Skip to main content
Log in

Gastrodin Regulates PI3K/AKT-Sirt3 Signaling Pathway and Proinflammatory Mediators in Activated Microglia

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Activated microglia and their mediated inflammatory responses play an important role in the pathogenesis of hypoxic-ischemic brain damage (HIBD). Therefore, regulating microglia activation is considered a potential therapeutic strategy. The neuroprotective effects of gastrodin were evaluated in HIBD model mice, and in oxygen glucose deprivation (OGD)-treated and lipopolysaccharide (LPS)activated BV-2 microglia cells. The potential molecular mechanism was investigated using western blotting, immunofluorescence labeling, quantitative realtime reverse transcriptase polymerase chain reaction, and flow cytometry. Herein, we found that PI3K/AKT signaling can regulate Sirt3 in activated microglia, but not reciprocally. And gastrodin exerts anti-inflammatory and antiapoptotic effects through the PI3K/AKT-Sirt3 signaling pathway. In addition, gastrodin could promote FOXO3a phosphorylation, and inhibit ROS production in LPSactivated BV-2 microglia. Moreover, the level P-FOXO3a decreased significantly in Sirt3-siRNA group. However, there was no significant change after gastrodin and siRNA combination treatment. Notably, gastrodin might also affect the production of ROS in activated microglia by regulating the level of P-FOXO3a via Sirt3. Together, this study highlighted the neuroprotective role of PI3K/AKT-Sirt3 axis in HIBD, and the anti-inflammatory, anti-apoptotic, and anti-oxidative stress effects of gastrodin on HIBD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

All data supporting this study are available from the corresponding author upon reasonable request.

Abbreviations

HIBD:

Hypoxic-ischemia brain damage

CNS:

Central nervous system

Sirt3:

Sirtuin3

LPS:

Lipopolysaccharide

OGD:

Oxygen-glucose deprivation

PI3Ks:

Phosphoinositol 3 kinases

AD:

Alzheimer’s disease

NAD:

Niacinamide adenine dinucleotide

IL-1β:

Interleukin-1β

TNF-α:

Tumor necrosis factor-α

iNOS:

Inducible nitric oxide synthase

DMEM:

Dulbecco’s modified Eagle’s medium

FBS:

Fetal bovine serum

BCA:

Bicinchoninic acid

ROS:

Reactive oxygen species

M1:

Pro-inflammatory

M2:

Anti-inflammatory

LY294002:

PI3K/AKT pathway inhibitor

FOXO3a:

Forkhead box O3

CD:

Cluster of differentiation

DAPI:

6-diamidino-2-phenylindole

IBA-1:

Ionized calcium-binding adaptor molecule

PBS:

Phosphate-buffered saline

PVDF:

Polyvinylidene fluoride

TTC:

2,3,5-Triphenyltetrazolium chloride staining

References

  1. Guo J, Zhang X L, Bao Z R et al (2021) Gastrodin regulates the Notch Signaling Pathway and Sirt3 in activated Microglia in Cerebral hypoxic-ischemia neonatal rats and in activated BV-2 microglia [J]. Neuromolecular Med 23(3):348–362

    Article  CAS  PubMed  Google Scholar 

  2. Li SJ, Liu W, Wang JL et al (2014) The role of TNF-α, IL-6, IL-10, and GDNF in neuronal apoptosis in neonatal rat with hypoxic-ischemic encephalopathy [J]. Eur Rev Med Pharmacol Sci 18(6):905–909

    PubMed  Google Scholar 

  3. Huang J Z, Ren Y, Jiang Y et al (2018) GluR1 protects hypoxic ischemic brain damage via activating akt signaling pathway in neonatal rats [J]. Eur Rev Med Pharmacol Sci 22(24):8857–8865

    PubMed  Google Scholar 

  4. Jellema R K, Lima Passos V, Zwanenburg A et al (2013) Cerebral inflammation and mobilization of the peripheral immune system following global hypoxia-ischemia in preterm sheep [J]. J Neuroinflammation 10:13

    PubMed  Google Scholar 

  5. Guo L, Wang D, BO G et al (2016) Early identification of hypoxic-ischemic encephalopathy by combination of magnetic resonance (MR) imaging and proton MR spectroscopy [J]. Experimental and Therapeutic Medicine 12(5):2835–2842

