Skip to main content
Log in

HMGB1 Mediates Inflammation-Induced DMT1 Increase and Dopaminergic Neurodegeneration in the Early Stage of Parkinsonism

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Both neuroinflammation and iron accumulation play roles in the pathogenesis of Parkinson’s disease (PD). However, whether inflammation induces iron dyshomeostasis in dopaminergic neurons at an early stage of PD, at which no quantifiable dopaminergic neuron loss can be observed, is still unknown. As for the inflammation mediators, although several cytokines have been reported to increase in PD, the functions of these cytokines in the SN are double-edged and controversial. In this study, whether inflammation could induce iron dyshomeostasis in dopaminergic neurons through high mobility group protein B1 (HMGB1) in the early stage of PD is explored. Lipopolysaccharide (LPS), a toxin that primarily activates glia cells, and 6-hydroxydopamine (6-OHDA), the neurotoxin that firstly impacts dopaminergic neurons, were utilized to mimic PD in rats. We found a common and exceedingly early over-production of HMGB1, followed by an increase of divalent metal transporter 1 with iron responsive element (DMT1+) in the dopaminergic neurons before quantifiable neuronal loss. HMGB1 neutralizing antibody suppressed inflammation in the SN, DMT1+ elevation in dopaminergic neurons, and dopaminergic neuronal loss in both LPS and 6-OHDA administration- induced PD models. On the contrary, interleukin-1β inhibitor diacerein failed to suppress these outcomes induced by 6-OHDA. Our findings not only demonstrate that inflammation could be one of the causes of DMT1+ increase in dopaminergic neurons, but also highlight HMGB1 as a pivotal early mediator of inflammation-induced iron increase and subsequent neurodegeneration, thereby HMGB1 could serve as a potential target for early-stage PD treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

Further information and requests for data and materials will be shared upon receipt of a reasonable request.

Abbreviations

6-OHDA:

6-Hydroxydopamine

DMT1+:

Divalent metal transporter 1 with iron responsive element

ED-1:

Anti-macrophages/monocytes antibody, clone ED-1

GFAAS:

Graphite furnace atomic absorption spectroscopy

GFAP:

Glial fibrillary acidic protein

HMGB1:

High mobility group protein B1

IBA1:

Ionized calcium-binding adaptor molecule 1

IL-1β:

Interleukin-1β

LPS:

Lipopolysaccharide

PD:

Parkinson’s disease

SN:

Substantia nigra

RAGE:

Receptor for advanced glycation end products

TNF-α:

Tumor necrosis factor-α

References

  1. Feigin VL, Nichols E, Alam T, Bannick MS, Beghi E, Blake N, Culpepper WJ, Dorsey ER, Elbaz A, Ellenbogen RG et al (2019) Global, regional, and national burden of neurological disorders, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. The Lancet Neurol 18(5):459–480. https://doi.org/10.1016/s1474-4422(18)30499-x

    Article  Google Scholar 

  2. Mochizuki H, Choong CJ, Baba K (2020) Parkinson’s disease and iron. J Neural Transmis (Vienna, Austria : 1996) 127(2):181–187. https://doi.org/10.1007/s00702-020-02149-3

    Article  Google Scholar 

  3. Jiang H, Song N, Jiao Q, Shi L, Du X (2019) Iron pathophysiology in Parkinson diseases. Adv Exp Med Biol 1173:45–66. https://doi.org/10.1007/978-981-13-9589-5_4

    Article  CAS  PubMed  Google Scholar 

  4. Ndayisaba A, Kaindlstorfer C, Wenning GK (2019) Iron in neurodegeneration — cause or consequence? Front Neurosci 13:180. https://doi.org/10.3389/fnins.2019.00180

