Skip to main content
Log in

A Ketogenic Diet may Improve Cognitive Function in Rats with Temporal Lobe Epilepsy by Regulating Endoplasmic Reticulum Stress and Synaptic Plasticity

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

A ketogenic diet (KD) is often used in the treatment of refractory epilepsy. Many studies have found that it also has a positive impact on cognitive comorbidities, but the specific mechanism remains unclear. In many disease models, endoplasmic reticulum stress (ERS) and synaptic plasticity is considered a new therapeutic target for improving cognitive impairment, and it has become a research focus in recent years. Recently, studies have found that a KD has a certain regulatory effect on both ERS and synaptic plasticity, but this result has not been confirmed in epilepsy. To investigate the effect of a KD on ERS and synaptic plasticity. In this study, a rat model of temporal lobe epilepsy (TLE) induced by lithium chloride–pilocarpine was used. After the model was successfully established, the rats in each group were fed a normal diet or a KD for 28 days, and the effect of a KD on the latency and seizure frequency of spontaneous recurrent seizures (SRSs) was observed via video monitoring. Subsequently, a Morris water maze was used to evaluate the spatial learning and memory abilities of the rats in each group; the ultrastructure of the ER and the synapses of the hippocampus were observed by transmission electron microscopy, and the dendritic spine density of the hippocampus was analysed by Golgi staining. Long-term potentiation (LTP) was used to detect the synaptic plasticity of the rats’ hippocampi, and the expression of ERS-related proteins and synapse-related proteins was detected by Western blotting. A KD effectively reduced the frequency of SRSs in rats with TLE and improved their learning and memory impairment. Further investigations found that a KD inhibited the up-regulation of glucose-regulated protein 78, phospho-protein kinase-like ER kinase, phosphorylated α subunit of eukaryotic initiation factor 2, activating transcription factor 4 and C/EBP homologous protein expression in the hippocampi of rats with TLE and protected the ultrastructure of the neuronal ER, suggesting that a KD suppressed excessive ERS induced by epilepsy. Concurrently, we also found that a KD not only improved the synaptic ultrastructure and increased the density of dendritic spines in rats with TLE but also reversed the epilepsy-induced LTP deficit to some extent. More importantly, the expression of postsynaptic density protein 95, synaptotagmin-1 and synaptosomal-associated protein 25 in the hippocampi of rats with epilepsy was significantly increased after KD intervention. The study findings indicate that a KD improves learning and memory impairment in rats with epilepsy, possibly by regulating ERS and synaptic plasticity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article.

The data that support the findings of this study are available from the corresponding author, [Weiping Wang], upon reasonable request.

Abbreviations

Syp:

Synaptophysin

Syt 1:

Synaptotagmin 1

SNAP-25:

Synaptosome associated protein 25

PSD-95:

Postsynaptic density 95

References

  1. Guery D, Rheims S (2021) Clinical Management of Drug Resistant Epilepsy: a review on current strategies. Neuropsychiatr Dis Treat 17:2229–2242. https://doi.org/10.2147/NDT.S256699

    Article  PubMed  PubMed Central  Google Scholar 

  2. Pitkänen A, Lukasiuk K, Dudek FE, Staley KJ, Epileptogenesis (2015) Cold Spring Harb Perspect Med 5(10):a022822. https://doi.org/10.1101/cshperspect.a022822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ryvlin P, Cucherat M, Rheims S (2011) Risk of sudden unexpected death in epilepsy in patients given adjunctive antiepileptic treatment for refractory seizures: a meta-analysis of placebo-controlled randomised trials. Lancet Neurol 10(11):961–968. https://doi.org/10.1016/S1474-4422(11)70193-4

    Article  PubMed  Google Scholar 

  4. Elverman KH, Resch ZJ, Quasney EE, Sabsevitz DS, Binder JR, Swanson SJ (2019) Temporal lobe epilepsy is associated with distinct cognitive phenotypes. Epilepsy Behav 96:61–68. https://doi.org/10.1016/j.yebeh.2019.04.015

    Article  PubMed  Google Scholar 

  5. Witt JA, Elger CE, Helmstaedter C (2015) Adverse cognitive effects of antiepileptic pharmacotherapy: each additional drug matters. Eur Neuropsychopharmacol 25(11):1954–1959. https://doi.org/10.1016/j.euroneuro.2015.07.027