    Article  PubMed  PubMed Central  Google Scholar 

  6. Yang L, Zhao H (2020) Treatment and new progress of neonatal hypoxic-ischemic brain damage [J]. Histol Histopathol 35(9):929–936

    CAS  PubMed  Google Scholar 

  7. Du Plessis A J, Volpe JJ (2002) Perinatal brain injury in the preterm and term newborn [J]. Curr Opin Neurol 15(2):151–157

    Article  PubMed  Google Scholar 

  8. Liu F, Mccullough LD (2013) Inflammatory responses in hypoxic ischemic encephalopathy [J]. Acta Pharmacol Sin 34(9):1121–1130

    Article  PubMed  PubMed Central  Google Scholar 

  9. Kreutzberg G W (1996) Microglia: a sensor for pathological events in the CNS [J]. Trends Neurosci 19(8):312–318

    Article  PubMed  Google Scholar 

  10. Yenari M A, Kauppinen T M, Swanson RA (2010) Microglial activation in Stroke: therapeutic targets [J]. Neurotherapeutics: The Journal of the American Society for Experimental NeuroTherapeutics 7(4):378–391

    Article  PubMed  Google Scholar 

  11. El Khoury J, Hickman S E, Thomas C A et al (1998) Microglia, scavenger receptors, and the pathogenesis of Alzheimer’s Disease [J]. Neurobiol Aging 19(1 Suppl):S81–S84

    Article  PubMed  Google Scholar 

  12. Thomas W E (1992) Brain macrophages: evaluation of microglia and their functions [J]. Brain Res Brain Res Rev 17(1):61–74

    Article  PubMed  Google Scholar 

  13. Zheng Z, Yenari MA (2004) Post-ischemic inflammation: molecular mechanisms and therapeutic implications [J]. Neurol Res 26(8):884–892

    Article  PubMed  Google Scholar 

  14. Davies C A, Loddick S A, Stroemer R P et al (1998) An integrated analysis of the progression of cell responses induced by permanent focal middle cerebral artery occlusion in the rat [J]. Exp Neurol 154(1):199–212

    Article  PubMed  Google Scholar 

  15. Schroeter M, Jander S, Witte O W et al (1994) Local immune responses in the rat cerebral cortex after middle cerebral artery occlusion [J]. J Neuroimmunol 55(2):195–203

    Article  CAS  PubMed  Google Scholar 

  16. Walker D G, Lue L F (2015) Immune phenotypes of microglia in human neurodegenerative Disease: challenges to detecting microglial polarization in human brains [J]. Alzheimers Res Ther 7(1):56

    Article  PubMed  Google Scholar 

  17. Perego C, Fumagalli S, De Simoni M G (2011) Temporal pattern of expression and colocalization of microglia/macrophage phenotype markers following brain ischemic injury in mice [J]. J Neuroinflammation 8:174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Fumagalli S, Perego C, Ortolano F et al (2013) CX3CR1 deficiency induces an early protective inflammatory environment in ischemic mice [J]. Glia 61(6):827–842

    Article  PubMed  Google Scholar 

  19. He Y, Gao Y, Zhang Q et al (2020) IL-4 switches Microglia/macrophage M1/M2 polarization and alleviates neurological damage by modulating the JAK1/STAT6 pathway following ICH [J]. Neuroscience 437:161–171

    Article  CAS  PubMed  Google Scholar 

  20. Tang Y (2016) Differential roles of M1 and M2 microglia in neurodegenerative Diseases [J]. Mol Neurobiol 53(2):1181–1194

    Article  CAS  PubMed  Google Scholar 

  21. Kaur C, Rathnasamy G, Ling EA (2013) Roles of activated microglia in hypoxia induced neuroinflammation in the developing brain and the retina [J]. J Neuroimmune Pharmacol 8(1):66–78

    Article  PubMed  Google Scholar 

  22. Del Bigio M R, Becker LE (1994) Microglial aggregation in the dentate gyrus: a marker of mild hypoxic-ischaemic brain insult in human infants [J]. Neuropathol Appl Neurobiol 20(2):144–151

    Article  PubMed  Google Scholar 

  23. Disdier C, Stonestreet BS (2020) Hypoxic-ischemic-related cerebrovascular changes and potential therapeutic strategies in the neonatal brain [J]. J Neurosci Res 98(7):1468–1484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Pappas A, Shankaran S, Mcdonald S A et al (2015) Cognitive outcomes after neonatal encephalopathy [J]. Pediatrics 135(3):e624–e634

