Skip to main content
Log in

Knockdown of SIK3 in the CA1 Region can Reduce Seizure Susceptibility in Mice by Inhibiting Decreases in GABAAR α1 Expression

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Imbalance between excitation and inhibition is an important cause of epilepsy. Salt-inducible kinase 1 (SIK1) gene mutation can cause epilepsy. In this study, we first found that the expression of SIK3 is increased after epilepsy. Furthermore, the role of SIK3 in epilepsy was explored. In cultured hippocampal neurons, we used Pterosin B, a selective SIK3 inhibitor that can inhibit epileptiform discharges induced by the convulsant drug cyclothiazide (a positive allosteric modulator of AMPA receptors, CTZ). Knockdown of SIK3 inhibited epileptiform discharges and increased the amplitude of miniature inhibitory postsynaptic currents (mIPSCs). In mice, knockdown of SIK3 reduced epilepsy susceptibility in a pentylenetetrazole (a GABAA receptor antagonist, PTZ) acute kindling experiment and increased the expression of GABAA receptor α1. In conclusion, our results suggest that blockade or knockdown of SIK3 can inhibit epileptiform discharges and that SIK3 has the potential to be a novel target for epilepsy treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The data and materials used or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Moshe SL, Perucca E, Ryvlin P, Tomson T (2015) Epilepsy: new advances. Lancet 385:884–898. https://doi.org/10.1016/S0140-6736(14)60456-6

    Article  PubMed  Google Scholar 

  2. Becker AJ (2018) Review: Animal models of acquired epilepsy: insights into mechanisms of human epileptogenesis. Neuropathol Appl Neurobiol 44:112–129. https://doi.org/10.1111/nan.12451

    Article  CAS  PubMed  Google Scholar 

  3. Manford M (2017) Recent advances in epilepsy. J Neurol 264:1811–1824. https://doi.org/10.1007/s00415-017-8394-2

    Article  PubMed  PubMed Central  Google Scholar 

  4. Vezzani A, Fujinami RS, White HS, Preux PM, Blümcke I, Sander JW et al (2016) Infections, inflammation and epilepsy. Acta Neuropathol 131:211–234. https://doi.org/10.1007/s00401-015-1481-5

    Article  CAS  PubMed  Google Scholar 

  5. Akyuz E, Polat AK, Eroglu E, Kullu I, Angelopoulou E, Paudel YN (2021) Revisiting the role of neurotransmitters in epilepsy: An updated review. Life Sci 265:118826. https://doi.org/10.1016/j.lfs.2020.118826

    Article  CAS  PubMed  Google Scholar 

  6. Treiman DM (2001) GABAergic Mechanisms in Epilepsy. Epilepsia 42:8–12. https://doi.org/10.1046/j.1528-1157.2001.042suppl.3008.x

    Article  PubMed  Google Scholar 

  7. Thijs RD, Surges R, O’Brien TJ, Sander JW (2019) Epilepsy in adults. Lancet 393:689–701. https://doi.org/10.1016/S0140-6736(18)32596-0

    Article  PubMed  Google Scholar 

  8. Wein MN, Foretz M, Fisher DE, Xavier RJ, Kronenberg HM (2018) Salt inducible kinases: physiology, regulation by cAMP, and therapeutic potential. Trends Endocrinol Metab 29:723–735. https://doi.org/10.1016/j.tem.2018.08.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hansen J, Snow C, Tuttle E, Ghoneim DH, Yang CS, Spencer A et al (2015) De novo mutations in SIK1 cause a spectrum of developmental epilepsies. Am J Hum Genet 96:682–690. https://doi.org/10.1016/j.ajhg.2015.02.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Pang B, Mori T, Badawi M, Zhou MY, Guo Q, Suzuki-Kouyama E et al (2022) An Epilepsy-Associated Mutation of Salt-Inducible Kinase 1 Increases the Susceptibility to Epileptic Seizures and Interferes with Adrenocorticotropic Hormone Therapy for Infantile Spasms in Mice. Int J Mol Sci 23:7927. https://doi.org/10.3390/ijms23147927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Katoh Y, Takemori H, Horike N, Doi J, Muraoka M, Min Li et al (2004) Salt-inducible kinase (SIK) isoforms: their involvement in steroidogenesis and adipogenesis. Mol Cell Endocrinol 217:109–112. https://doi.org/10.1016/j.mce.2003.10.016

