Skip to main content

Advertisement

Log in

Usf2 Deficiency Promotes Autophagy to Alleviate Cerebral Ischemia-Reperfusion Injury Through Suppressing YTHDF1-m6A-Mediated Cdc25A Translation

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Autophagy has been involved in protection of ischemia/reperfusion (I/R)-induced injury in many tissues including the brain. The upstream stimulatory factor 2 (Usf2) was proposed as a regulator in aging and degenerative brain diseases; however, the its role in autophagy during cerebral I/R injury remains unclear. Here, the middle cerebral artery occlusion (MCAO) operation was applied to establish an I/R mouse model. We showed that Usf2 was significantly upregulated in I/R-injured brain, accompanied by decreased levels of autophagy. Then, oxygen-glucose deprivation/recovery (OGD/R) treatment was used to establish a cellular I/R model in HT22 neurons, and lentiviral interference vector against Usf2 (LV-sh-Usf2) was used to infect the neurons. Our results showed that Usf2 was significantly upregulated in OGD/R-treated HT22 neurons that displayed an increased level in cell apoptosis and decreased levels in cell viability and autophagy, and interference of Usf2 largely rescued the effects of OGD/R on cell viability, apoptosis, and autophagy, suggesting an important role of Usf2 in neuron autophagy. In the mechanism exploration, we found that, as a transcription factor, Usf2 bound to the promoter of YTHDF1, a famous reader of N6-Methyladenosine (m6A), also induced by OGD/R, and promoted its transcription. Overexpression of YTHDF1 was able to reverse the improvement of Usf2 interference on viability and autophagy of HT22 neurons. Moreover, YTHDF1 suppressed autophagy to induce HT22 cell apoptosis through increasing m6A-mediated stability of Cdc25A, a newly identified autophagy inhibitor. Finally, we demonstrated that interference of Usf2 markedly improved autophagy and alleviated I/R-induced injury in MCAO mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The datasets used during the present study are available from the corresponding author upon reasonable request.

References

  1. Schregel K, Behme D, Tsogkas I, Knauth M, Maier I, Karch A, Mikolajczyk R, Bähr M et al (2018) Optimized management of endovascular treatment for acute ischemic stroke. J Vis Exp: JoVE 131. https://doi.org/10.3791/56397

  2. Sun MS, Jin H, Sun X, Huang S, Zhang FL, Guo ZN, Yang Y (2018) Free radical damage in ischemia-reperfusion injury: an obstacle in acute ischemic stroke after revascularization therapy. Oxid Med Cell Longev 2018:3804979. https://doi.org/10.1155/2018/3804979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ravindran S, Kurian GA (2019) Eventual analysis of global cerebral ischemia-reperfusion injury in rat brain: a paradigm of a shift in stress and its influence on cognitive functions. Cell Stress Chaperones 24(3):581–594. https://doi.org/10.1007/s12192-019-00990-4

    Article  PubMed  PubMed Central  Google Scholar 

  4. Shao ZQ, Dou SS, Zhu JG, Wang HQ, Wang CM, Cheng BH, Bai B (2021) Apelin-13 inhibits apoptosis and excessive autophagy in cerebral ischemia/reperfusion injury. Neural Regen Res 16(6):1044–1051. https://doi.org/10.4103/1673-5374.300725

    Article  CAS  PubMed  Google Scholar 

  5. Sun X, Wang D, Zhang T, Lu X, Duan F, Ju L, Zhuang X, Jiang X (2020) Eugenol attenuates cerebral ischemia-reperfusion injury by enhancing autophagy via AMPK-mTOR-P70S6K pathway. Front Pharmacol 11:84. https://doi.org/10.3389/fphar.2020.00084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sun X, Liu H, Sun Z, Zhang B, Wang X, Liu T, Pan T, Gao Y et al (2020) Acupuncture protects against cerebral ischemia-reperfusion injury via suppressing endoplasmic reticulum stress-mediated autophagy and apoptosis. Molecular Medicine (Cambridge, Mass) 26(1):105. https://doi.org/10.1186/s10020-020-00236-5