    Article  PubMed  PubMed Central  Google Scholar 

  25. Gluckman P D, Wyatt JS (2005) Selective head cooling with mild systemic Hypothermia after neonatal encephalopathy: multicentre randomised trial [J]. Lancet (London England) 365(9460):663–670

    Article  PubMed  Google Scholar 

  26. Kim HJ, Moon K D, Oh S Y et al (2001) Ether fraction of methanol extracts of Gastrodia elata, a traditional medicinal herb, protects against kainic acid-induced neuronal damage in the mouse hippocampus [J]. Neuroscience letters, 314(1–2): 65 – 8

  27. Dai J N, Zong Y, Zhong L M et al (2011) Gastrodin inhibits expression of inducible NO synthase, cyclooxygenase-2 and proinflammatory cytokines in cultured LPS-stimulated microglia via MAPK pathways [J]. PLoS ONE 6(7):e21891

    Article  PubMed  Google Scholar 

  28. Peng Z, Wang S, Chen G et al (2015) Gastrodin alleviates cerebral ischemic damage in mice by improving anti-oxidant and anti-inflammation activities and inhibiting apoptosis pathway [J]. Neurochem Res 40(4):661–673

    Article  CAS  PubMed  Google Scholar 

  29. Li X, Zhang J, Zhu X et al (2015) Progesterone reduces inflammation and apoptosis in neonatal rats with hypoxic ischemic brain damage through the PI3K/Akt pathway [J]. Int J Clin Exp Med 8(5):8197–8203

    PubMed  PubMed Central  Google Scholar 

  30. Narayanankutty A (2019) PI3K/ Akt/ mTOR pathway as a therapeutic target for Colorectal Cancer: a review of preclinical and clinical evidence [J]. Curr Drug Targets 20(12):1217–1226

    Article  PubMed  Google Scholar 

  31. Kamada H, Nito C, Endo H et al (2007) Bad as a converging signaling molecule between survival PI3-K/Akt and death JNK in neurons after transient focal cerebral ischemia in rats [J]. J Cereb Blood Flow Metab 27(3):521–533

    Article  CAS  PubMed  Google Scholar 

  32. Ma X H, Gao Q, Jia Z et al (2015) Neuroprotective capabilities of TSA against cerebral ischemia/reperfusion injury via PI3K/Akt signaling pathway in rats [J]. Int J Neurosci 125(2):140–146

    Article  PubMed  Google Scholar 

  33. Yang W, Liu Y, Xu Q Q et al (2020) Sulforaphene Ameliorates Neuroinflammation and Hyperphosphorylated Tau Protein via Regulating the PI3K/Akt/GSK-3β Pathway in Experimental Models of Alzheimer’s Disease [J]. Oxid Med Cell Longev, 2020: 4754195

  34. Fu X, Chen H (2020) C16 peptide and angiopoietin-1 protect against LPS-induced BV-2 microglial cell inflammation [J]. Life Sci 256:117894

    Article  CAS  PubMed  Google Scholar 

  35. Zhang B, Yang N, Mo ZM et al (2017) IL-17A enhances microglial response to OGD by regulating p53 and PI3K/Akt pathways with involvement of ROS/HMGB1 [J]. Front Mol Neurosci 10:271

    Article  PubMed  PubMed Central  Google Scholar 

  36. North B J Verdine, Sirtuins (2004) Sir2-related NAD-dependent protein deacetylases [J]. Genome Biol 5(5):224

    Article  PubMed  PubMed Central  Google Scholar 

  37. Li Y, Ma Y, Song L et al (2018) SIRT3 deficiency exacerbates p53/Parkin–mediated mitophagy inhibition and promotes mitochondrial dysfunction: implication for aged hearts [J]. Int J Mol Med 41(6):3517–3526

    CAS  PubMed  Google Scholar 

  38. Jing E, Emanuelli B, Hirschey MD et al (2011) Sirtuin-3 (Sirt3) regulates skeletal muscle metabolism and insulin signaling via altered mitochondrial oxidation and reactive oxygen species production [J]. Proc Natl Acad Sci U S A 108(35):14608–14613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Haigis M C, Deng C X, Finley L W et al (2012) SIRT3 is a mitochondrial Tumor suppressor: a scientific tale that connects aberrant cellular ROS, the Warburg effect, and carcinogenesis [J]. Cancer Res 72(10):2468–2472