    Article  PubMed  PubMed Central  Google Scholar 

  5. Bergsland N, Tavazzi E, Schweser F, Jakimovski D, Hagemeier J, Dwyer MG, Zivadinov R (2019) Targeting iron dyshomeostasis for treatment of neurodegenerative disorders. CNS Drugs 33(11):1073–1086. https://doi.org/10.1007/s40263-019-00668-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kaur D, Yantiri F, Rajagopalan S, Kumar J, Mo JQ, Boonplueang R, Viswanath V, Jacobs R et al (2003) Genetic or pharmacological iron chelation prevents MPTP-induced neurotoxicity in vivo: a novel therapy for Parkinson’s disease. Neuron 37(6):899–909. https://doi.org/10.1016/S0896-6273(03)00126-0

    Article  CAS  PubMed  Google Scholar 

  7. Shachar DB, Kahana N, Kampel V, Warshawsky A, Youdim MB (2004) Neuroprotection by a novel brain permeable iron chelator, VK-28, against 6-hydroxydopamine lession in rats. Neuropharmacology 46(2):254–263. https://doi.org/10.1016/j.neuropharm.2003.09.005

    Article  CAS  PubMed  Google Scholar 

  8. Elkouzi A, Vedam-Mai V, Eisinger RS, Okun MS (2019) Emerging therapies in Parkinson disease — repurposed drugs and new approaches. Nat Rev Neurol 15(4):204–223. https://doi.org/10.1038/s41582-019-0155-7

    Article  PubMed  PubMed Central  Google Scholar 

  9. Crichton RR, Ward RJ, Hider RC (2019) The efficacy of iron chelators for removing iron from specific brain regions and the pituitary-ironing out the brain. Pharmaceuticals (Basel, Switzerland) 12(3). https://doi.org/10.3390/ph12030138

  10. Nuñez MT, Chana-Cuevas P (2018) New perspectives in iron chelation therapy for the treatment of neurodegenerative diseases. Pharmaceuticals (Basel, Switzerland) 11(4). https://doi.org/10.3390/ph11040109

  11. Liang T, Qian ZM, Mu MD, Yung WH, Ke Y (2020) Brain hepcidin suppresses major pathologies in experimental Parkinsonism. iScience 23(7):101284. https://doi.org/10.1016/j.isci.2020.101284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ke Y, Qian ZM (2007) Brain iron metabolism: neurobiology and neurochemistry. Prog Neurobiol 83(3):149–173. https://doi.org/10.1016/j.pneurobio.2007.07.009

    Article  CAS  PubMed  Google Scholar 

  13. Jiang H, Song N, Xu H, Zhang S, Wang J, Xie J (2010) Up-regulation of divalent metal transporter 1 in 6-hydroxydopamine intoxication is IRE/IRP dependent. Cell Res 20(3):345–356. https://doi.org/10.1038/cr.2010.20

    Article  CAS  PubMed  Google Scholar 

  14. Salazar J, Mena N, Hunot S, Prigent A, Alvarez-Fischer D, Arredondo M, Duyckaerts C et al (2008) Divalent metal transporter 1 (DMT1) contributes to neurodegeneration in animal models of Parkinson’s disease. Proc Natl Acad Sci U S A 105(47):18578–18583. https://doi.org/10.1073/pnas.0804373105

    Article  PubMed  PubMed Central  Google Scholar 

  15. Urrutia PJ, Aguirre P, Tapia V, Carrasco CM, Mena NP, Núñez MT (2017) Cell death induced by mitochondrial complex I inhibition is mediated by iron regulatory protein 1. Biochim Biophys Acta Mol basis Dis 1863(9):2202–2209. https://doi.org/10.1016/j.bbadis.2017.05.015

    Article  CAS  PubMed  Google Scholar 

  16. Song N, Jiang H, Wang J, Xie JX (2007) Divalent metal transporter 1 up-regulation is involved in the 6-hydroxydopamine-induced ferrous iron influx. J Neurosci Res 85(14):3118–3126. https://doi.org/10.1002/jnr.21430

    Article  CAS  PubMed  Google Scholar 

  17. Chen D, Kanthasamy AG, Reddy MB (2015) EGCG protects against 6-OHDA-induced neurotoxicity in a cell culture model. Parkinson’s Dis 2015:843906. https://doi.org/10.1155/2015/843906