    Article  CAS  PubMed  Google Scholar 

  6. Chauvière L (2020) Potential causes of cognitive alterations in temporal lobe epilepsy. Behav Brain Res 378:112310. https://doi.org/10.1016/j.bbr.2019.112310

    Article  PubMed  Google Scholar 

  7. Fu J, Tao T, Li Z, Chen Y, Li J, Peng L (2020) The roles of ER stress in epilepsy: molecular mechanisms and therapeutic implications. Biomed Pharmacother 131:110658. https://doi.org/10.1016/j.biopha.2020.110658

    Article  CAS  PubMed  Google Scholar 

  8. Iurlaro R, Muñoz-Pinedo C (2016) Cell death induced by endoplasmic reticulum stress. FEBS J 283(14):2640–2652. https://doi.org/10.1111/febs.13598

    Article  CAS  PubMed  Google Scholar 

  9. Urra H, Dufey E, Lisbona F, Rojas-Rivera D, Hetz C (2013) When ER stress reaches a dead end. Biochim Biophys Acta 1833(12):3507–3517. https://doi.org/10.1016/j.bbamcr.2013.07.024

    Article  CAS  PubMed  Google Scholar 

  10. Trinh MA, Ma T, Kaphzan H, Bhattacharya A, Antion MD, Cavener DR, Hoeffer CA, Klann E (2014) The eIF2α kinase PERK limits the expression of hippocampal metabotropic glutamate receptor-dependent long-term depression. Learn Mem 21(5):298–304. https://doi.org/10.1101/lm.032219.113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sharma V, Ounallah-Saad H, Chakraborty D, Hleihil M, Sood R, Barrera I, Edry E, Kolatt Chandran S, Ben Tabou de Leon S, Kaphzan H, Rosenblum K (2018) Local inhibition of PERK enhances memory and reverses age-related deterioration of cognitive and neuronal Properties. J Neurosci 38(3):648–658. https://doi.org/10.1523/JNEUROSCI.0628-17.2017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Govindarajulu M, Pinky PD, Steinke I, Bloemer J, Ramesh S, Kariharan T, Rella RT, Bhattacharya S, Dhanasekaran M, Suppiramaniam V, Amin RH (2020) Gut metabolite TMAO induces synaptic plasticity deficits by promoting endoplasmic reticulum stress. Front Mol Neurosci 13:138. https://doi.org/10.3389/fnmol.2020.00138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Richter JD, Klann E (2009) Making synaptic plasticity and memory last: mechanisms of translational regulation. Genes Dev 23(1):1–11. https://doi.org/10.1101/gad.1735809

    Article  CAS  PubMed  Google Scholar 

  14. Grosser S, Buck N, Braunewell KH, Gilling KE, Wozny C, Fidzinski P, Behr J (2020) Loss of long-term potentiation at hippocampal output synapses in experimental temporal lobe Epilepsy. Front Mol Neurosci 13:143. https://doi.org/10.3389/fnmol.2020.00143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Fortier M, Castellano CA, St-Pierre V, Myette-Côté É, Langlois F, Roy M, Morin MC, Bocti C, Fulop T, Godin JP, Delannoy C, Cuenoud B, Cunnane SC (2021) A ketogenic drink improves cognition in mild cognitive impairment: results of a 6-month RCT. Alzheimers Dement 17(3):543–552. https://doi.org/10.1002/alz.12206

    Article  CAS  PubMed  Google Scholar 

  16. Phillips MCL, Murtagh DKJ, Gilbertson LJ, Asztely FJS, Lynch CDP (2018) Low-fat versus ketogenic diet in Parkinson’s disease: a pilot randomized controlled trial. Mov Disord 33(8):1306–1314. https://doi.org/10.1002/mds.27390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. van Berkel AA, IJff DM, Verkuyl JM (2018) Cognitive benefits of the ketogenic diet in patients with epilepsy: a systematic overview. Epilepsy Behav 87:69–77. https://doi.org/10.1016/j.yebeh.2018.06.004