    Article  CAS  PubMed  Google Scholar 

  7. Yang Z, Huang C, Wen X, Liu W, Huang X, Li Y, Zang J, Weng Z et al (2022) Circular RNA circ-FoxO3 attenuates blood-brain barrier damage by inducing autophagy during ischemia/reperfusion. Mol Ther 30(3):1275–1287. https://doi.org/10.1016/j.ymthe.2021.11.004

    Article  CAS  PubMed  Google Scholar 

  8. Chi TF, Khoder-Agha F, Mennerich D, Kellokumpu S, Miinalainen I, Kietzmann T, Dimova EY (2020) Loss of USF2 promotes proliferation, migration and mitophagy in a redox-dependent manner. Redox Biol 37:101750. https://doi.org/10.1016/j.redox.2020.101750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Li S, Zhang J, Qian S, Wu X, Sun L, Ling T, Jin Y, Li W et al (2021) S100A8 promotes epithelial-mesenchymal transition and metastasis under TGF-β/USF2 axis in colorectal cancer. Cancer Commun (London, England) 41(2):154–170. https://doi.org/10.1002/cac2.12130

    Article  Google Scholar 

  10. Shimomura K, Kumar V, Koike N, Kim TK, Chong J, Buhr ED, Whiteley AR, Low SS et al (2013) Usf1, a suppressor of the circadian Clock mutant, reveals the nature of the DNA-binding of the CLOCK:BMAL1 complex in mice. 2:eLife, e00426. https://doi.org/10.7554/eLife.00426

  11. Chi TF, Horbach T, Götz C, Kietzmann T, Dimova EY (2019) Cyclin-dependent kinase 5 (CDK5)-mediated phosphorylation of upstream stimulatory factor 2 (USF2) contributes to carcinogenesis. Cancers 11(4). https://doi.org/10.3390/cancers11040523

  12. Liu S, Shi L, Wang S (2007) Overexpression of upstream stimulatory factor 2 accelerates diabetic kidney injury. Am J Physiol Renal Physiol 293(5):F1727–F1735. https://doi.org/10.1152/ajprenal.00316.2007

    Article  CAS  PubMed  Google Scholar 

  13. Prasad S, Singh K (2008) Interaction of USF1/USF2 and alpha-Pal/Nrf1 to Fmr-1 promoter increases in mouse brain during aging. Biochem Biophys Res Commun 376(2):347–351. https://doi.org/10.1016/j.bbrc.2008.08.155

    Article  CAS  PubMed  Google Scholar 

  14. Bendl J, Hauberg ME, Girdhar K, Im E, Vicari JM, Rahman S, Fernando MB, Townsley KG et al (2022) The three-dimensional landscape of cortical chromatin accessibility in Alzheimer’s disease. Nat Neurosci 25(10):1366–1378. https://doi.org/10.1038/s41593-022-01166-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bazov I, Sarkisyan D, Kononenko O, Watanabe H, Taqi MM, Stålhandske L, Verbeek DS, Mulder J et al (2018) Neuronal expression of opioid gene is controlled by dual epigenetic and transcriptional mechanism in human brain. Cerebral Cortex (New York, NY: 1991) 28(9):3129–3142. https://doi.org/10.1093/cercor/bhx181

    Article  Google Scholar 

  16. Huang W, Chen TQ, Fang K, Zeng ZC, Ye H, Chen YQ (2021) N6-methyladenosine methyltransferases: functions, regulation, and clinical potential. J Hematol Oncol 14(1):117. https://doi.org/10.1186/s13045-021-01129-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhang N, Ding C, Zuo Y, Peng Y, Zuo L (2022) N6-methyladenosine and neurological diseases. Mol Neurobiol 59(3):1925–1937. https://doi.org/10.1007/s12035-022-02739-0