    Article  CAS  Google Scholar 

  18. Pajares M, Ir A, Manda G, Boscá L, Cuadrado A (2020) Inflammation in Parkinson’s disease: mechanisms and therapeutic implications. Cells 9(7). https://doi.org/10.3390/cells9071687

  19. Deleidi M, Gasser T (2013) The role of inflammation in sporadic and familial Parkinson’s disease. Cell Mol Life Sci: CMLS 70(22):4259–4273. https://doi.org/10.1007/s00018-013-1352-y

    Article  CAS  PubMed  Google Scholar 

  20. Marinova-Mutafchieva L, Sadeghian M, Broom L, Davis JB, Medhurst AD, Dexter DT (2009) Relationship between microglial activation and dopaminergic neuronal loss in the substantia nigra: a time course study in a 6-hydroxydopamine model of Parkinson’s disease. J Neurochem 110(3):966–975. https://doi.org/10.1111/j.1471-4159.2009.06189.x

    Article  CAS  PubMed  Google Scholar 

  21. Lazdon E, Stolero N, Frenkel D (2020) Microglia and Parkinson’s disease: footprints to pathology. J Neural Transmis 127(2):149–158. https://doi.org/10.1007/s00702-020-02154-6

    Article  Google Scholar 

  22. Thomsen MS, Andersen MV, Christoffersen PR, Jensen MD, Lichota J, Moos T (2015) Neurodegeneration with inflammation is accompanied by accumulation of iron and ferritin in microglia and neurons. Neurobiol Dis 81:108–118. https://doi.org/10.1016/j.nbd.2015.03.013

    Article  CAS  PubMed  Google Scholar 

  23. Zhang J, Stanton DM, Nguyen XV, Liu M, Zhang Z, Gash D, Bing G (2005) Intrapallidal lipopolysaccharide injection increases iron and ferritin levels in glia of the rat substantia nigra and induces locomotor deficits. Neuroscience 135(3):829–838. https://doi.org/10.1016/j.neuroscience.2005.06.049

    Article  CAS  PubMed  Google Scholar 

  24. Zhang Z, Hou L, Song JL, Song N, Sun YJ, Lin X, Wang XL, Zhang FZ et al (2014) Pro-inflammatory cytokine-mediated ferroportin down-regulation contributes to the nigral iron accumulation in lipopolysaccharide-induced Parkinsonian models. Neuroscience 257:20–30. https://doi.org/10.1016/j.neuroscience.2013.09.037

    Article  CAS  PubMed  Google Scholar 

  25. Zhang Z, Zhang K, Du X, Li Y (2012) Neuroprotection of desferrioxamine in lipopolysaccharide-induced nigrostriatal dopamine neuron degeneration. Mol Med Rep 5(2):562–566. https://doi.org/10.3892/mmr.2011.671

    Article  CAS  PubMed  Google Scholar 

  26. Wang J, Song N, Jiang H, Wang J, Xie J (2013) Pro-inflammatory cytokines modulate iron regulatory protein 1 expression and iron transportation through reactive oxygen/nitrogen species production in ventral mesencephalic neurons. Biochim Biophys Acta 1832(5):618–625. https://doi.org/10.1016/j.bbadis.2013.01.021

    Article  CAS  PubMed  Google Scholar 

  27. Urrutia P, Aguirre P, Esparza A, Tapia V, Mena NP, Arredondo M, Gonzalez-Billault C, Nunez MT (2013) Inflammation alters the expression of DMT1, FPN1 and hepcidin, and it causes iron accumulation in central nervous system cells. J Neurochem 126(4):541–549. https://doi.org/10.1111/jnc.12244

    Article  CAS  PubMed  Google Scholar 

  28. Qian ZM, He X, Liang T, Wu KC, Yan YC, Lu LN, Yang G, Luo QQ et al (2014) Lipopolysaccharides upregulate hepcidin in neuron via microglia and the IL-6/STAT3 signaling pathway. Mol Neurobiol 50(3):811–820. https://doi.org/10.1007/s12035-014-8671-3

