali SS, Mumtaz A, Qamar MA, Tebha SS, Parhin A, Butt M, Essar MY (2022) New-onset Parkinsonism as a Covid-19 infection sequela: a systematic review and meta-analysis. Ann Med Surg (Lond) 80:104281. https://doi.org/10.1016/j.amsu.2022.104281

    Article  PubMed  Google Scholar 

  41. Salari M, Zaker Harofteh B, Etemadifar M, Sedaghat N, Nouri H (2021) Movement disorders associated with COVID-19. Parkinsons Dis 2021:3227753. https://doi.org/10.1155/2021/3227753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Calculli A, Bocci T, Porcino M, Avenali M, Casellato C, Arceri S, Regalbuto S, Priori A et al (2023) Parkinson disease following COVID-19: Report of six cases. Eur J Neurol 30(5):1272–1280. https://doi.org/10.1111/ene.15732

    Article  PubMed  Google Scholar 

  43. Schneider SA, Desai S, Phokaewvarangkul O, Rosca EC, Sringean J, Anand P, Bravo GÁ, Cardoso F et al (2023) COVID19-associated new-onset movement disorders: a follow-up study. J Neurol 270(5):2409–2415. https://doi.org/10.1007/s00415-023-11661-x

    Article  PubMed  PubMed Central  Google Scholar 

  44. Rass V, Beer R, Schiefecker AJ, Lindner A, Kofler M, Ianosi BA, Mahlknecht P, Heim B et al (2022) Neurological outcomes 1 year after COVID-19 diagnosis: a prospective longitudinal cohort study. Eur J Neurol 29(6):1685–1696. https://doi.org/10.1111/ene.15307

    Article  PubMed  PubMed Central  Google Scholar 

  45. Moro E, Priori A, Beghi E, Helbok R, Campiglio L, Bassetti CL, Bianchi E, Maia LF et al (2020) The international European Academy of Neurology survey on neurological symptoms in patients with COVID-19 infection. Eur J Neurol 27(9):1727–1737. https://doi.org/10.1111/ene.14407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Whittaker A, Anson M, Harky A (2020) Neurological manifestations of COVID-19: a systematic review and current update. Acta Neurol Scand 142(1):14–22. https://doi.org/10.1111/ane.13266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Soltani S, Tabibzadeh A, Zakeri A, Zakeri AM, Latifi T, Shabani M, Pouremamali A, Erfani Y (2021) COVID-19 associated central nervous system manifestations, mental and neurological symptoms: a systematic review and meta-analysis. Rev Neurosci 32(3):351–361. https://doi.org/10.1515/revneuro-2020-0108

    Article  CAS  PubMed  Google Scholar 

  48. Pinzon RT, Wijaya VO, Jody AA, Nunsio PN, Buana RB (2022) Persistent neurological manifestations in long COVID-19 syndrome: a systematic review and meta-analysis. J Infect Public Health 15(8):856–869. https://doi.org/10.1016/j.jiph.2022.06.013

    Article  PubMed  PubMed Central  Google Scholar 

  49. Premraj L, Kannapadi NV, Briggs J, Seal SM, Battaglini D, Fanning J, Suen J, Robba C et al (2022) Mid and long-term neurological and neuropsychiatric manifestations of post-COVID-19 syndrome: a meta-analysis. J Neurol Sci 434:120162. https://doi.org/10.1016/j.jns.2022.120162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Maramattom BV, Kishore A (2022) Acute akinetic-rigid syndrome in COVID-19 encephalitis. Acta Neurol Belg 122(3):847–849. https://doi.org/10.1007/s13760-022-01892-6

    Article  PubMed  PubMed Central  Google Scholar 

  51. de Marcaida JA, Lahrmann J, Machado D, Bluth L, Dagostine M, Moro-de Casillas M, Bortan E, Kanchana S et al (2020) Clinical characteristics of coronavirus disease 2019 (COVID-19) among patients at a movement disorders center. Geriatrics (Basel) 5(3):54. https://doi.org/10.3390/geriatrics5030054

    Article  PubMed  Google Scholar 

  52. Rosen B, Kurtishi A, Vazquez-Jimenez GR, Møller SG (2021) The intersection of Parkinson’s disease, Viral Infections, and COVID-19. Mol Neurobiol 58(9):4477–4486. https://doi.org/10.1007/s12035-021-02408-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Jang H, Boltz D, Sturm-Ramirez K, Shepherd KR, Jiao Y, Webster R, Smeyne RJ (2009) Highly pathogenic H5N1 influenza virus can enter the central nervous system and induce neuroinflammation and neurodegeneration. Proc Natl Acad Sci U S A 106(33):14063–14068. https://doi.org/10.1073/pnas.0900096106

    Article  PubMed  PubMed Central  Google Scholar 

  54. Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S, Schiergens TS, Herrler G et al (2020) SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 181(2):271-280.e8. https://doi.org/10.1016/j.cell.2020.02.052