    Article  CAS  PubMed  Google Scholar 

  18. Shao L, Chen B, Wu Q, Xu Y, Yi J, Guo Z, Liu B (2022) N(6)-methyladenosine-modified lncRNA and mRNA modification profiles in cerebral ischemia-reperfusion injury. Front Genet 13:973979. https://doi.org/10.3389/fgene.2022.973979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Xu K, Mo Y, Li D, Yu Q, Wang L, Lin F, Kong C, Balelang MF et al (2020) N(6)-methyladenosine demethylases Alkbh5/Fto regulate cerebral ischemia-reperfusion injury. Ther Adv Chronic Dis 11:2040622320916024. https://doi.org/10.1177/2040622320916024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Liang E, Xiao S, Zhao C, Zhang Y, Fu G (2023) M6A modification promotes blood-brain barrier breakdown during cerebral ischemia/reperfusion injury through increasing matrix metalloproteinase 3 expression. Heliyon 9(6):e16905. https://doi.org/10.1016/j.heliyon.2023.e16905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kallenberger L, Erb R, Kralickova L, Patrignani A, Stöckli E, Jiricny J (2019) Ectopic methylation of a single persistently unmethylated CpG in the promoter of the vitellogenin gene abolishes its inducibility by estrogen through attenuation of upstream stimulating factor binding. Mol Cell Biol 39(23). https://doi.org/10.1128/mcb.00436-19

  22. Cheng X, Wei Y, Zhang Z, Wang F, He J, Wang R, Xu Y, Keerman M et al (2022) Plasma PFOA and PFOS levels, DNA methylation, and blood lipid levels: a pilot study. Environ Sci Technol 56(23):17039–17051. https://doi.org/10.1021/acs.est.2c04107

    Article  CAS  PubMed  Google Scholar 

  23. Zhang B, Zhang HX, Shi ST, Bai YL, Zhe X, Zhang SJ, Li YJ (2019) Interleukin-11 treatment protected against cerebral ischemia/reperfusion injury. Biomed Pharmacother = Biomedecine & Pharmacotherapie 115:108816. https://doi.org/10.1016/j.biopha.2019.108816

    Article  CAS  Google Scholar 

  24. Zhuang M, Li X, Zhu J, Zhang J, Niu F, Liang F, Chen M, Li D, Han P, Ji SJ (2019) The m6A reader YTHDF1 regulates axon guidance through translational control of Robo3.1 expression. Nucleic Acids Res 47(9):4765–4777. https://doi.org/10.1093/nar/gkz157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wang C, Zeng J, Li LJ, Xue M, He SL (2021) Cdc25A inhibits autophagy-mediated ferroptosis by upregulating ErbB2 through PKM2 dephosphorylation in cervical cancer cells. Cell Death Dis 12(11):1055. https://doi.org/10.1038/s41419-021-04342-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Yu S, Yu M, He X, Wen L, Bu Z, Feng J (2019) KCNQ1OT1 promotes autophagy by regulating miR-200a/FOXO3/ATG7 pathway in cerebral ischemic stroke. Aging Cell 18(3):e12940. https://doi.org/10.1111/acel.12940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhang Y, Zhang Y, Jin XF, Zhou XH, Dong XH, Yu WT, Gao WJ (2019) The role of astragaloside IV against cerebral ischemia/reperfusion injury: suppression of apoptosis via promotion of P62-LC3-autophagy. Molecules (Basel, Switzerland) 24(9). https://doi.org/10.3390/molecules24091838

  28. Zhang B, Deng F, Zhou C, Fang S (2020) ClC-3 induction protects against cerebral ischemia/reperfusion injury through promoting Beclin1/Vps34-mediated autophagy. Hum Cell 33(4):1046–1055. https://doi.org/10.1007/s13577-020-00406-x

    Article  CAS  PubMed  Google Scholar 

  29. Li L, Huang J (2020) Rapamycin pretreatment alleviates cerebral ischemia/reperfusion injury in dose-response manner through inhibition of the autophagy and NFκB pathways in rats. Dose-response : a publication of International Hormesis Society 18(3):1559325820946194. https://doi.org/10.1177/1559325820946194