    Article  PubMed  PubMed Central  Google Scholar 

  40. Alhazzazi T Y, Kamarajan P (2011) SIRT3 and cancer: Tumor promoter or suppressor? [J]. Biochim Biophys Acta 1816(1):80–88

    PubMed  Google Scholar 

  41. Ahn B H, Kim H S Songs et al (2008) A role for the mitochondrial deacetylase Sirt3 in regulating energy homeostasis [J]. Proc Natl Acad Sci U S A 105(38):14447–14452

    Article  PubMed  Google Scholar 

  42. Wang X, Dai Y, Zhang X et al (2021) CXCL6 regulates cell permeability, proliferation, and apoptosis after ischemia-reperfusion injury by modulating Sirt3 expression via AKT/FOXO3a activation [J], vol 22. Cancer biology & therapy, pp 30–39. 1

  43. Wang Z, Li Y, Wang Y et al (2019) Pyrroloquinoline quinine protects HK-2 cells against high glucose-induced oxidative stress and apoptosis through Sirt3 and PI3K/Akt/FoxO3a signaling pathway [J]. Biochem Biophys Res Commun 508(2):398–404

    Article  CAS  PubMed  Google Scholar 

  44. Semple BD, Blomgren K, Gimlin K et al (2013) Brain development in rodents and humans: identifying benchmarks of maturation and vulnerability to injury across species [J]. Prog Neurobiol 106–107:1–16

    Article  PubMed  Google Scholar 

  45. Min Y, Yan L, Wang Q et al (2020) Distinct residential and infiltrated macrophage populations and their phagocytic function in mild and severe neonatal hypoxic-ischemic brain damage [J]. Front Cell Neurosci 14:244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Liu SJ, Liu X Y, Li JH et al (2018) Gastrodin attenuates microglia activation through renin-angiotensin system and Sirtuin3 pathway [J]. Neurochem Int 120:49–63

    Article  CAS  PubMed  Google Scholar 

  47. Li C, Mo Z, Lei J et al (2018) Edaravone attenuates neuronal apoptosis in hypoxic-ischemic brain damage rat model via suppression of TRAIL signaling pathway [J]. Int J Biochem Cell Biol 99:169–177

    Article  CAS  PubMed  Google Scholar 

  48. Liu X H, Yan H, Xu M et al (2013) Hyperbaric oxygenation reduces long-term brain injury and ameliorates behavioral function by suppression of apoptosis in a rat model of neonatal hypoxia-ischemia [J]. Neurochem Int 62(7):922–930

    Article  PubMed  Google Scholar 

  49. Huang J, Lu W, Doycheva D M et al (2020) IRE1alpha inhibition attenuates neuronal pyroptosis via miR-125/NLRP1 pathway in a neonatal hypoxic-ischemic encephalopathy rat model [J]. J Neuroinflammation 17(1):152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Li JJ, Lu J, Kaur C et al (2009) Expression of angiotensin II and its receptors in the normal and hypoxic amoeboid microglial cells and murine BV-2 cells [J]. Neuroscience 158(4):1488–1499

    Article  CAS  PubMed  Google Scholar 

  51. Livak K J, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method [J]. Methods 25(4):402–408

    Article  PubMed  Google Scholar 

  52. Rangarajan P, Karthikeyan A, LU J et al (2015) Sirtuin 3 regulates Foxo3a-mediated antioxidant pathway in microglia [J]. Neuroscience 311:398–414

    Article  CAS  PubMed  Google Scholar 

  53. Hasegawa M, Ogihara T, Tamai H et al (2009) Hypothermic inhibition of apoptotic pathways for combined neurotoxicity of iron and ascorbic acid in differentiated PC12 cells: reduction of oxidative stress and maintenance of the glutathione redox state [J]. Brain Res 1283:1–13

    Article  CAS  PubMed  Google Scholar 

  54. Inder T E, Volpe JJ (2000) Mechanisms of perinatal brain injury [J]. Semin Neonatol 5(1):3–16

    Article  PubMed  Google Scholar 

  55. Tan W K, Williams C E, During M J et al (1996) Accumulation of cytotoxins during the development of seizures and edema after hypoxic-ischemic injury in late gestation fetal sheep [J]. Pediatr Res 39(5):791–797

    Article  PubMed  Google Scholar 

  56. Tan W K, Williams C E, Gunn A J et al (1992) Suppression of postischemic epileptiform activity with MK-801 improves neural outcome in fetal sheep [J]. Ann Neurol 32(5):677–682