    Article  PubMed  Google Scholar 

  18. Lambrechts DA, Wielders LH, Aldenkamp AP, Kessels FG, de Kinderen RJ, Majoie MJ (2012) The ketogenic diet as a treatment option in adults with chronic refractory epilepsy: efficacy and tolerability in clinical practice. Epilepsy Behav 23(3):310–314. https://doi.org/10.1016/j.yebeh.2012.01.002

    Article  PubMed  Google Scholar 

  19. Qiao Q, Qu Z, Tian S, Cao H, Zhang Y, Sun C, Jia L, Wang W (2022) Ketogenic Diet alleviates hippocampal neurodegeneration possibly via ASIC1a and the mitochondria-mediated apoptotic pathway in a rat model of temporal lobe Epilepsy. Neuropsychiatr Dis Treat 18:2181–2198. https://doi.org/10.2147/NDT.S376979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Curia G, Longo D, Biagini G, Jones RS, Avoli M (2008) The pilocarpine model of temporal lobe epilepsy. J Neurosci Methods 172(2):143–157. https://doi.org/10.1016/j.jneumeth.2008.04.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Smith ZZ, Benison AM, Bercum FM, Dudek FE, Barth DS (2018) Progression of convulsive and nonconvulsive seizures during epileptogenesis after pilocarpine-induced status epilepticus. J Neurophysiol 119(5):1818–1835. https://doi.org/10.1152/jn.00721.2017

    Article  CAS  PubMed  Google Scholar 

  22. Beesley S, Sullenberger T, Crotty T, Ailani R, D’Orio C, Evans K, Ogunkunle EO, Roper MG, Kumar SS (2020) D-serine mitigates cell loss associated with temporal lobe epilepsy. Nat Commun 11(1):4966. https://doi.org/10.1038/s41467-020-18757-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Vorhees CV, Williams MT (2006) Morris water maze: procedures for assessing spatial and related forms of learning and memory. Nat Protoc 1(2):848–858. https://doi.org/10.1038/nprot.2006.116

    Article  PubMed  PubMed Central  Google Scholar 

  24. Güldner FH, Ingham CA (1980) Increase in postsynaptic density material in optic target neurons of the rat suprachiasmatic nucleus after bilateral enucleation. Neurosci Lett 17(1–2):27–31. https://doi.org/10.1016/0304-3940(80)90056-7

    Article  PubMed  Google Scholar 

  25. Chen Z, Brodie MJ, Liew D, Kwan P (2018) Treatment outcomes in patients with newly diagnosed Epilepsy treated with established and New Antiepileptic Drugs: a 30-Year longitudinal cohort study. JAMA Neurol 75(3):279–286. https://doi.org/10.1001/jamaneurol.2017.3949

    Article  PubMed  Google Scholar 

  26. Puchalska P, Crawford PA (2017) Multi-dimensional roles of ketone bodies in fuel metabolism, signaling, and therapeutics. Cell Metab 25(2):262–284. https://doi.org/10.1016/j.cmet.2016.12.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Martin-McGill KJ, Bresnahan R, Levy RG, Cooper PN (2020) Ketogenic diets for drug-resistant epilepsy. Cochrane Database Syst Rev 6(6):CD001903. https://doi.org/10.1002/14651858.CD001903.pub5

    Article  PubMed  Google Scholar 

  28. Murugan M, Boison D (2020) Ketogenic diet, neuroprotection, and antiepileptogenesis. Epilepsy Res 167:106444. https://doi.org/10.1016/j.eplepsyres.2020.106444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lambrechts DA, Bovens MJ, de la Parra NM, Hendriksen JG, Aldenkamp AP, Majoie MJ (2013) Ketogenic diet effects on cognition, mood, and psychosocial adjustment in children. Acta Neurol Scand 127(2):103–108. https://doi.org/10.1111/j.1600-0404.2012.01686.x

    Article  CAS  PubMed  Google Scholar 

  30. Jiang Y, Lu Y, Jia M, Wang X, Zhang Z, Hou Q, Wang B (2016) Ketogenic diet attenuates spatial and item memory impairment in pentylenetetrazol-kindled rats. Brain Res 1646:451–458. https://doi.org/10.1016/j.brainres.2016.06.029