    Article  CAS  PubMed  Google Scholar 

  12. Wang ZQ, Ma J, Miyoshi C, Li YX, Sato M, Ogawa Y et al (2018) Quantitative phosphoproteomic analysis of the molecular substrates of sleep need. Nature 558:435–439. https://doi.org/10.1038/s41586-018-0218-8

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  13. Uebi T, Itoh Y, Hatano O, Kumagai A, Sanosaka M, Sasaki T et al (2012) Involvement of SIK3 in glucose and lipid homeostasis in mice. PLoS One 7:e37803. https://doi.org/10.1371/journal.pone.0037803

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wang B, Moya N, Niessen S, Hoover H, Mihaylova MM, Shaw RJ et al (2011) A hormone-dependent module regulating energy balance. Cell 145:596–606. https://doi.org/10.1016/j.cell.2011.04.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Iwasaki K, Fujiyama T, Nakata S, Park M, Miyoshi C, Hotta-Hirashima N et al (2021) Induction of Mutant Sik3Sleepy Allele in Neurons in Late Infancy Increases Sleep Need. J Neurosci 41:2733–2746. https://doi.org/10.1523/JNEUROSCI.1004-20.2020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhou R, Wang G, Li Q, Meng F, Liu C, Gan R et al (2022) A signalling pathway for transcriptional regulation of sleep amount in mice. Nature 612:519–527. https://doi.org/10.1038/s41586-022-05510-6

    Article  ADS  CAS  PubMed  Google Scholar 

  17. Kim SJ, Hotta-Hirashima N, Asano F, Kitazono T, Iwasaki K, Nakata S et al (2022) Kinase signalling in excitatory neurons regulates sleep quantity and depth. Nature 612:512–518. https://doi.org/10.1038/s41586-022-05450-1

    Article  ADS  CAS  PubMed  Google Scholar 

  18. Lu B, Nagappan G, Lu Y (2014) BDNF and synaptic plasticity, cognitive function, and dysfunction. Handb Exp Pharmacol 220:223–250. https://doi.org/10.1007/978-3-642-45106-5_9

    Article  CAS  PubMed  Google Scholar 

  19. Esvald EE, Tuvikene J, Sirp A, Patil S, Bramham CR, Timmusk T (2020) CREB Family Transcription Factors Are Major Mediators of BDNF Transcriptional Autoregulation in Cortical Neurons. J Neurosci 40:1405–1426. https://doi.org/10.1523/JNEUROSCI.0367-19.2019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. West AE, Pruunsild P, Timmusk T (2014) Neurotrophins: transcription and translation. Handb Exp Pharmacol 220:67–100. https://doi.org/10.1007/978-3-642-45106-5_4

    Article  CAS  PubMed  Google Scholar 

  21. Pruunsil P, Sepp M, Orav E, Koppel I, Timmusk T (2011) Identification of cis-elements and transcription factors regulating neuronal activitydependent transcription of human BDNF gene. J Neurosci 31:3295–3308. https://doi.org/10.1523/JNEUROSCI.4540-10.2011

    Article  CAS  Google Scholar 

  22. Benito E, Valor LM, Jimenez-Minchan M, Huber W, Barco A (2011) cAMP Response Element-Binding Protein Is a Primary Hub of Activity-Driven Neuronal Gene Expression. J Neurosci 31:18237–18250. https://doi.org/10.1523/JNEUROSCI.4554-11.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lund IV, Hu YH, Raol YH, Benham RS, Faris R, Russek SJ et al (2008) BDNF selectively regulates GABAA receptor transcription by activation of the JAK/STAT pathway. Sci Signal 1:ra9. https://doi.org/10.1126/scisignal.1162396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Jiang M, Chen G (2006) High Ca2+-phosphate transfection efficiency in low-density neuronal cultures. Nat Protoc 1:695–700. https://doi.org/10.1038/nprot.2006.86

    Article  CAS  PubMed  Google Scholar 

  25. Zheng QQ, Zhu T, Hu H, Zhao Y, Ying YC, Luo XY et al (2020) TRPM2 ion channel is involved in the aggravation of cognitive impairment and down regulation of epilepsy threshold in pentylenetetrazole-induced kindling mice. Brain Res Bull 155:48–60. https://doi.org/10.1016/j.brainresbull.2019.11.018