    Article  CAS  PubMed  Google Scholar 

  29. Mu MD, Qian ZM, Yang SX, Rong KL, Yung WH, Ke Y (2020) Therapeutic effect of a histone demethylase inhibitor in Parkinson’s disease. Cell Death Dis 11(10):927. https://doi.org/10.1038/s41419-020-03105-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Subbarayan MS, Hudson C, Moss LD, Nash KR, Bickford PC (2020) T cell infiltration and upregulation of MHCII in microglia leads to accelerated neuronal loss in an α-synuclein rat model of Parkinson’s disease. J Neuroinflammation 17(1):242. https://doi.org/10.1186/s12974-020-01911-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Li Q, Ke Y, Chan Danny CW, Qian Z-M, Yung Ken KL, Ko H, Arbuthnott Gordon W, Yung W-H (2012) Therapeutic deep brain stimulation in Parkinsonian rats directly influences motor cortex. Neuron 76(5):1030–1041. https://doi.org/10.1016/j.neuron.2012.09.032

    Article  CAS  PubMed  Google Scholar 

  32. Li C-J, Zhang L-G, Liu L-B, An M-Q, Dong L-g GH-Y, Dai Y-P, Wang F, Mao C-J et al (2022) Inhibition of spinal 5-HT3 receptor and spinal dorsal horn neuronal excitability alleviates hyperalgesia in a rat model of Parkinson’s disease. Mol Neurobiol 59(12):7253–7264. https://doi.org/10.1007/s12035-022-03034-8

    Article  CAS  PubMed  Google Scholar 

  33. Rumpel R, Hohmann M, Klein A, Wesemann M, Baumgärtner W, Ratzka A, Grothe C (2015) Transplantation of fetal ventral mesencephalic progenitor cells overexpressing high molecular weight fibroblast growth factor 2 isoforms in 6-hydroxydopamine lesioned rats. Neuroscience 286:293–307. https://doi.org/10.1016/j.neuroscience.2014.11.060

    Article  CAS  PubMed  Google Scholar 

  34. Huotarinen A, Leino S, Tuominen RK, Laakso A (2019) Rat subthalamic stimulation: evaluating stimulation-induced dyskinesias, choosing stimulation currents and evaluating the anti-akinetic effect in the cylinder test. MethodsX 6:2384–2395. https://doi.org/10.1016/j.mex.2019.10.012

    Article  PubMed  PubMed Central  Google Scholar 

  35. Magno LAV, Collodetti M, Tenza-Ferrer H, Romano-Silva MA (2019) Cylinder test to assess sensory-motor function in a mouse model of Parkinson’s disease. Bio-protocol 9(16):e3337. https://doi.org/10.21769/BioProtoc.3337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Almezgagi M, Zhang Y, Hezam K, Shamsan E, Gamah M, Al-Shaebi F, Abbas AB, Shoaib M et al (2020) Diacerein: recent insight into pharmacological activities and molecular pathways. Biomed Pharmacot 131:110594. https://doi.org/10.1016/j.biopha.2020.110594

    Article  CAS  Google Scholar 

  37. Baizabal-Carvallo JF, Alonso-Juarez M (2020) The link between gut dysbiosis and neuroinflammation in Parkinson’s disease. Neuroscience 432:160–173. https://doi.org/10.1016/j.neuroscience.2020.02.030

    Article  CAS  PubMed  Google Scholar 

  38. Jackson A, Forsyth CB, Shaikh M, Voigt RM, Engen PA, Ramirez V, Keshavarzian A (2019) Diet in Parkinson’s disease: critical role for the microbiome. Front Neurol 10:1245. https://doi.org/10.3389/fneur.2019.01245