    Article  PubMed  Google Scholar 

  57. Macmanus JP, Buchan A M, Hill I E et al (1993) Global ischemia can cause DNA fragmentation indicative of apoptosis in rat brain [J]. Neurosci Lett 164(1–2):89–92

    Article  CAS  PubMed  Google Scholar 

  58. Beilharz E J, Williams C E, Dragunow M et al (1995) Mechanisms of delayed cell death following hypoxic-ischemic injury in the immature rat: evidence for apoptosis during selective neuronal loss [J]. Brain Res Mol Brain Res 29(1):1–14

    Article  PubMed  Google Scholar 

  59. Nimmerjahn A, Kirchhoff F, Helmchen F (2005) Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo [J]. Science 308(5726):1314–1318

    Article  CAS  PubMed  Google Scholar 

  60. Iadecola C, Anrather J (2011) The immunology of Stroke: from mechanisms to translation [J]. Nat Med 17(7):796–808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Varnum MM (2012) The classification of microglial activation phenotypes on neurodegeneration and regeneration in Alzheimer’s Disease brain [J]. Arch Immunol Ther Exp (Warsz) 60(4):251–266

    Article  CAS  PubMed  Google Scholar 

  62. Porta C, Rimoldi M, Raes G et al (2009) Tolerance and M2 (alternative) macrophage polarization are related processes orchestrated by p50 nuclear factor kappaB [J]. Proc Natl Acad Sci U S A 106(35):14978–14983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Mantovani A, Sozzani S, Locati M et al (2002) Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes [J]. Trends Immunol 23(11):549–555

    Article  CAS  PubMed  Google Scholar 

  64. Liu Y, Gao J (2018) A review on Central Nervous System effects of Gastrodin [J]. Front Pharmacol 9:24

    Article  PubMed  PubMed Central  Google Scholar 

  65. Yang P, Han Y (2013) Gastrodin attenuation of the inflammatory response in H9c2 cardiomyocytes involves inhibition of NF-κB and MAPKs activation via the phosphatidylinositol 3-kinase signaling [J]. Biochem Pharmacol 85(8):1124–1133

    Article  CAS  PubMed  Google Scholar 

  66. Cheng C, Chen X, Wang Y et al (2021) MSCs–derived exosomes attenuate ischemia-reperfusion brain injury and inhibit microglia apoptosis might via exosomal miR-26a-5p mediated suppression of CDK6 [J]. 27(1):67 Molecular medicine (Cambridge, Mass)

  67. Huang Y, Yu J, Wan F et al (2014) Panaxatriol saponins attenuated oxygen-glucose deprivation injury in PC12 cells via activation of PI3K/Akt and Nrf2 signaling pathway [J]. Oxid Med Cell Longev, 2014: 978034

  68. Sundaresan N R, Gupta M, Kim G et al (2009) Sirt3 blocks the cardiac hypertrophic response by augmenting Foxo3a-dependent antioxidant defense mechanisms in mice [J]. J Clin Invest 119(9):2758–2771

    Google Scholar 

  69. Wang B, Guo H, Li X et al (2018) Adiponectin attenuates oxygen-glucose Deprivation-Induced mitochondrial oxidative Injury and apoptosis in hippocampal HT22 cells via the JAK2/STAT3 pathway [J]. Cell Transpl 27(12):1731–1743

    Article  Google Scholar 

  70. Moro MA, Almeida A, Bolanos J P et al (2005) Mitochondrial respiratory chain and free radical generation in Stroke [J]. Free Radic Biol Med 39(10):1291–1304

    Article  CAS  PubMed  Google Scholar 

  71. Yang K E, Jang H J, Hwang I H et al (2020) Stereoisomer-specific ginsenoside 20(S)-Rg3 reverses replicative senescence of human diploid fibroblasts via Akt-mTOR-Sirtuin signaling [J]. J Ginseng Res 44(2):341–349

    Article  PubMed  Google Scholar 

  72. Song C, Zhao J, Fu B et al (2017) Melatonin-mediated upregulation of Sirt3 attenuates sodium fluoride-induced hepatotoxicity by activating the MT1-PI3K/AKT-PGC-1α signaling pathway [J]. Free Radic Biol Med 112:616–630

    Article  CAS  PubMed  Google Scholar 

  73. Ai Mamun A, Yu H (2018) Inflammatory responses are sex specific in chronic hypoxic-ischemic encephalopathy [J]. Cell Transpl 27(9):1328–1339