    Article  PubMed  PubMed Central  Google Scholar 

  55. Park JW, Wang X, Xu RH (2022) Revealing the mystery of persistent smell loss in Long COVID patients. Int J Biol Sci 18(12):4795–4808. https://doi.org/10.7150/ijbs.73485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Chen F, Liu W, Liu P, Wang Z, Zhou Y, Liu X, Li A (2021) α-Synuclein aggregation in the olfactory bulb induces olfactory deficits by perturbing granule cells and granular-mitral synaptic transmission. NPJ Parkinsons Dis 7(1):114. https://doi.org/10.1038/s41531-021-00259-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Rey NL, Wesson DW, Brundin P (2018) The olfactory bulb as the entry site for prion-like propagation in neurodegenerative diseases. Neurobiol Dis 109(Pt B):226–248. https://doi.org/10.1016/j.nbd.2016.12.013

    Article  CAS  PubMed  Google Scholar 

  58. Méndez-Guerrero A, Laespada-García MI, Gómez-Grande A, Ruiz-Ortiz M, Blanco-Palmero VA, Azcarate-Diaz FJ, Rábano-Suárez P, Álvarez-Torres E et al (2020) Acute hypokinetic-rigid syndrome following SARS-CoV-2 infection. Neurology 95(15):e2109–e2118. https://doi.org/10.1212/WNL.0000000000010282

    Article  CAS  PubMed  Google Scholar 

  59. Romão PR, Teixeira PC, Schipper L, da Silva I, Santana Filho P, Júnior LCR, Peres A, Gonçalves da Fonseca S et al (2022) Viral load is associated with mitochondrial dysfunction and altered monocyte phenotype in acute severe SARS-CoV-2 infection. Int Immunopharmacol 108:108697. https://doi.org/10.1016/j.intimp.2022.108697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Hu Q, Wang G (2016) Mitochondrial dysfunction in Parkinson’s disease. Transl Neurodegener 5:14. https://doi.org/10.1186/s40035-016-0060-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Morowitz JM, Pogson KB, Roque DA, Church FC (2022) Role of SARS-CoV-2 in modifying neurodegenerative processes in Parkinson’s disease: a narrative review. Brain Sci 12(5):536. https://doi.org/10.3390/brainsci12050536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Sulzer D, Antonini A, Leta V, Nordvig A, Smeyne RJ, Goldman JE, Al-Dalahmah O, Zecca L et al (2020) COVID-19 and possible links with Parkinson’s disease and parkinsonism: from bench to bedside. NPJ Parkinsons Dis 6:18. https://doi.org/10.1038/s41531-020-00123-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Wu Z, Zhang X, Huang Z, Ma K (2022) SARS-CoV-2 proteins interact with alpha synuclein and induce Lewy body-like pathology in vitro. Int J Mol Sci 23(6):3394. https://doi.org/10.3390/ijms23063394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Sandeep Ahmad MH, Rani L, Mondal AC (2022) Convergent molecular pathways in type 2 diabetes mellitus and Parkinson’s disease: insights into mechanisms and pathological cconsequences. Mol Neurobiol 59(7):4466–4487. https://doi.org/10.1007/s12035-022-02867-7

    Article  CAS  Google Scholar 

  65. Baazaoui N, Iqbal K (2022) COVID-19 and neurodegenerative diseases: prion-like spread and long-term consequences. J Alzheimers Dis 88(2):399–416. https://doi.org/10.3233/JAD-220105

    Article  CAS  PubMed  Google Scholar 

  66. Siu KL, Yuen KS, Castaño-Rodriguez C, Ye ZW, Yeung ML, Fung SY, Yuan S, Chan CP et al (2019) Severe acute respiratory syndrome coronavirus ORF3a protein activates the NLRP3 inflammasome by promoting TRAF3-dependent ubiquitination of ASC. FASEB J 33(8):8865–8877. https://doi.org/10.1096/fj.201802418R

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Satoh T, Trudler D, Oh CK, Lipton SA (2022) Potential therapeutic use of the rosemary diterpene carnosic acid for Alzheimer’s disease, Parkinson’s disease, and long-COVID through NRF2 activation to counteract the NLRP3 inflammasome. Antioxidants (Basel) 11(1):124. https://doi.org/10.3390/antiox11010124

    Article  CAS  PubMed  Google Scholar 

  68. Kaundal RK, Kalvala AK, Kumar A (2021) Neurological implications of COVID-19: role of redox imbalance and mitochondrial dysfunction. Mol Neurobiol 58(9):4575–4587. https://doi.org/10.1007/s12035-021-02412-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Montiel V, Lobysheva I, Gérard L, Vermeersch M, Perez-Morga D, Castelein T, Mesland JB, Hantson P et al (2022) Oxidative stress-induced endothelial dysfunction and decreased vascular nitric oxide in COVID-19 patients. EBioMedicine 77:103893. https://doi.org/10.1016/j.ebiom.2022.103893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Song Q, Peng S, Zhu X (2021) Baicalein protects against MPP+/MPTP-induced neurotoxicity by ameliorating oxidative stress in SH-SY5Y cells and mouse model of Parkinson’s disease. Neurotoxicology 87:188–194. https://doi.org/10.1016/j.neuro.2021.10.003

