Skip to main content

Advertisement

Log in

Enriched Environment Enhances Sociability Through the Promotion of ESyt1-Related Synaptic Formation in the Medial Prefrontal Cortex

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Sociability stands as a crucial factor in the evolutionary success of all mammalian species. Notably, enriched environment (EE) housing has been shown to enhance sociability in mice. However, the precise underlying molecular mechanism remains elusive. In this study, we established an EE paradigm, housing mice for a 14-day period. Both enhanced sociability and an increased spine density in the medial prefrontal cortex (mPFC) of mice subjected to EE were detected. To elucidate the potential molecular pathway, we conducted high-performance liquid chromatography tandem mass spectrometry (HPLC–MS) analysis of the entire mPFC from both EE and home-caged (HC) housed mice. Our analysis identified 16 upregulated and 20 downregulated proteins in the EE group. Among them, Extended Synaptotagmin 1 (ESyt1), an activity-dependent endoplasmic reticulum (ER)–plasma membrane (PM) tethering protein associated with synaptic function and growth, emerged as a potentially key player in the increased synapse formation and enhanced sociability observed in EE-housed mice. Further investigation, involving the knockdown of ESyt1 expression via sh ESyt1 lentivirus in the mPFC, revealed that ESyt1 is crucial for increased spine density of mPFC and enhanced sociability of mice in an enriched environment but not in normal condition. Overall, our findings uncover a novel mechanistic insight into the positive influence of environmental enrichment on social behavior via ESyt1-mediated pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Nelson CA 3rd, Zeanah CH, Fox NA, Marshall PJ, Smyke AT, Guthrie D (2007) Cognitive recovery in socially deprived young children: the bucharest early intervention project. Science 318:1937–1940

    Article  CAS  PubMed  Google Scholar 

  2. Chen P, Hong W (2018) Neural circuit mechanisms of social behavior. Neuron 98:16–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Damasio H, Grabowski T, Frank R, Galaburda AM, Damasio AR (1994) The return of phineas gage: clues about the brain from the skull of a famous patient. Science 264:1102–1105

    Article  CAS  PubMed  Google Scholar 

  4. Yizhar O, Levy DR (2021) The social dilemma: prefrontal control of mammalian sociability. Curr Opin Neurobiol 68:67–75

    Article  CAS  PubMed  Google Scholar 

  5. Kikuma K, Li X, Kim D, Sutter D, Dickman DK (2017) Extended synaptotagmin localizes to presynaptic er and promotes neurotransmission and synaptic growth in drosophila. Genetics 207:993–1006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Melani R, Chelini G, Cenni MC, Berardi N (2017) Enriched environment effects on remote object recognition memory. Neuroscience 352:296–305

    Article  CAS  PubMed  Google Scholar 

  7. Ohline SM, Abraham WC (2019) Environmental enrichment effects on synaptic and cellular physiology of hippocampal neurons. Neuropharmacology 145:3–12

    Article  CAS  PubMed  Google Scholar 

  8. Novkovic T, Mittmann T, Manahan-Vaughan D (2015) Bdnf contributes to the facilitation of hippocampal synaptic plasticity and learning enabled by environmental enrichment. Hippocampus 25:1–15

    Article  CAS  PubMed  Google Scholar 

  9. Zhu SW, Yee BK, Nyffeler M, Winblad B, Feldon J, Mohammed AH (2006) Influence of differential housing on emotional behaviour and neurotrophin levels in mice. Behav Brain Res 169:10–20

    Article  CAS  PubMed  Google Scholar 

  10. Zhang X, Wei X, Mei Y, Wang D, Wang J, Zhang Y et al (2021) Modulating adult neurogenesis affects synaptic plasticity and cognitive functions in mouse models of Alzheimer’s disease. Stem Cell Rep 16:3005–3019

    Article  CAS  Google Scholar 

  11. Kim MS, Yu JH, Kim CH, Choi JY, Seo JH, Lee MY et al (2016) Environmental enrichment enhances synaptic plasticity by internalization of striatal dopamine transporters. J Cereb Blood Flow Metab 36:2122–2133