    Article  CAS  PubMed  Google Scholar 

  31. Lenck-Santini PP, Scott RC (2015) Mechanisms responsible for cognitive impairment in Epilepsy. Cold Spring Harb Perspect Med 5(10):a022772. https://doi.org/10.1101/cshperspect.a022772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Fu J, Peng L, Wang W, He H, Zeng S, Chen TC, Chen Y (2019) Sodium Valproate reduces neuronal apoptosis in Acute Pentylenetetrzole-Induced seizures via inhibiting ER stress. Neurochem Res 44(11):2517–2526. https://doi.org/10.1007/s11064-019-02870-w

    Article  CAS  PubMed  Google Scholar 

  33. Khan S (2022) Endoplasmic reticulum in metaplasticity: from Information Processing to synaptic Proteostasis. Mol Neurobiol 59(9):5630–5655. https://doi.org/10.1007/s12035-022-02916-1

    Article  CAS  PubMed  Google Scholar 

  34. Chen G, Wei X, Xu X, Yu G, Yong Z, Su R, Tao L (2021) Methamphetamine inhibits Long-Term Memory Acquisition and synaptic plasticity by evoking endoplasmic reticulum stress. Front Neurosci 14:630713. https://doi.org/10.3389/fnins.2020.630713

    Article  PubMed  PubMed Central  Google Scholar 

  35. Nie J, Liu A, Tan Q, Zhao K, Hu K, Li Y, Yan B, Zhou L (2017) AICAR activates ER stress-dependent apoptosis in gallbladder cancer cells. Biochem Biophys Res Commun 482(2):246–252. https://doi.org/10.1016/j.bbrc.2016.11.050

    Article  CAS  PubMed  Google Scholar 

  36. Tamaki T, Kamatsuka K, Sato T, Morooka S, Otsuka K, Hattori M, Sugiyama T (2017) A novel transmembrane protein defines the endoplasmic reticulum stress-induced cell death pathway. Biochem Biophys Res Commun 486(1):149–155. https://doi.org/10.1016/j.bbrc.2017.03.017

    Article  CAS  PubMed  Google Scholar 

  37. Hetz C, Saxena S (2017) ER stress and the unfolded protein response in neurodegeneration. Nat Rev Neurol 13(8):477–491. https://doi.org/10.1038/nrneurol.2017.99

    Article  CAS  PubMed  Google Scholar 

  38. Guo M, Wang X, Zhao Y, Yang Q, Ding H, Dong Q, Chen X, Cui M (2018) Ketogenic Diet improves brain ischemic tolerance and inhibits NLRP3 inflammasome activation by preventing Drp1-Mediated mitochondrial fission and endoplasmic reticulum stress. Front Mol Neurosci 11:86. https://doi.org/10.3389/fnmol.2018.00086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wallace MA, Aguirre NW, Marcotte GR, Marshall AG, Baehr LM, Hughes DC, Hamilton KL, Roberts MN, Lopez-Dominguez JA, Miller BF, Ramsey JJ, Baar K (2021) The ketogenic diet preserves skeletal muscle with aging in mice. Aging Cell 20(4):e13322. https://doi.org/10.1111/acel.13322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Sun C, Fu J, Qu Z, Jia L, Li D, Zhen J, Wang W (2021) Chronic intermittent hypobaric hypoxia restores Hippocampus function and rescues cognitive impairments in chronic epileptic rats via Wnt/β-catenin signaling. Front Mol Neurosci 13:617143. https://doi.org/10.3389/fnmol.2020.617143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Swann JW, Al-Noori S, Jiang M, Lee CL (2000) Spine loss and other dendritic abnormalities in epilepsy. Hippocampus 10(5):617–625. https://doi.org/10.1002/1098-1063(2000)10:5%3C617::AID-HIPO13%3E3.0.CO;2-R

    Article  CAS  PubMed  Google Scholar 

  42. Swann JW (2008) The spine loss paradox: clues to mechanisms and meaning. Epilepsy Curr 8(6):168–169. https://doi.org/10.1111/j.1535-7511.2008.00282.x