    Article  CAS  PubMed  Google Scholar 

  71. Medina S, Martínez M, Hernanz A (2002) Antioxidants inhibit the human cortical neuron apoptosis induced by hydrogen peroxide, tumor necrosis factor alpha, dopamine and beta-amyloid peptide 1–42. Free Radic Res 36(11):1179–1184. https://doi.org/10.1080/107157602100006445

    Article  CAS  PubMed  Google Scholar 

  72. Won SJ, Fong R, Butler N, Sanchez J, Zhang Y, Wong C, Tambou Nzoutchoum O, Huynh A et al (2022) Neuronal oxidative stress promotes α-synuclein aggregation in vivo. Antioxidants (Basel) 11(12):2466. https://doi.org/10.3390/antiox11122466

    Article  CAS  PubMed  Google Scholar 

  73. Zhang X, Yang Z, Pan T, Long X, Sun Q, Wang PH, Li X, Kuang E (2022) SARS-CoV-2 ORF3a induces RETREG1/FAM134B-dependent reticulophagy and triggers sequential ER stress and inflammatory responses during SARS-CoV-2 infection. Autophagy 18(11):2576–2592. https://doi.org/10.1080/15548627.2022.2039992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Chaudhry ZL, Gamal M, Ferhati I, Warda M, Ahmed BY (2022) ER stress in COVID-19 and Parkinson’s disease: in vitro and in silico evidences. Brain Sci 12(4):507. https://doi.org/10.3390/brainsci12040507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Lechien JR, Chiesa-Estomba CM, De Siati DR, Horoi M, Le Bon SD, Rodriguez A, Dequanter D, Blecic S et al (2020) Olfactory and gustatory dysfunctions as a clinical presentation of mild-to-moderate forms of the coronavirus disease (COVID-19): a multicenter European study. Eur Arch Otorhinolaryngol 277(8):2251–2261. https://doi.org/10.1007/s00405-020-05965-1

    Article  PubMed  PubMed Central  Google Scholar 

  76. Brann DH, Tsukahara T, Weinreb C, Lipovsek M, Van den Berge K, Gong B, Chance R, Macaulay IC et al (2020) Non-neuronal expression of SARS-CoV-2 entry genes in the olfactory system suggests mechanisms underlying COVID-19-associated anosmia. Sci Adv 6(31):eabc5801. https://doi.org/10.1126/sciadv.abc5801

    Article  CAS  PubMed  Google Scholar 

  77. Niu H, Wang Q, Zhao W, Liu J, Wang D, Muhammad B, Liu X, Quan N et al (2020) IL-1β/IL-1R1 signaling induced by intranasal lipopolysaccharide infusion regulates alpha-Synuclein pathology in the olfactory bulb, substantia nigra and striatum. Brain Pathol 30(6):1102–1118. https://doi.org/10.1111/bpa.12886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Yoneyama N, Watanabe H, Kawabata K, Bagarinao E, Hara K, Tsuboi T, Tanaka Y, Ohdake R et al (2018) Severe hyposmia and aberrant functional connectivity in cognitively normal Parkinson’s disease. PLoS ONE 13(1):e0190072. https://doi.org/10.1371/journal.pone.0190072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Hanley B, Naresh KN, Roufosse C, Nicholson AG, Weir J, Cooke GS, Thursz M, Manousou P et al (2020) Histopathological findings and viral tropism in UK patients with severe fatal COVID-19: a post-mortem study. Lancet Microbe 1(6):e245–e253. https://doi.org/10.1016/S2666-5247(20)30115-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Gao D, Xu M, Wang G, Lv J, Ma X, Guo Y, Zhang D, Yang H et al (2021) The efficiency and safety of high-dose vitamin C in patients with COVID-19: a retrospective cohort study. Aging (Albany NY) 13(5):7020–7034. https://doi.org/10.18632/aging.202557

    Article  CAS  PubMed  Google Scholar 

  81. Karki R, Sharma BR, Tuladhar S, Williams EP, Zalduondo L, Samir P, Zheng M, Sundaram B et al (2021) Synergism of TNF-α and IFN-γ triggers inflammatory cell death, tissue damage, and mortality in SARS-CoV-2 infection and cytokine shock syndromes. Cell 184(1):149-168.e17. https://doi.org/10.1016/j.cell.2020.11.025

    Article  CAS  PubMed  Google Scholar 

  82. Chan L, Chung CC, Chen JH, Yu RC, Hong CT (2021) Cytokine profile in plasma extracellular vesicles of Parkinson’s disease and the association with cognitive function. Cells 10(3):604. https://doi.org/10.3390/cells10030604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Albornoz EA, Amarilla AA, Modhiran N, Parker S, Li XX, Wijesundara DK, Aguado J, Zamora AP et al (2022) SARS-CoV-2 drives NLRP3 inflammasome activation in human microglia through spike protein. Mol Psychiatry. https://doi.org/10.1038/s41380-022-01831-0