    Article  PubMed  PubMed Central  Google Scholar 

  39. Dutta G, Zhang P, Liu B (2008) The lipopolysaccharide Parkinson’s disease animal model: mechanistic studies and drug discovery. Fundam Clin Pharmacol 22(5):453–464. https://doi.org/10.1111/j.1472-8206.2008.00616.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Brown GC (2019) The endotoxin hypothesis of neurodegeneration. J Neuroinflammation 16(1):180. https://doi.org/10.1186/s12974-019-1564-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lehnardt S, Massillon L, Follett P, Jensen FE, Ratan R, Rosenberg PA, Volpe JJ, Vartanian T (2003) Activation of innate immunity in the CNS triggers neurodegeneration through a Toll-like receptor 4-dependent pathway. Proc Natl Acad Sci U S A 100(14):8514–8519. https://doi.org/10.1073/pnas.1432609100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Milanese C, Tapias V, Gabriels S, Cerri S, Levandis G, Blandini F, Tresini M, Shiva S et al (2018) Mitochondrial complex I reversible S-nitrosation improves bioenergetics and is protective in Parkinson’s disease. Antioxid Redox Signal 28(1):44–61. https://doi.org/10.1089/ars.2017.6992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Przedborski S, Levivier M, Jiang H, Ferreira M, Jackson-Lewis V, Donaldson D, Togasaki DM (1995) Dose-dependent lesions of the dopaminergic nigrostriatal pathway induced by intrastriatal injection of 6-hydroxydopamine. Neuroscience 67(3):631–647. https://doi.org/10.1016/0306-4522(95)00066-r

    Article  CAS  PubMed  Google Scholar 

  44. Puspita L, Chung SY, Shim JW (2017) Oxidative stress and cellular pathologies in Parkinson’s disease. Mol Brain 10(1):53. https://doi.org/10.1186/s13041-017-0340-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Dias V, Junn E, Mouradian MM (2013) The role of oxidative stress in Parkinson’s disease. J Parkinsons Dis 3(4):461–491. https://doi.org/10.3233/jpd-130230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Jellinger K, Linert L, Kienzl E, Herlinger E, Youdim MB (1995) Chemical evidence for 6-hydroxydopamine to be an endogenous toxic factor in the pathogenesis of Parkinson’s disease. J Neural Transm Suppl 46:297–314

    CAS  PubMed  Google Scholar 

  47. Borie C, Gasparini F, Verpillat P, Bonnet AM, Agid Y, Hetet G, Brice A, Durr A et al (2002) Association study between iron-related genes polymorphisms and Parkinson’s disease. J Neurol 249(7):801–804. https://doi.org/10.1007/s00415-002-0704-6

    Article  PubMed  Google Scholar 

  48. He Q, Du T, Yu X, Xie A, Song N, Kang Q, Yu J, Tan L et al (2011) DMT1 polymorphism and risk of Parkinson’s disease. Neurosci Lett 501(3):128–131. https://doi.org/10.1016/j.neulet.2011.07.001

    Article  CAS  PubMed  Google Scholar 

  49. Rhodes SL, Buchanan DD, Ahmed I, Taylor KD, Loriot MA, Sinsheimer JS, Bronstein JM, Elbaz A et al (2014) Pooled analysis of iron-related genes in Parkinson’s disease: association with transferrin. Neurobiol Dis 62:172–178. https://doi.org/10.1016/j.nbd.2013.09.019

    Article  CAS  PubMed  Google Scholar 

  50. Funke C, Schneider SA, Berg D, Kell DB (2013) Genetics and iron in the systems biology of Parkinson’s disease and some related disorders. Neurochem Int 62(5):637–652. https://doi.org/10.1016/j.neuint.2012.11.015

    Article  CAS  PubMed  Google Scholar 

  51. Muñoz Y, Carrasco CM, Campos JD, Aguirre P, Núñez MT (2016) Parkinson’s disease: the mitochondria-iron link. Parkinson’s disease 2016:7049108. https://doi.org/10.1155/2016/7049108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Liddell JR, White AR (2018) Nexus between mitochondrial function, iron, copper and glutathione in Parkinson’s disease. Neurochem Int 117:126–138. https://doi.org/10.1016/j.neuint.2017.05.016