    Article  CAS  PubMed  Google Scholar 

  26. Racine RJ (1972) Modification of seizure activity by electrical stimulation. II. Motor seizure. Electroencephalogr Clin Neurophysiol 32:281–294. https://doi.org/10.1016/0013-4694(72)90177-0

    Article  CAS  PubMed  Google Scholar 

  27. Dai XJ, Liu H, Yang Y, Wang Y, Wan F (2021) Brain network excitatory/inhibitory imbalance is a biomarker for drug-naive Rolandic epilepsy: A radiomics strategy. Epilepsia 62:2426–2438. https://doi.org/10.1111/epi.17011

    Article  CAS  PubMed  Google Scholar 

  28. Wang GY, Luan YL, Che NW, Yan DB, Sun XW, Zhang C et al (2021) Inhibition of microRNA-129–2–3p protects against refractory temporal lobe epilepsy by regulating GABRA1. Brain Behav 11:e02195. https://doi.org/10.1002/brb3.2195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Vicini S, Ferguson C, Prybylowski K, Kralic J, Morrow AL, Homanics GE (2001) GABA(A) receptor alpha1 subunit deletion prevents developmental changes of inhibitory synaptic currents in cerebellar neurons. J Neurosci 21:3009–3016. https://doi.org/10.1523/JNEUROSCI.21-09-03009.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Itoh Y, Sanosaka M, Fuchino H, Yahara Y, Kumagai A, Takemoto D et al (2015) Salt-inducible Kinase 3 Signaling Is Important for the Gluconeogenic Programs in Mouse Hepatocytes. J Biol Chem 290:17879–17893. https://doi.org/10.1074/jbc.M115.640821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Huang C, Li W-G, Zhang X-B, Wang Li, Tian-Le Xu, Dazheng Wu, Li Y (2013) α-asarone from Acorus gramineus alleviates epilepsy by modulating A-type GABA receptors. Neuropharmacology 65:1–11. https://doi.org/10.1016/j.neuropharm.2012.09.001

    Article  CAS  PubMed  Google Scholar 

  32. Hwang H, Seo J, Choi Y, Cho E, Sohn H, Jang J et al (2020) Ccny knockout mice display an enhanced susceptibility to kainic acid induced epilepsy. Pharmacol Res 160:105100. https://doi.org/10.1016/j.phrs.2020.105100

    Article  CAS  PubMed  Google Scholar 

  33. Kovac S, Domijan A-M, Walker MC, Abramov AY (2014) Seizure activity results in calcium- and mitochondriaindependent ROS production via NADPH and xanthine oxidase activation. Cell Death Dis 5:e1442. https://doi.org/10.1038/cddis.2014.390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Staley K (2015) Molecular mechanisms of epilepsy. Nat Neurosci 18:367–372. https://doi.org/10.1038/nn.3947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Pennacchio P, Noé F, Gnatkovsky V, Moroni RF, Zucca I, Regondi MC et al (2015) Increased pCREB expression and the spontaneous epileptiform activity in a BCNU-treated rat model of cortical dysplasia. Epilepsia 56:1343–1354. https://doi.org/10.1111/epi.13070

    Article  CAS  PubMed  Google Scholar 

  36. Zhu X, Han X, Blendy JA, Porter BE (2012) Decreased CREB levels suppress epilepsy. Neurobiol Dis 45:253–263. https://doi.org/10.1016/j.nbd.2011.08.009

    Article  CAS  PubMed  Google Scholar 

  37. Sharma P, Kumar A, Singh D (2019) Dietary Flavonoids Interaction with CREB-BDNF Pathway: An Unconventional Approach for Comprehensive Management of Epilepsy. Curr Neuropharmacol 17:1158–1175. https://doi.org/10.2174/1570159X17666190809165549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Colucci-D’Amato L, Speranza L, Volpicelli F (2020) Neurotrophic Factor BDNF, Physiological Functions and Therapeutic Potential in Depression, Neurodegeneration and Brain Cancer. Int J Mol Sci 21:7777. https://doi.org/10.3390/ijms21207777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Binder DK, Croll SD, Gall CM, Scharfman HE (2001) BDNF and epilepsy: too much of a good thing? Trends Neurosci 24:47–53. https://doi.org/10.1016/s0166-2236(00)01682-9