    Article  PubMed  PubMed Central  Google Scholar 

  43. McNamara JO, Huang YZ, Leonard AS (2006) Molecular signaling mechanisms underlying epileptogenesis. Sci STKE 2006(356):re12. https://doi.org/10.1126/stke.3562006re12

    Article  PubMed  Google Scholar 

  44. Xu Y, Jiang C, Wu J, Liu P, Deng X, Zhang Y, Peng B, Zhu Y (2022) Ketogenic diet ameliorates cognitive impairment and neuroinflammation in a mouse model of Alzheimer’s disease. CNS Neurosci Ther 28(4):580–592. https://doi.org/10.1111/cns.13779

    Article  CAS  PubMed  Google Scholar 

  45. Nagaraja RY, Becker A, Reymann KG, Balschun D (2005) Repeated administration of group I mGluR antagonists prevents seizure-induced long-term aberrations in hippocampal synaptic plasticity. Neuropharmacology 49 Suppl 1:179–187. https://doi.org/10.1016/j.neuropharm.2005.05.016

    Article  CAS  PubMed  Google Scholar 

  46. Bernard C, Wheal HV (1995) Plasticity of AMPA and NMDA receptor-mediated epileptiform activity in a chronic model of temporal lobe epilepsy. Epilepsy Res 21(2):95–107. https://doi.org/10.1016/0920-1211(95)00017-5

    Article  CAS  PubMed  Google Scholar 

  47. Postnikova TY, Trofimova AM, Ergina JL, Zubareva OE, Kalemenev SV, Zaitsev AV (2019) Transient switching of NMDA-Dependent long-term synaptic potentiation in CA3-CA1 hippocampal synapses to mGluR1-Dependent potentiation after Pentylenetetrazole-Induced Acute seizures in young rats. Cell Mol Neurobiol 39(2):287–300. https://doi.org/10.1007/s10571-018-00647-3

    Article  CAS  PubMed  Google Scholar 

  48. Beck H, Goussakov IV, Lie A, Helmstaedter C, Elger CE (2000) Synaptic plasticity in the human dentate gyrus. J Neurosci 20(18):7080–7086. https://doi.org/10.1523/JNEUROSCI.20-18-07080.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kim DY, Hao J, Liu R, Turner G, Shi FD, Rho JM (2012) Inflammation-mediated memory dysfunction and effects of a ketogenic diet in a murine model of multiple sclerosis. PLoS ONE 7(5):e35476. https://doi.org/10.1371/journal.pone.0035476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ciarlone SL, Grieco JC, D’Agostino DP, Weeber EJ (2016) Ketone ester supplementation attenuates seizure activity, and improves behavior and hippocampal synaptic plasticity in an Angelman syndrome mouse model. Neurobiol Dis 96:38–46. https://doi.org/10.1016/j.nbd.2016.08.002

    Article  CAS  PubMed  Google Scholar 

  51. Bough KJ, Wetherington J, Hassel B, Pare JF, Gawryluk JW, Greene JG, Shaw R, Smith Y, Geiger JD, Dingledine RJ (2006) Mitochondrial biogenesis in the anticonvulsant mechanism of the ketogenic diet. Ann Neurol 60(2):223–235. https://doi.org/10.1002/ana.20899

    Article  CAS  PubMed  Google Scholar 

  52. Kim DY, Vallejo J, Rho JM (2010) Ketones prevent synaptic dysfunction induced by mitochondrial respiratory complex inhibitors. J Neurochem 114(1):130–141. https://doi.org/10.1111/j.1471-4159.2010.06728.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Meyer D, Bonhoeffer T, Scheuss V (2014) Balance and stability of synaptic structures during synaptic plasticity. Neuron 82(2):430–443. https://doi.org/10.1016/j.neuron.2014.02.031. Erratum in: Neuron. Jun 4;82(5):1188

    Article  CAS  PubMed  Google Scholar 

  54. Mullany P, Lynch MA (1997) Changes in protein synthesis and synthesis of the synaptic vesicle protein, synaptophysin, in entorhinal cortex following induction of long-term potentiation in dentate gyrus: an age-related study in the rat. Neuropharmacology 36(7):973–980. https://doi.org/10.1016/s0028-3908(97)00073-7