    Article  CAS  PubMed  Google Scholar 

  53. Cerri S, Milanese C, Mastroberardino PG (2019) Endocytic iron trafficking and mitochondria in Parkinson’s disease. Int J Biochem Cell Biol 110:70–74. https://doi.org/10.1016/j.biocel.2019.02.009

    Article  CAS  PubMed  Google Scholar 

  54. Mena NP, Urrutia PJ, Lourido F, Carrasco CM, Núñez MT (2015) Mitochondrial iron homeostasis and its dysfunctions in neurodegenerative disorders. Mitochondrion 21:92–105. https://doi.org/10.1016/j.mito.2015.02.001

    Article  CAS  PubMed  Google Scholar 

  55. Mena NP, Bulteau AL, Salazar J, Hirsch EC, Núñez MT (2011) Effect of mitochondrial complex I inhibition on Fe–S cluster protein activity. Biochem Biophys Res Commun 409(2):241–246. https://doi.org/10.1016/j.bbrc.2011.04.137

    Article  CAS  PubMed  Google Scholar 

  56. Teismann P, Sathe K, Bierhaus A, Leng L, Martin HL, Bucala R, Weigle B, Nawroth PP et al (2012) Receptor for advanced glycation endproducts (RAGE) deficiency protects against MPTP toxicity. Neurobiol Aging 33(10):2478–2490. https://doi.org/10.1016/j.neurobiolaging.2011.12.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Gasparotto J, Ribeiro CT, Bortolin RC, Somensi N, Rabelo TK, Kunzler A, Souza NC, Pasquali MAB et al (2017) Targeted inhibition of RAGE in substantia nigra of rats blocks 6-OHDA-induced dopaminergic denervation. Sci Rep 7(1):8795. https://doi.org/10.1038/s41598-017-09257-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Jiang X, Wang X, Tuo M, Ma J, Xie A (2018) RAGE and its emerging role in the pathogenesis of Parkinson’s disease. Neurosci Lett 672:65–69. https://doi.org/10.1016/j.neulet.2018.02.049

    Article  CAS  PubMed  Google Scholar 

  59. Li Y, Qin M, Zhong W, Liu C, Deng G, Yang M, Li J, Ye H et al (2023) RAGE promotes dysregulation of iron and lipid metabolism in alcoholic liver disease. Redox Biol 59:102559. https://doi.org/10.1016/j.redox.2022.102559

    Article  CAS  PubMed  Google Scholar 

  60. Gan P, Ding L, Hang G, Xia Q, Huang Z, Ye X, Qian X (2020) Oxymatrine attenuates dopaminergic neuronal damage and microglia-mediated neuroinflammation through cathepsin D-dependent HMGB1/TLR4/NF-κB pathway in Parkinson’s disease. Front Pharmacol 11:776. https://doi.org/10.3389/fphar.2020.00776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Gao HM, Zhou H, Zhang F, Wilson BC, Kam W, Hong JS (2011) HMGB1 acts on microglia Mac1 to mediate chronic neuroinflammation that drives progressive neurodegeneration. J Neurosci 31(3):1081–1092. https://doi.org/10.1523/jneurosci.3732-10.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Mitra S, Chakrabarti N, Bhattacharyya A (2011) Differential regional expression patterns of alpha-synuclein, TNF-alpha, and IL-1beta; and variable status of dopaminergic neurotoxicity in mouse brain after Paraquat treatment. J Neuroinflammation 8:163. https://doi.org/10.1186/1742-2094-8-163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Koprich JB, Reske-Nielsen C, Mithal P, Isacson O (2008) Neuroinflammation mediated by IL-1beta increases susceptibility of dopamine neurons to degeneration in an animal model of Parkinson’s disease. J Neuroinflammation 5:8. https://doi.org/10.1186/1742-2094-5-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Jiang Y, Ma H, Wang X, Wang Z, Yang Y, Li L, Feng T (2020) Protective effect of the α7 nicotinic receptor agonist PNU-282987 on dopaminergic neurons against 6-hydroxydopamine, regulating anti-neuroinflammatory and the immune balance pathways in rat. Front Aging Neurosci 12:606927. https://doi.org/10.3389/fnagi.2020.606927