    Article  CAS  PubMed  Google Scholar 

  40. Lin TW, Harward SC, Huang YZ, McNamara JO (2020) Targeting BDNF/TrkB pathways for preventing or suppressing epilepsy. Neuropharmacology 167:107734. https://doi.org/10.1016/j.neuropharm.2019.107734

    Article  CAS  PubMed  Google Scholar 

  41. Wang L, Chang XY, She L, Xu D, Huang W, Poo MM (2015) Autocrine Action of BDNF on Dendrite Development of Adult-Born Hippocampal Neurons. J Neurosci 35:8384–8393. https://doi.org/10.1523/JNEUROSCI.4682-14.2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Roberts DS, Hu YH, Lund IV, Brooks-Kayal AR, Russek SJ (2006) Brain-derived neurotrophic factor (BDNF)-induced synthesis of early growth response factor 3 (Egr3) controls the levels of type A GABA receptor alpha 4 subunits in hippocampal neurons. J Biol Chem 281:29431–29435. https://doi.org/10.1074/jbc.C600167200

    Article  CAS  PubMed  Google Scholar 

  43. Sperk G, Furtinger S, Schwarzer C, Pirker S (2004) GABA and its receptors in epilepsy. Adv Exp Med Biol 548:92–103. https://doi.org/10.1007/978-1-4757-6376-8_7

    Article  CAS  PubMed  Google Scholar 

  44. Jansen LA, Peugh LD, Roden WH, Ojemann JG (2010) Impaired maturation of cortical GABA(A) receptor expression in pediatric epilepsy. Epilepsia 51:1456–1467. https://doi.org/10.1111/j.1528-1167.2009.02491.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Laschet JJ, Kurcewicz I, Minier F, Trottier S, Khallou-Laschet J, Louvel J et al (2007) Dysfunction of GABAA receptor glycolysis-dependent modulation in human partial epilepsy. Proc Natl Acad Sci USA Feb 104:3472–7. https://doi.org/10.1073/pnas.0606451104

  46. Zhou CW, Ding L, Deel ME, Ferrick EA, Emeson RB, Gallagher MJ (2015) Altered intrathalamic GABAA neurotransmission in a mouse model of a human genetic absence epilepsy syndrome. Neurobiol Dis 73:407–417. https://doi.org/10.1016/j.nbd.2014.10.021

    Article  CAS  PubMed  Google Scholar 

  47. McCormick DA, Contreras D (2001) On the cellular and network bases of epileptic seizures. Annu Rev Physiol 63:815–846. https://doi.org/10.1146/annurev.physiol.63.1.815

    Article  CAS  PubMed  Google Scholar 

  48. Spruston N, Jaffe DB, Johnston D (1994) Dendritic attenuation of synaptic potentials and currents: the role of passive membrane properties. Trends Neurosci 17:161–166. https://doi.org/10.1016/0166-2236(94)90094-9

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Hanbio Co. Ltd. (Shanghai, China) for providing the AAV for this research.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

Jian Yin designed the study. Zhen-fu Jiang and Li-Na Xuan performed the experiments. Xiao-Wan Sun and Shao-Bo Liu analyzed the data. Zhen-fu Jiang wrote the manuscript. Jian Yin critically edited the manuscript.

Corresponding authors

Correspondence to Zhen-Fu Jiang or Jian Yin.

Ethics declarations

Ethics Approval and Consent to Participate

The study was approved by the Ethics Committee of Dalian Medical University (reference number: L20160265).

Consent for Publication

Written informed consent for publication was obtained from all authors.

Competing Interests

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Zhen-Fu Jiang is the first author.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (TIF 1130 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, ZF., Xuan, LN., Sun, XW. et al. Knockdown of SIK3 in the CA1 Region can Reduce Seizure Susceptibility in Mice by Inhibiting Decreases in GABAAR α1 Expression. Mol Neurobiol 61, 1404–1416 (2024). https://doi.org/10.1007/s12035-023-03630-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-023-03630-2

Keywords

Navigation