    Article  Google Scholar 

  74. Mirza MA, Ritzel R, Xu Y et al (2015) Sexually dimorphic outcomes and inflammatory responses in hypoxic-ischemic encephalopathy [J]. J Neuroinflammation 12:32

    Article  PubMed  PubMed Central  Google Scholar 

  75. Ngwa C, Qi S, Mamun A A et al (2021) Age and sex differences in primary microglia culture: a comparative study [J]. J Neurosci Methods 364:109359

    Article  PubMed  PubMed Central  Google Scholar 

  76. Qi S, Al Mamun A, Ngwa C et al (2021) X chromosome escapee genes are involved in ischemic sexual dimorphism through epigenetic modification of inflammatory signals [J]. J Neuroinflammation 18(1):70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support: National Natural Science Foundation of China (No. 31960194, 31460274, J-J Li), Applied Basic Research Projects of Yunnan Province of China (No. 2019FE001 (-003), J-J Li), Scientific Research Fund Project of Education Department of Yunnan Province(No. K13219546, H-J Zuo) and Supported by the Special Fund of Clinical Research Center for Neurological Diseases of Yunnan Province(No. ZX2019030501, C Wan).

Funding

This project was supported by grants from National Natural Science Foundation of China (No. 31960194, 31460274, J-J Li), Applied Basic Research Projects of Yunnan Province of China (No. 2019FE001 (-003), J-J Li), Scientific Research Fund Project of Education Department of Yunnan Province(No. K13219546, H-J Zuo) and Supported by the Special Fund of Clinical Research Center for Neurological Diseases of Yunnan Province(No. ZX2019030501, C Wan).

Author information

Authors and Affiliations

Authors

Contributions

J-JL conceptualized and designed this study. J-JL supervised the whole project. H-JZ, P-XW, X-QR, H-LS, J-SS, TG and C-W carried out the experiments. H-JZ performed acquisition and analysis of data. H-JZ and J-JL prepared the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Juan-Juan Li.

Ethics declarations

Ethics Approval and Consent to Participate

All animal procedures were approved and conducted in accordance with the requirements of the Ethics Committee of Kunming Medical University (kmmu20211454).

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

12035_2023_3743_MOESM1_ESM.pdf

Supplementary Material 1: Fig. 1 The results of Nissl staining. (A-B) The results showed that the infarcted region was lighter in staining than the sham group at two time points 1d and 3d after HIBD. The number of degeneration neurons was significantly increased in the infarction and penumbral area, and the nucleus was denatured and deeply stained, and the disappearance of Nissl bodies and other intracellular components. However, the number of denatured necrotic neurons in the infarcted cerebral cortex or penumbral region decreased after gastrodin treatment, and was comparable to that of the sham mice. It suggests that gastrodin treatment can effectively reduce neuronal necrosis. Scale bar: 1000 μm(A1-A3, C1-C3) and 50 μm(B1-B3, D1-D3). Fig. 2 The results of Tunel staining. (A-B)The 1d and 3d after HIBD showed that, compared with Sham group, the number of Tunel positive cells was significantly increased in the cerebral cortex infarction and penumbral area of mice. However, the number of Tunel positive cells decreased obviously after gastrodin treatment. The green shows tunel positive cells of HIBD mice. DAPI (blue) shows the nucleus. Scale bar: 1000 μm(A1-A3, C1-C3) and 50 μm(B1-B3, D1-D3). Fig. 3 The cell viability assay of BV-2 microglia, and level of TNF-α by ELISA detdcted. (A) Incubation of BV-2 microglia with gastrodin (0–1 mg/mL) for 1 h did not result in significant cell death. (B) The result of ELISA showed the change in TNF-α level in BV-2 microglia was increased in the LPS group compared with the control group. and the levels in the gastrodin groups (0.17 mM, 0.34 mM) was significantly decreased when compared with the LPS group. *p < 0.05; **p < 0.01; ***p < 0.001. The values represent the mean ± SEM in triplicate.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zuo, HJ., Wang, PX., Ren, XQ. et al. Gastrodin Regulates PI3K/AKT-Sirt3 Signaling Pathway and Proinflammatory Mediators in Activated Microglia. Mol Neurobiol 61, 2728–2744 (2024). https://doi.org/10.1007/s12035-023-03743-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-023-03743-8

Keywords

Navigation