    Article  CAS  PubMed  Google Scholar 

  55. Sze CI, Troncoso JC, Kawas C, Mouton P, Price DL, Martin LJ (1997) Loss of the presynaptic vesicle protein synaptophysin in hippocampus correlates with cognitive decline in Alzheimer disease. J Neuropathol Exp Neurol 56(8):933–944. https://doi.org/10.1097/00005072-199708000-00011

    Article  CAS  PubMed  Google Scholar 

  56. Wyneken U, Marengo JJ, Villanueva S, Soto D, Sandoval R, Gundelfinger ED, Orrego F (2003) Epilepsy-induced changes in signaling systems of human and rat postsynaptic densities. Epilepsia 44(2):243–246. https://doi.org/10.1046/j.1528-1157.2003.17602.x

    Article  CAS  PubMed  Google Scholar 

  57. Yang JW, Czech T, Felizardo M, Baumgartner C, Lubec G (2006) Aberrant expression of cytoskeleton proteins in hippocampus from patients with mesial temporal lobe epilepsy. Amino Acids 30(4):477–493. https://doi.org/10.1007/s00726-005-0281-y

    Article  CAS  PubMed  Google Scholar 

  58. Zhang FX, Sun QJ, Zheng XY, Lin YT, Shang W, Wang AH, Duan RS, Chi ZF (2014) Abnormal expression of synaptophysin, SNAP-25, and synaptotagmin 1 in the hippocampus of kainic acid-exposed rats with behavioral deficits. Cell Mol Neurobiol 34(6):813–824. https://doi.org/10.1007/s10571-014-0068-3

    Article  CAS  PubMed  Google Scholar 

  59. Shehata NI, Abdelsamad MA, Amin HAA, Sadik NAH, Shaheen AA (2022) Ameliorating effect of ketogenic diet on acute status epilepticus: insights into biochemical and histological changes in rat hippocampus. J Food Biochem 46(9):e14217. https://doi.org/10.1111/jfbc.14217

    Article  CAS  PubMed  Google Scholar 

  60. Niu Y, Chang P, Liu T, Shen X, Zhao H, Zhang M, Lei S, Chen B, Yu J (2022) Obese mice induced by high-fat diet have differential expression of circular RNAs involved in endoplasmic reticulum stress and neuronal synaptic plasticity of hippocampus leading to obesity-associated cognitive impairment. Front Mol Neurosci 15:1000482. https://doi.org/10.3389/fnmol.2022.1000482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Shen FY, Song YC, Guo F, Xu ZD, Li Q, Zhang B, Ma YQ, Zhang YQ, Lin R, Li Y, Liu ZQ (2018) Cognitive impairment and endoplasmic reticulum stress Induced by repeated short-term sevoflurane exposure in early life of rats. Front Psychiatry 9:332. https://doi.org/10.3389/fpsyt.2018.00332

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

This work was supported by Project of Hebei Provincial Department of Health (20180310) and Natural Science Foundation of Hebei Province (H2018206435).

Author information

Authors and Affiliations

Authors

Contributions

All authors made a significant contribution to the work reported, whether that is in the conception, study design, execution, acquisition of data, analysis and interpretation, or in all these areas; took part in drafting, revising or critically reviewing the article; gave final approval of the version to be published; have agreed on the journal to which the article has been submitted; and agree to be accountable for all aspects of the work.

Corresponding authors

Correspondence to Zhenzhen Qu or Weiping Wang.

Ethics declarations

Ethics Approval

The experimental protocol was approved by the Animal Experimentation Ethics Committee of The Second Hospital of Hebei Medical University. Experimental animals underwent all procedures under anesthesia, and every effort was made to minimize their pain, suffering, and death.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing interests

All of the authors had no any personal, financial, commercial, or academic conflicts of interest separately.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Zhenzhen Qu (quzhenzhen1986@126.com) is the main corresponding author of this paper.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiao, Q., Tian, S., Zhang, Y. et al. A Ketogenic Diet may Improve Cognitive Function in Rats with Temporal Lobe Epilepsy by Regulating Endoplasmic Reticulum Stress and Synaptic Plasticity. Mol Neurobiol 61, 2249–2264 (2024). https://doi.org/10.1007/s12035-023-03659-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-023-03659-3

Keywords

Navigation