    Article  CAS  PubMed  Google Scholar 

  65. Tiefensee Ribeiro C, Peixoto DO, Santos L, Saibro-Girardi C, Brum PO, Carazza-Kessler FG, Somensi N, Behrens LMP et al (2021) Intranasal HSP70 administration protects against dopaminergic denervation and modulates neuroinflammatory response in the 6-OHDA rat model. Brain Behav Immun health 14:100253. https://doi.org/10.1016/j.bbih.2021.100253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Stojakovic A, Paz-Filho G, Arcos-Burgos M, Licinio J, Wong ML, Mastronardi CA (2017) Role of the IL-1 pathway in dopaminergic neurodegeneration and decreased voluntary movement. Mol Neurobiol 54(6):4486–4495. https://doi.org/10.1007/s12035-016-9988-x

    Article  CAS  PubMed  Google Scholar 

  67. Castaño A, Herrera AJ, Cano J, Machado A (2002) The degenerative effect of a single intranigral injection of LPS on the dopaminergic system is prevented by dexamethasone, and not mimicked by rh-TNF-alpha, IL-1beta and IFN-gamma. J Neurochem 81(1):150–157. https://doi.org/10.1046/j.1471-4159.2002.00799.x

    Article  PubMed  Google Scholar 

  68. Depino AM, Earl C, Kaczmarczyk E, Ferrari C, Besedovsky H, del Rey A, Pitossi FJ, Oertel WH (2003) Microglial activation with atypical proinflammatory cytokine expression in a rat model of Parkinson’s disease. Eur J Neurosci 18(10):2731–2742. https://doi.org/10.1111/j.1460-9568.2003.03014.x

    Article  PubMed  Google Scholar 

  69. Niu H, Wang Q, Zhao W, Liu J, Wang D, Muhammad B, Liu X, Quan N et al (2020) IL-1β/IL-1R1 signaling induced by intranasal lipopolysaccharide infusion regulates alpha-synuclein pathology in the olfactory bulb, substantia nigra and striatum. Brain Pathol(Zurich, Switzerland). https://doi.org/10.1111/bpa.12886

  70. Pott Godoy MC, Tarelli R, Ferrari CC, Sarchi MI, Pitossi FJ (2008) Central and systemic IL-1 exacerbates neurodegeneration and motor symptoms in a model of Parkinson’s disease. Brain J Neurol 131(Pt 7):1880–1894. https://doi.org/10.1093/brain/awn101

    Article  Google Scholar 

  71. Yepuri G, Shekhtman A, Marie Schmidt A, Ramasamy R (2021) Heme & RAGE: a new opportunistic relationship? FEBS J 288(11):3424–3427. https://doi.org/10.1111/febs.15723

  72. Liu X, Nemeth DP, McKim DB, Zhu L, DiSabato DJ, Berdysz O, Gorantla G, Oliver B et al (2019) Cell-type-specific interleukin 1 receptor 1 signaling in the brain regulates distinct neuroimmune activities. Immunity 50(2):317–333.e316. https://doi.org/10.1016/j.immuni.2018.12.012

  73. An Y, Chen Q, Quan N (2011) Interleukin-1 exerts distinct actions on different cell types of the brain in vitro. J Inflamm Res 2011(4):11–20. https://doi.org/10.2147/jir.s15357

  74. Walsh S, Gavin A, Wyatt S, O'Connor C, Keeshan K, Nolan YM, O'Keeffe GW, Sullivan AM (2015) Knockdown of interleukin-1 receptor 1 is not neuroprotective in the 6-hydroxydopamine striatal lesion rat model of Parkinson's disease. Int J Neurosci 125(1):70–77. https://doi.org/10.3109/00207454.2014.904304