    Article  PubMed  PubMed Central  Google Scholar 

  84. Labandeira CM, Pedrosa MA, Quijano A, Valenzuela R, Garrido-Gil P, Sanchez-Andrade M, Suarez-Quintanilla JA, Rodriguez-Perez AI, Labandeira-Garcia JL (2022) Angiotensin type-1 receptor and ACE2 autoantibodies in Parkinson’s disease. NPJ Parkinsons Dis 8(1):76. https://doi.org/10.1038/s41531-022-00340-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Cian V, De Laurenzis A, Siri C, Gusmeroli A, Canesi M (2022) Cognitive and neuropsychiatric features of COVID-19 patients after hospital dismission: an Italian sample. Front Psychol 13:908363. https://doi.org/10.3389/fpsyg.2022.908363

    Article  PubMed  PubMed Central  Google Scholar 

  86. Ngo AB, Smith KM (2020) Patient and clinician impressions of cognitive impairment in Parkinson’s disease. J Parkinsons Dis 10(4):1695–1698. https://doi.org/10.3233/JPD-202110

    Article  PubMed  PubMed Central  Google Scholar 

  87. Han X, Sun S, Sun Y, Song Q, Zhu J, Song N, Chen M, Sun T et al (2019) Small molecule-driven NLRP3 inflammation inhibition via interplay between ubiquitination and autophagy: implications for Parkinson disease. Autophagy 15(11):1860–1881. https://doi.org/10.1080/15548627.2019.1596481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Figueroa-Méndez R, Rivas-Arancibia S (2015) Vitamin C in health and disease: its role in the metabolism of cells and redox state in the brain. Front Physiol 6:397. https://doi.org/10.3389/fphys.2015.00397

    Article  PubMed  PubMed Central  Google Scholar 

  89. Huang J, Agus DB, Winfree CJ, Kiss S, Mack WJ, McTaggart RA, Choudhri TF, Kim LJ et al (2001) Dehydroascorbic acid, a blood-brain barrier transportable form of vitamin C, mediates potent cerebroprotection in experimental stroke. Proc Natl Acad Sci U S A 98(20):11720–11724. https://doi.org/10.1073/pnas.171325998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Agus DB, Gambhir SS, Pardridge WM, Spielholz C, Baselga J, Vera JC, Golde DW (1997) Vitamin C crosses the blood-brain barrier in the oxidized form through the glucose transporters. J Clin Invest 100(11):2842–2848. https://doi.org/10.1172/JCI119832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Wilson JX (2005) Regulation of vitamin C transport. Annu Rev Nutr 25:105–125. https://doi.org/10.1146/annurev.nutr.25.050304.092647

    Article  CAS  PubMed  Google Scholar 

  92. Gess B, Sevimli S, Strecker JK, Young P, Schäbitz WR (2011) Sodium-dependent vitamin C transporter 2 (SVCT2) expression and activity in brain capillary endothelial cells after transient ischemia in mice. PLoS ONE 6(2):e17139. https://doi.org/10.1371/journal.pone.0017139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Hansen SN, Schou-Pedersen AMV, Lykkesfeldt J, Tveden-Nyborg P (2018) Spatial memory dysfunction induced by vitamin C deficiency is associated with changes in monoaminergic neurotransmitters and aberrant synapse formation. Antioxidants (Basel) 7(7):82. https://doi.org/10.3390/antiox7070082

    Article  CAS  PubMed  Google Scholar 

  94. Yan J, Studer L, McKay RD (2001) Ascorbic acid increases the yield of dopaminergic neurons derived from basic fibroblast growth factor expanded mesencephalic precursors. J Neurochem 76(1):307–311. https://doi.org/10.1046/j.1471-4159.2001.00073.x

    Article  CAS  PubMed  Google Scholar 

  95. Ballaz S, Morales I, Rodríguez M, Obeso JA (2013) Ascorbate prevents cell death from prolonged exposure to glutamate in an in vitro model of human dopaminergic neurons. J Neurosci Res 91(12):1609–1617. https://doi.org/10.1002/jnr.23276

    Article  CAS  PubMed  Google Scholar 

  96. He XB, Kim M, Kim SY, Yi SH, Rhee YH, Kim T, Lee EH, Park CH et al (2015) Vitamin C facilitates dopamine neuron differentiation in fetal midbrain through TET1- and JMJD3-dependent epigenetic control manner. Stem Cells 33(4):1320–1332. https://doi.org/10.1002/stem.1932

    Article  CAS  PubMed  Google Scholar 

  97. Lee HY, Naha N, Ullah N, Jin GZ, Kong IK, Koh PO, Seong HH, Kim MO (2008) Effect of the co-administration of vitamin C and vitamin E on tyrosine hydroxylase and Nurr1 expression in the prenatal rat ventral mesencephalon. J Vet Med Sci 70(8):791–797. https://doi.org/10.1292/jvms.70.791

    Article  CAS  PubMed  Google Scholar 

  98. Agarwal P, Wang Y, Buchman AS, Holland TM, Bennett DA, Morris MC (2022) Dietary antioxidants associated with slower progression of parkinsonian signs in older adults. Nutr Neurosci 25(3):550–557. https://doi.org/10.1080/1028415X.2020.1769411