    Article  CAS  PubMed  Google Scholar 

  30. Liu F, Wang X, Zheng B, Li D, Chen C, Lee IS, Zhong J, Li D et al (2020) USF2 enhances the osteogenic differentiation of PDLCs by promoting ATF4 transcriptional activities. J Periodontal Res 55(1):68–76. https://doi.org/10.1111/jre.12689

    Article  CAS  PubMed  Google Scholar 

  31. Hu D, Tjon EC, Andersson KM, Molica GM, Pham MC, Healy B, Murugaiyan G, Pochet N et al (2020) Aberrant expression of USF2 in refractory rheumatoid arthritis and its regulation of proinflammatory cytokines in Th17 cells. Proc Natl Acad Sci U S A 117(48):30639–30648. https://doi.org/10.1073/pnas.2007935117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Park KY, Russo AF (2008) Control of the calcitonin gene-related peptide enhancer by upstream stimulatory factor in trigeminal ganglion neurons. J Biol Chem 283(9):5441–5451. https://doi.org/10.1074/jbc.M708662200

    Article  CAS  PubMed  Google Scholar 

  33. Kumari D, Usdin K (2001) Interaction of the transcription factors USF1, USF2, and alpha -Pal/Nrf-1 with the FMR1 promoter. Implications for Fragile X mental retardation syndrome. J Biol Chem 276(6):4357–4364. https://doi.org/10.1074/jbc.M009629200

    Article  CAS  PubMed  Google Scholar 

  34. Liu X, Gao W, Liu W (2021) Identification of KLF6/PSGs and NPY-related USF2/CEACAM transcriptional regulatory networks via spinal cord bulk and single-cell RNA-Seq analysis. Dis Markers 2021:2826609. https://doi.org/10.1155/2021/2826609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Huang J, Jiang B, Li GW, Zheng D, Li M, Xie X, Pan Y, Wei M et al (2022) m(6)A-modified lincRNA Dubr is required for neuronal development by stabilizing YTHDF1/3 and facilitating mRNA translation. Cell Rep 41(8):111693. https://doi.org/10.1016/j.celrep.2022.111693

    Article  CAS  PubMed  Google Scholar 

  36. Huang P, Liu M, Zhang J, Zhong X, Zhong C (2023) YTHDF1 attenuates TBI-induced brain-gut axis dysfunction in mice. Int J Mol Sci 24(4). https://doi.org/10.3390/ijms24044240

  37. Shi H, Zhang X, Weng YL, Lu Z, Liu Y, Lu Z, Li J, Hao P et al (2018) m(6)A facilitates hippocampus-dependent learning and memory through YTHDF1. Nature 563(7730):249–253. https://doi.org/10.1038/s41586-018-0666-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ma H, Ye D, Liu Y, Wu P, Yu L, Guo L, Gao Y, Liu Y et al (2023) Propofol suppresses OGD/R-induced ferroptosis in neurons by inhibiting the HIF-1α/YTHDF1/BECN1 axis. Brain Inj 37(11):1285–1293. https://doi.org/10.1080/02699052.2023.2237881

    Article  PubMed  Google Scholar 

  39. Li X, An P, Han F, Yu M, Yu Z, Li Y (2023) Silencing of YTHDF1 attenuates cerebral stroke by inducing PTEN degradation and activating the PTEN/AKT/mTOR pathway. Mol Biotechnol 65(5):822–832. https://doi.org/10.1007/s12033-022-00575-0

    Article  CAS  PubMed  Google Scholar 

  40. Sadeghi H, Golalipour M, Yamchi A, Farazmandfar T, Shahbazi M (2019) CDC25A pathway toward tumorigenesis: molecular targets of CDC25A in cell-cycle regulation. J Cell Biochem 120(3):2919–2928. https://doi.org/10.1002/jcb.26838