  75. Yi PL, Tsai CH, Lu MK, Liu HJ, Chen YC, Chang FC (2007) Interleukin-1beta mediates sleep alteration in rats with rotenone-induced parkinsonism. Sleep 30(4):413–425. https://doi.org/10.1093/sleep/30.4.413

  76. Joppe K, Roser AE, Maass F, Lingor P (2019) The contribution of iron to protein aggregation disorders in the central nervous system. Front Neurosci 13:15. https://doi.org/10.3389/fnins.2019.00015

  77. Ganguly U, Banerjee A, Chakrabarti SS, Kaur U, Sen O, Cappai R, Chakrabarti S (2020) Interaction of α-synuclein and Parkin in iron toxicity on SH-SY5Y cells: implications in the pathogenesis of Parkinson's disease. Biochem J 477(6):1109–1122. https://doi.org/10.1042/bcj20190676

  78. Esteves AR, Silva DF, Banha D, Candeias E, Guedes B, Cardoso SM (2023) LPS-induced mitochondrial dysfunction regulates innate immunity activation and α-synuclein oligomerization in Parkinson's disease. Redox Biol 63:102714. https://doi.org/10.1016/j.redox.2023.102714

  79. Zhang FX, Xu RS (2018) Juglanin ameliorates LPS-induced neuroinflammation in animal models of Parkinson's disease and cell culture via inactivating TLR4/NF-κB pathway. Biomed Pharmacother 97:1011–1019. https://doi.org/10.1016/j.biopha.2017.08.132

  80. Deng I, Corrigan F, Zhai G, Zhou XF, Bobrovskaya L (2020) Lipopolysaccharide animal models of Parkinson's disease: Recent progress and relevance to clinical disease. Brain Behav Immun Health 4:100060. https://doi.org/10.1016/j.bbih.2020.100060

  81. Zheng Q, Ma P, Yang P, Zhai S, He M, Zhang X, Tu Q, Jiao L et al (2023) Alpha lipoic acid ameliorates motor deficits by inhibiting ferroptosis in Parkinson's disease. Neurosci Lett 810:137346. https://doi.org/10.1016/j.neulet.2023.137346

  82. Song LM, Xiao ZX, Zhang N, Yu XQ, Cui W, Xie JX, Xu HM (2021) Apoferritin improves motor deficits in MPTP-treated mice by regulating brain iron metabolism and ferroptosis. iScience 24(5):102431. https://doi.org/10.1016/j.isci.2021.102431

  83. Sun J, Lin XM, Lu DH, Wang M, Li K, Li SR, Li ZQ, Zhu CJ et al (2023) Midbrain dopamine oxidation links ubiquitination of glutathione peroxidase 4 to ferroptosis of dopaminergic neurons. J Clin Invest 133(10). https://doi.org/10.1172/jci165228

Download references

Funding

This work was supported by the Hong Kong Research Grants Council-General Research Fund, 14115821, 14113522, Collaborative Research Fund, C4012-22GF, Health and Medical Research Fund, 7180906.

Author information

Authors and Affiliations

Authors

Contributions

Y.K. conceived the project, designed the experiments, and supervised the project. W.H.Y. and Z.M.Q. designed the experiments, supervised the studies, and analyzed the data. T.L., S.X.Y., and L.D.D. designed the experiments, performed the experiments, analyzed the data, and prepared the figures. Y.K., C.Q., and T.L. wrote the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Ya Ke.

Ethics declarations

Ethics Approval and Consent to Participate

The Animal Ethics and Experimentation Committee of the Chinese University of Hong Kong approved the use of animals for this study (Ref No. 14-068-GRF), and all experiments follow the relevant regulatory standards.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, T., Yang, SX., Qian, C. et al. HMGB1 Mediates Inflammation-Induced DMT1 Increase and Dopaminergic Neurodegeneration in the Early Stage of Parkinsonism. Mol Neurobiol 61, 2006–2020 (2024). https://doi.org/10.1007/s12035-023-03668-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-023-03668-2

Keywords

Navigation