    Article  CAS  PubMed  Google Scholar 

  99. Ide K, Yamada H, Umegaki K, Mizuno K, Kawakami N, Hagiwara Y, Matsumoto M, Yoshida H et al (2015) Lymphocyte vitamin C levels as potential biomarker for progression of Parkinson’s disease. Nutrition 31(2):406–408. https://doi.org/10.1016/j.nut.2014.08.001

    Article  CAS  PubMed  Google Scholar 

  100. Spencer ES, Pitcher T, Veron G, Hannam T, MacAskill M, Anderson T, Dalrymple-Alford J, Carr AC (2020) Positive association of ascorbate and inverse association of urate with cognitive function in people with Parkinson’s disease. Antioxidants (Basel) 9(10):906. https://doi.org/10.3390/antiox9100906

    Article  CAS  PubMed  Google Scholar 

  101. Choi S, Han J, Kim JH, Kim AR, Kim SH, Lee W, Yoon MY, Kim G et al (2020) Advances in dermatology using DNA aptamer “Aptamin C” innovation: oxidative stress prevention and effect maximization of vitamin C through antioxidation. J Cosmet Dermatol 19(4):970–976. https://doi.org/10.1111/jocd.13081

    Article  PubMed  Google Scholar 

  102. Keefe AD, Pai S, Ellington A (2010) Aptamers as therapeutics. Nat Rev Drug Discov 9(7):537–550. https://doi.org/10.1038/nrd3141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Ali MH, Elsherbiny ME, Emara M (2019) Updates on aptamer research. Int J Mol Sci 20(10):2511. https://doi.org/10.3390/ijms20102511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Ozturk M, Nilsen-Hamilton M, Ilgu M (2021) Aptamer applications in neuroscience. Pharmaceuticals (Basel) 14(12):1260. https://doi.org/10.3390/ph14121260

    Article  CAS  PubMed  Google Scholar 

  105. Deng G, Zha H, Luo H, Zhou Y (2023) Aptamer-conjugated gold nanoparticles and their diagnostic and therapeutic roles in cancer. Front Bioeng Biotechnol 11:1118546. https://doi.org/10.3389/fbioe.2023.1118546

    Article  PubMed  PubMed Central  Google Scholar 

  106. Lee JM, Lee JH, Song MK, Kim YJ (2022) NXP032 ameliorates aging-induced oxidative stress and cognitive impairment in mice through activation of Nrf2 signaling. Antioxidants (Basel) 11(1):130. https://doi.org/10.3390/antiox11010130

    Article  CAS  PubMed  Google Scholar 

  107. Lee JM, Lee JH, Kim SH, Sim TH, Kim YJ (2023) NXP032 ameliorates cognitive impairment by alleviating the neurovascular aging process in aged mouse brain. Sci Rep 13(1):8594. https://doi.org/10.1038/s41598-023-35833-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Song MK, Adams L, Lee JH, Kim YS (2022) NXP031 prevents dopaminergic neuronal loss and oxidative damage in the AAV-WT-α-synuclein mouse model of Parkinson’s disease. PLoS ONE 17(7):e0272085. https://doi.org/10.1371/journal.pone.0272085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Huang YN, Lai CC, Chiu CT, Lin JJ, Wang JY (2014) L-ascorbate attenuates the endotoxin-induced production of inflammatory mediators by inhibiting MAPK activation and NF-κB translocation in cortical neurons/glia Cocultures. PLoS ONE 9(7):e97276. https://doi.org/10.1371/journal.pone.0097276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. De Nuccio F, Cianciulli A, Porro C, Kashyrina M, Ruggiero M, Calvello R, Miraglia A, Nicolardi G et al (2021) Inflammatory response modulation by vitamin C in an MPTP mouse model of Parkinson’s disease. Biology (Basel) 10(11):1155. https://doi.org/10.3390/biology10111155

    Article  CAS  PubMed  Google Scholar 

  111. Boelens Keun JT, Arnoldussen IA, Vriend C, van de Rest O (2021) Dietary approaches to improve efficacy and control side effects of levodopa therapy in Parkinson’s disease: a systematic review. Adv Nutr 12(6):2265–2287. https://doi.org/10.1093/advances/nmab060

    Article  PubMed  PubMed Central  Google Scholar 

  112. Nikolova G, Karamalakova Y, Gadjeva V (2019) Reducing oxidative toxicity of L-dopa in combination with two different antioxidants: an essential oil isolated from Rosa Damascena Mill., and vitamin C. Toxicol Rep 6:267–271. https://doi.org/10.1016/j.toxrep.2019.03.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Miranda-Massari JR, Toro AP, Loh D, Rodriguez JR, Borges RM, Marcial-Vega V, Olalde J, Berdiel MJ et al (2021) The effects of vitamin C on the multiple pathophysiological stages of COVID-19. Life (Basel) 11(12):1341. https://doi.org/10.3390/life11121341