    Article  CAS  PubMed  Google Scholar 

  41. Chen S, Tang Y, Yang C, Li K, Huang X, Cao J (2020) Silencing CDC25A inhibits the proliferation of liver cancer cells by downregulating IL-6 in vitro and in vivo. Int J Mol Med 45(3):743–752. https://doi.org/10.3892/ijmm.2020.4461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Qi D, Hu L, Jiao T, Zhang T, Tong X, Ye X (2018) Phosphatase Cdc25A negatively regulates the antiviral immune response by inhibiting TBK1 activity. J Virol 92(19). https://doi.org/10.1128/jvi.01118-18

  43. Chatterjee N, Sanphui P, Kemeny S, Greene LA, Biswas SC (2016) Role and regulation of Cdc25A phosphatase in neuron death induced by NGF deprivation or β-amyloid. Cell Death Dis 2:16083. https://doi.org/10.1038/cddiscovery.2016.83

    Article  Google Scholar 

  44. Fu YR, Liu XJ, Li XJ, Shen ZZ, Yang B, Wu CC, Li JF, Miao LF et al (2015) MicroRNA miR-21 attenuates human cytomegalovirus replication in neural cells by targeting Cdc25a. J Virol 89(2):1070–1082. https://doi.org/10.1128/jvi.01740-14

    Article  PubMed  Google Scholar 

  45. Zhang Y, Qu D, Morris EJ, O’Hare MJ, Callaghan SM, Slack RS, Geller HM, Park DS (2006) The Chk1/Cdc25A pathway as activators of the cell cycle in neuronal death induced by camptothecin. J Neurosci 26(34):8819–8828. https://doi.org/10.1523/jneurosci.2593-06.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Mascia F, Mazo I, Alterovitz WL, Karagiannis K, Wu WW, Shen RF, Beaver JA, Rao VA (2022) In search of autophagy biomarkers in breast cancer: receptor status and drug agnostic transcriptional changes during autophagy flux in cell lines. PloS One 17(1):e0262134. https://doi.org/10.1371/journal.pone.0262134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wang FZ, Chang ZY, Fei HR, Yang MF, Yang XY, Sun BL (2014) CCT128930 induces cell cycle arrest, DNA damage, and autophagy independent of Akt inhibition. Biochimie 103:118–125. https://doi.org/10.1016/j.biochi.2014.04.008

    Article  CAS  PubMed  Google Scholar 

  48. Cen WJ, Feng Y, Li SS, Huang LW, Zhang T, Zhang W, Kong WD, Jiang JW (2018) Iron overload induces G1 phase arrest and autophagy in murine preosteoblast cells. J Cell Physiol 233(9):6779–6789. https://doi.org/10.1002/jcp.26405

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was funded by the Project of International Science and Technology Cooperation and Communication of Shaanxi Province (2015KW-052).

Author information

Authors and Affiliations

Authors

Contributions

Chao Liu performed the in vivo experiment and wrote the draft manuscript; Qing Gao prepared the figures and reviewed the manuscript; Jian Dong performed the statistical analysis and reviewed the manuscript; Hui Cai designed and supervised the work, provided the funding, and reviewed the manuscript.

Corresponding author

Correspondence to Hui Cai.

Ethics declarations

Ethical Approval

This study was approved by the Ethics Committee of The First Affiliated Hospital of Xi’an Jiaotong University (XJTULAC-2021051).

Consent to Participate

Not applicable.

Consent for Publication

This manuscript is approved by all authors for publication.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 15 kb)

ESM 2

(DOCX 137 kb)

ESM 3

(JPG 143 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, C., Gao, Q., Dong, J. et al. Usf2 Deficiency Promotes Autophagy to Alleviate Cerebral Ischemia-Reperfusion Injury Through Suppressing YTHDF1-m6A-Mediated Cdc25A Translation. Mol Neurobiol 61, 2556–2568 (2024). https://doi.org/10.1007/s12035-023-03735-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-023-03735-8

Keywords

Navigation