    Article  CAS  PubMed  Google Scholar 

  12. Aujnarain AB, Luo OD, Taylor N, Lai JKY, Foster JA (2018) Effects of exercise and enrichment on behaviour in cd-1 mice. Behav Brain Res 342:43–50

    Article  PubMed  Google Scholar 

  13. Herdman C, Moss T (2016) Extended-synaptotagmins (e-syts); the extended story. Pharmacol Res 107:48–56

    Article  CAS  PubMed  Google Scholar 

  14. Idevall-Hagren O, Lu A, Xie B, De Camilli P (2015) Triggered ca2+ influx is required for extended synaptotagmin 1-induced er-plasma membrane tethering. EMBO J 34:2291–2305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sclip A, Bacaj T, Giam LR, Sudhof TC (2016) Extended synaptotagmin (esyt) triple knock-out mice are viable and fertile without obvious endoplasmic reticulum dysfunction. PLoS One 11:e0158295

    Article  PubMed  PubMed Central  Google Scholar 

  16. Volgyi K, Udvari EB, Szabo ER, Gyorffy BA, Hunyadi-Gulyas E, Medzihradszky K et al (2017) Maternal alterations in the proteome of the medial prefrontal cortex in rat. J Proteomics 153:65–77

    Article  CAS  PubMed  Google Scholar 

  17. Stephenson AJ, Hunter B, Shaw PN, Kassim NSA, Trengove R, Takechi R et al (2023) A highly sensitive lc-ms/ms method for quantitative determination of 7 vitamin d metabolites in mouse brain tissue. Anal Bioanal Chem 415:1357–1369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Silverman JL, Yang M, Lord C, Crawley JN (2010) Behavioural phenotyping assays for mouse models of autism. Nat Rev Neurosci 11:490–502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chen W, Luo B, Gao N, Li H, Wang H, Li L et al (2021) Neddylation stabilizes nav1.1 to maintain interneuron excitability and prevent seizures in murine epilepsy models. J Clin Invest 131

  20. Zhang H, Sathyamurthy A, Liu F, Li L, Zhang L, Dong Z et al (2019) Agrin-lrp4-ror2 signaling regulates adult hippocampal neurogenesis in mice. Elife 8

  21. Caroni P, Donato F, Muller D (2012) Structural plasticity upon learning: regulation and functions. Nat Rev Neurosci 13:478–490

    Article  CAS  PubMed  Google Scholar 

  22. Huo Y, Lu W, Tian Y, Hou Q, Man HY (2022) Prkn knockout mice show autistic-like behaviors and aberrant synapse formation. iScience 25:104573

    Article  PubMed  PubMed Central  Google Scholar 

  23. Lérias JR, Pinto MC, Botelho HM, Awatade NT, Quaresma MC, Silva IAL et al (2018) A novel microscopy-based assay identifies extended synaptotagmin-1 (esyt1) as a positive regulator of anoctamin 1 traffic. Biochim Biophys Acta (BBA) - Mol Cell Res 1865:421–431

    Article  Google Scholar 

  24. Moritz C, Friauf E, Tenzer S (2013) Esyt1 is a candidate sensor protein for asynchronous neurotransmitter release: a screening for the unidentified calcium sensor in a synaptic vesicle-enriched proteome.

  25. Doktór B, Damulewicz M, Pyza E (2019) Effects of mul1 and parkin on the circadian clock, brain and behaviour in drosophila Parkinson’s disease models. BMC Neurosci 20:24

    Article  PubMed  PubMed Central  Google Scholar 

  26. Taximaimaiti R, Li H (2019) Mul1 gene polymorphisms and Parkinson’s disease risk. Acta Neurol Scand 139:483–487

    Article  CAS  PubMed  Google Scholar 

  27. Díaz-Casado ME, Lima E, García JA, Doerrier C, Aranda P, Sayed RK et al (2016) Melatonin rescues zebrafish embryos from the parkinsonian phenotype restoring the parkin/pink1/dj-1/mul1 network. J Pineal Res 61:96–107

    Article  PubMed  Google Scholar 

  28. Bergmann C, Zerres K, Senderek J, Rudnik-Schöneborn S, Eggermann T, Häusler M et al (2003) Oligophrenin 1 (ophn1) gene mutation causes syndromic x-linked mental retardation with epilepsy, rostral ventricular enlargement and cerebellar hypoplasia. Brain 126:1537–1544