    Article  CAS  PubMed  Google Scholar 

  114. Chiscano-Camón L, Ruiz-Rodriguez JC, Ruiz-Sanmartin A, Roca O, Ferrer R (2020) Vitamin C levels in patients with SARS-CoV-2-associated acute respiratory distress syndrome. Crit Care 24(1):522. https://doi.org/10.1186/s13054-020-03249-y

    Article  PubMed  PubMed Central  Google Scholar 

  115. Chen L, Liu HG, Liu W, Liu J, Liu K, Shang J, Deng Y, Wei S (2020) Analysis of clinical features of 29 patients with 2019 novel coronavirus pneumonia. Zhonghua Jie He He Hu Xi Za Zhi 43(3):203–208. https://doi.org/10.3760/cma.j.issn.1001-0939.2020.03.013

    Article  CAS  PubMed  Google Scholar 

  116. Hiedra R, Lo KB, Elbashabsheh M, Gul F, Wright RM, Albano J, Azmaiparashvili Z, Patarroyo Aponte G (2020) The use of IV vitamin C for patients with COVID-19: a case series. Expert Rev Anti Infect Ther 18(12):1259–1261. https://doi.org/10.1080/14787210.2020.1794819

    Article  CAS  PubMed  Google Scholar 

  117. Zhang J, Rao X, Li Y, Zhu Y, Liu F, Guo G, Luo G, Meng Z et al (2021) Pilot trial of high-dose vitamin C in critically ill COVID-19 patients. Ann Intensive Care 11(1):5. https://doi.org/10.1186/s13613-020-00792-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Majidi N, Rabbani F, Gholami S, Gholamalizadeh M, BourBour F, Rastgoo S, Hajipour A, Shadnoosh M et al (2021) The effect of vitamin C on pathological parameters and survival duration of critically ill coronavirus disease 2019 patients: a randomized clinical trial. Front Immunol 12:717816. https://doi.org/10.3389/fimmu.2021.717816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Thomas S, Patel D, Bittel B, Wolski K, Wang Q, Kumar A, Il’Giovine ZJ, Mehra R et al (2021) Effect of high-dose zinc and ascorbic acid supplementation vs usual care on symptom length and reduction among ambulatory patients with SARS-CoV-2 infection: the COVID A to Z randomized clinical trial. JAMA Netw Open 4(2):e210369. https://doi.org/10.1001/jamanetworkopen.2021.0369

    Article  PubMed  PubMed Central  Google Scholar 

  120. Sindona C, Schepici G, Contestabile V, Bramanti P, Mazzon E (2021) NOX2 activation in COVID-19: possible implications for neurodegenerative diseases. Medicina (Kaunas) 57(6):604. https://doi.org/10.3390/medicina57060604

    Article  PubMed  Google Scholar 

  121. Moretti M, Fraga DB, Rodrigues ALS (2017) Preventive and therapeutic potential of ascorbic acid in neurodegenerative diseases. CNS Neurosci Ther 23(12):921–929. https://doi.org/10.1111/cns.12767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Bozonet SM, Carr AC, Pullar JM, Vissers MC (2015) Enhanced human neutrophil vitamin C status, chemotaxis and oxidant generation following dietary supplementation with vitamin C-rich SunGold kiwifruit. Nutrients 7(4):2574–2588. https://doi.org/10.3390/nu7042574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Sasidharan Nair V, Song MH, Oh KI (2016) Vitamin C facilitates demethylation of the Foxp3 enhancer in a Tet-dependent manner. J Immunol 196(5):2119–2131. https://doi.org/10.4049/jimmunol.1502352

    Article  CAS  PubMed  Google Scholar 

  124. Pretorius E, Page MJ, Mbotwe S, Kell DB (2018) Lipopolysaccharide-binding protein (LBP) can reverse the amyloid state of fibrin seen or induced in Parkinson’s disease. PLoS ONE 13(3):e0192121. https://doi.org/10.1371/journal.pone.0192121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Wong KT, Grove JS, Grandinetti A, Curb JD, Yee M, Blanchette P, Ross GW, Rodriguez BI (2010) Association of fibrinogen with Parkinson disease in elderly Japanese-American men: a prospective study. Neuroepidemiology 34(1):50–54. https://doi.org/10.1159/000260070

    Article  CAS  PubMed  Google Scholar 

  126. Merlini M, Rafalski VA, Rios Coronado PE, Gill TM, Ellisman M, Muthukumar G, Subramanian KS, Ryu JK et al (2019) Fibrinogen induces microglia-mediated spine elimination and cognitive impairment in an Alzheimer’s disease model. Neuron 101(6):1099-1108.e6. https://doi.org/10.1016/j.neuron.2019.01.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Petersen MA, Ryu JK, Akassoglou K (2018) Fibrinogen in neurological diseases: mechanisms, imaging and therapeutics. Nat Rev Neurosci 19(5):283–301. https://doi.org/10.1038/nrn.2018.13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Wool GD, Miller JL (2021) The impact of COVID-19 disease on platelets and coagulation. Pathobiology 88(1):15–27. https://doi.org/10.1159/000512007

    Article  CAS  PubMed  Google Scholar 

  129. Kangro K, Wolberg AS, Flick MJ (2022) Fibrinogen, fibrin, and fibrin degradation products in COVID-19. Curr Drug Targets 23(17):1593–1602. https://doi.org/10.2174/1389450123666220826162900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Rostami M, Mansouritorghabeh H (2020) D-dimer level in COVID-19 infection: a systematic review. Expert Rev Hematol 13(11):1265–1275. https://doi.org/10.1080/17474086.2020.1831383

    Article  CAS  PubMed  Google Scholar 

  131. Van Guilder GP, Hoetzer GL, Greiner JJ, Stauffer BL, DeSouza CA (2008) Acute and chronic effects of vitamin C on endothelial fibrinolytic function in overweight and obese adult humans. J Physiol 586(14):3525–3535. https://doi.org/10.1113/jphysiol.2008.151555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Sato Y, Kaji M, Metoki N, Yoshida H, Satoh K (2003) Coagulation-fibrinolysis abnormalities in patients receiving antiparkinsonian agents. J Neurol Sci 212(1–2):55–58. https://doi.org/10.1016/s0022-510x(03)00101-1

    Article  CAS  PubMed  Google Scholar 

  133. Zervos IA, Nikolaidis E, Lavrentiadou SN, Tsantarliotou MP, Eleftheriadou EK, Papapanagiotou EP, Fletouris DJ, Georgiadis M et al (2011) Endosulfan-induced lipid peroxidation in rat brain and its effect on t-PA and PAI-1: ameliorating effect of vitamins C and E. J Toxicol Sci 36(4):423–433. https://doi.org/10.2131/jts.36.423

    Article  CAS  PubMed  Google Scholar 

  134. Topaloglu O, Arslan MS, Karakose M, Ucan B, Ginis Z, Cakir E, Akkaymak ET, Sahin M et al (2015) Is there any association between thrombosis and tissue factor pathway inhibitor levels in patients with vitamin D deficiency? Clin Appl Thromb/ Hemost 21(5):428–433. https://doi.org/10.1177/1076029613509477

    Article  CAS  PubMed  Google Scholar 

  135. Ernst E (1993) Regular exercise reduces fibrinogen levels: a review of longitudinal studies. Br J Sports Med 27(3):175–176. https://doi.org/10.1136/bjsm.27.3.175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Amini A, Sobhani V, Mohammadi MT, Shirvani H (2017) Acute effects of aerobic, resistance and concurrent exercises, and maximal shuttle run test on coagulation and fibrinolytic activity in healthy young non-athletes. J Sports Med Phys Fit 57(5):633–642. https://doi.org/10.23736/S0022-4707.16.06092-8

    Article  CAS  Google Scholar 

  137. Jones JD, Baxter F, Timblin H, Rivas R, Hill CR (2022) Physical inactivity is associated with Parkinson’s disease mild cognitive impairment and dementia. Ment Health Phys Act 23:100461. https://doi.org/10.1016/j.mhpa.2022.100461

    Article  Google Scholar 

  138. Abasıyanık Z, Kurt M, Kahraman T (2022) COVID-19 and physical activity behaviour in people with neurological diseases: a systematic review. J Dev Phys Disabil 34(6):987–1012. https://doi.org/10.1007/s10882-022-09836-x

    Article  PubMed  PubMed Central  Google Scholar 

  139. Kaufmanova J, Stikarova J, Hlavackova A, Chrastinova L, Maly M, Suttnar J, Dyr JE (2021) Fibrin clot formation under oxidative stress conditions. Antioxidants (Basel) 10(6):923. https://doi.org/10.3390/antiox10060923

    Article  CAS  PubMed  Google Scholar 

  140. Coimbra-Costa D, Alva N, Duran M, Carbonell T, Rama R (2017) Oxidative stress and apoptosis after acute respiratory hypoxia and reoxygenation in rat brain. Redox Biol 12:216–225. https://doi.org/10.1016/j.redox.2017.02.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Lestón Pinilla L, Ugun-Klusek A, Rutella S, De Girolamo LA (2021) Hypoxia signaling in Parkinson’s disease: there is use in asking “What HIF?” Biology (Basel) 10(8):723. https://doi.org/10.3390/biology10080723

    Article  CAS  PubMed  Google Scholar 

  142. Rahman A, Tabassum T, Araf Y, Al Nahid A, Ullah MA, Hosen MJ (2021) Silent hypoxia in COVID-19: pathomechanism and possible management strategy. Mol Biol Rep 48(4):3863–3869. https://doi.org/10.1007/s11033-021-06358-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Dondaine T, Ruthmann F, Vuotto F, Carton L, Gelé P, Faure K, Deplanque D, Bordet R (2022) Long-term cognitive impairments following COVID-19: a possible impact of hypoxia. J Neurol 269(8):3982–3989. https://doi.org/10.1007/s00415-022-11077-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Yu Y, Jiang P, Sun P, Su N, Lin F (2021) Pulmonary coagulation and fibrinolysis abnormalities that favor fibrin deposition in the lungs of mouse antibody-mediated transfusion-related acute lung injury. Mol Med Rep 24(2):601. https://doi.org/10.3892/mmr.2021.12239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Guo M, Ji X, Liu J (2022) Hypoxia and alpha-synuclein: inextricable link underlying the pathologic progression of Parkinson’s disease. Front Aging Neurosci 14:919343. https://doi.org/10.3389/fnagi.2022.919343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Datta AK, Mukherjee A, Biswas A (2023) Gastrointestinal, respiratory, and olfactory neurotropism of Sars-Cov2 as a possible trigger of Parkinson’s disease: is a multi-hit multi-step process on the cards. Ann Indian Acad Neurol 26(2):127–136. https://doi.org/10.4103/aian.aian_767_22