    Article  PubMed  Google Scholar 

  29. Bienvenu T, Der-Sarkissian H, Billuart P, Tissot M, Des Portes V, Brüls T et al (1997) Mapping of the x-breakpoint involved in a balanced x;12 translocation in a female with mild mental retardation. Eur J Hum Genet 5:105–109

    Article  CAS  PubMed  Google Scholar 

  30. Tentler D, Gustavsson P, Leisti J, Schueler M, Chelly J, Timonen E et al (1999) Deletion including the oligophrenin-1 gene associated with enlarged cerebral ventricles, cerebellar hypoplasia, seizures and ataxia. Eur J Hum Genet 7:541–548

    Article  CAS  PubMed  Google Scholar 

  31. Zhou T, Zhu H, Fan Z, Wang F, Chen Y, Liang H et al (2017) History of winning remodels thalamo-pfc circuit to reinforce social dominance. Science 357:162–168

    Article  CAS  PubMed  Google Scholar 

  32. Phillips ML, Robinson HA, Pozzo-Miller L (2019) Ventral hippocampal projections to the medial prefrontal cortex regulate social memory. Elife 8

  33. Biro L, Sipos E, Bruzsik B, Farkas I, Zelena D, Balazsfi D et al (2018) Task division within the prefrontal cortex: distinct neuron populations selectively control different aspects of aggressive behavior via the hypothalamus. J Neurosci 38:4065–4075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Murugan M, Jang HJ, Park M, Miller EM, Cox J, Taliaferro JP et al (2017) Combined social and spatial coding in a descending projection from the prefrontal cortex. Cell 171:1663-1677 e1616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Yamamuro K, Bicks LK, Leventhal MB, Kato D, Im S, Flanigan ME et al (2020) A prefrontal-paraventricular thalamus circuit requires juvenile social experience to regulate adult sociability in mice. Nat Neurosci 23:1240–1252

    Article  PubMed  PubMed Central  Google Scholar 

  36. Tan Y, Singhal SM, Harden SW, Cahill KM, Nguyen DM, Colon-Perez LM et al (2019) Oxytocin receptors are expressed by glutamatergic prefrontal cortical neurons that selectively modulate social recognition. J Neurosci 39:3249–3263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Franklin TB, Silva BA, Perova Z, Marrone L, Masferrer ME, Zhan Y et al (2017) Prefrontal cortical control of a brainstem social behavior circuit. Nat Neurosci 20:260–270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wu Y, Mitra R (2021) Prefrontal-hippocampus plasticity reinstated by an enriched environment during stress. Neurosci Res 170:360–363

    Article  PubMed  Google Scholar 

  39. Mahati K, Bhagya V, Christofer T, Sneha A, Shankaranarayana Rao BS (2016) Enriched environment ameliorates depression-induced cognitive deficits and restores abnormal hippocampal synaptic plasticity. Neurobiol Learn Mem 134 Pt B:379–391

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by grants from the Science and Technology Program of the Health Commission of Fujian Province, the Fujian Major Research Grants for Young and Middle-aged Health Professionals (Grant Number: 2021ZQNZD007) awarded to Zheng Yu, and the Science and Technology Program of the Health Commission of Fujian Province (Grant Number: 2022GGB005) awarded to Meili Yang.

Author information

Authors and Affiliations

Authors

Contributions

MZ, XL, and SZ performed the experiments. ZY conceived and designed the research. ZY and MZ contributed to the creation of the table and figures. XL and ML conducted the statistical analysis. ZY wrote the paper. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Meili Yang or Zheng Yu.

Ethics declarations

Ethics Approval and Consent to Participate

The animal protocols in this study were approved by the Fujian Medical University Medical Sciences Committee (China) for research in vertebrate animal.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Meiying Zhang and Xianghe Li contributed equally to this work as co-first authors.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, M., Li, X., Zhuo, S. et al. Enriched Environment Enhances Sociability Through the Promotion of ESyt1-Related Synaptic Formation in the Medial Prefrontal Cortex. Mol Neurobiol 61, 3019–3030 (2024). https://doi.org/10.1007/s12035-023-03742-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-023-03742-9

Keywords

Navigation