    Article  PubMed  PubMed Central  Google Scholar 

  147. Iba T, Levy JH, Levi M, Thachil J (2020) Coagulopathy in COVID-19. J Thromb Haemost 18(9):2103–2109. https://doi.org/10.1111/jth.14975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Luo X, Ng C, He J, Yang M, Luo X, Herbert TP, Whitehead JP (2022) Vitamin C protects against hypoxia, inflammation, and ER stress in primary human preadipocytes and adipocytes. Mol Cell Endocrinol 556:111740. https://doi.org/10.1016/j.mce.2022.111740

    Article  CAS  PubMed  Google Scholar 

  149. Wu L, Xu W, Li H, Dong B, Geng H, Jin J, Han D, Liu H et al (2022) Vitamin C attenuates oxidative stress, inflammation, and apoptosis induced by acute hypoxia through the Nrf2/Keap1 signaling pathway in gibel carp (Carassius gibelio). Antioxidants (Basel) 11(5):935. https://doi.org/10.3390/antiox11050935

    Article  CAS  PubMed  Google Scholar 

  150. Wohlrab C, Kuiper C, Vissers MC, Phillips E, Robinson BA, Dachs GU (2019) Ascorbate modulates the hypoxic pathway by increasing intracellular activity of the HIF hydroxylases in renal cell carcinoma cells. Hypoxia (Auckl) 7:17–31. https://doi.org/10.2147/HP.S201643

    Article  PubMed  Google Scholar 

  151. Guaiquil VH, Golde DW, Beckles DL, Mascareno EJ, Siddiqui MA (2004) Vitamin C inhibits hypoxia-induced damage and apoptotic signaling pathways in cardiomyocytes and ischemic hearts. Free Radic Biol Med 37(9):1419–1429. https://doi.org/10.1016/j.freeradbiomed.2004.06.041

    Article  CAS  PubMed  Google Scholar 

  152. Brown TM (2017) Parkinsonism and vitamin C deficiency. Fed Pract 34(8):28–32

    PubMed  PubMed Central  Google Scholar 

  153. Padayatty SJ, Levine M (2016) Vitamin C: the known and the unknown and Goldilocks. Oral Dis 22(6):463–493. https://doi.org/10.1111/odi.12446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Lykkesfeldt J (2020) On the effect of vitamin C intake on human health: how to (mis)interprete the clinical evidence. Redox Biol 34:101532. https://doi.org/10.1016/j.redox.2020.101532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Villapol S (2020) Gastrointestinal symptoms associated with COVID-19: impact on the gut microbiome. Transl Res 226:57–69. https://doi.org/10.1016/j.trsl.2020.08.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Lima IS, Pêgo AC, Martins AC, Prada AR, Barros JT, Martins G, Gozzelino R (2023) Gut Dysbiosis: A target for protective interventions against Parkinson’s disease. Microorganisms 11(4):880. https://doi.org/10.3390/microorganisms11040880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Chu C, Yu L, Li Y, Guo H, Zhai Q, Chen W, Tian F (2023) Lactobacillus plantarum CCFM405 against rotenone-induced Parkinson’s disease mice via regulating gut microbiota and branched-chain amino acids biosynthesis. Nutrients 15(7):1737. https://doi.org/10.3390/nu15071737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the School of Life Sciences, Jawaharlal Nehru University, New Delhi, India.

Funding

The authors acknowledge financial supports from DBT (BT/PR32907/MED/122/227/2019). We also acknowledge the facilities / laboratories supported by DBT BUILDER (BT/INF/22/SP45382/2022), and DST-FIST-II [SR/FST/LSII-046/2016(C)] to the School of Life Sciences, JNU, New Delhi. S.X. and R.S. acknowledge the financial support from CSIR Grants (09/263(1219)/2019-EMR-I and (09/263(1172)2019-EMR-I).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, A.C.M. and S.X.; design, A.C.M., S.X., and R.S.; writing and editing; A.C.M., S.X., and R.S.

Corresponding author

Correspondence to Amal Chandra Mondal.

Ethics declarations

Ethics Approval

Ethical approval is not required.

Consent to Participate

Not applicable.

Consent for Publication

Authors have given consent for publication.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sandeep, Subba, R. & Mondal, A.C. Does COVID-19 Trigger the Risk for the Development of Parkinson’s Disease? Therapeutic Potential of Vitamin C. Mol Neurobiol (2023). https://doi.org/10.1007/s12035-023-03756-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12035-023-03756-3

Keywords

Navigation