Skip to main content

Advertisement

Log in

Perineuronal Nets Alterations Contribute to Stress-Induced Anxiety-Like Behavior

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Anxiety disorder is one of the most common mental disorders worldwide, affecting nearly 30% of adults. However, its underlying molecular mechanisms are still unclear. Here we subjected mice to chronic restraint stress (CRS), a paradigm known to induce anxiety-like behavior in mice. CRS mice exhibited anxiety-like behavior and reduced synaptic transmission in the medial prefrontal cortex (mPFC). Notably, Wisteria Floribunda agglutinin (WFA) staining showed a reduction of perineuronal nets (PNNs) expression in the mPFC of CRS mice. And the mRNA and protein levels of aggrecan (ACAN), a core component of PNNs, were also reduced. Parallelly, enzymatic digestion of PNNs in the mPFC by injecting Chondroitinase ABC (chABC) resulted in anxiety-like behavior in mice. Fluoxetine (FXT) is a clinically prescribed antidepressant/anxiolytic drug. FXT treatment in CRS mice not only ameliorated their deficits in behavior and synaptic transmissions, but also prevented CRS-induced reduction of PNNs and ACAN expressions. This study demonstrates that proper PNNs level is critical to brain functions, and their decline may serve as a pathological mechanism of anxiety disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

All data generated and analyzed in this study are available from the corresponding author on reasonable request.

References

  1. Tovote P, Fadok JP, Lüthi A (2015) Neuronal circuits for fear and anxiety. Nat Rev Neurosci 16(6):317–331

    Article  CAS  PubMed  Google Scholar 

  2. Nuss P (2015) Anxiety disorders and GABA neurotransmission: a disturbance of modulation. Neuropsychiatr Dis Treat 11:165–175

    PubMed  PubMed Central  Google Scholar 

  3. Kessler RC, Berglund P, Demler O, Jin R, Koretz D, Merikangas KR et al (2003) The epidemiology of major depressive disorder: results from the National Comorbidity Survey Replication (NCS-R). JAMA 289(23):3095–3105

    Article  PubMed  Google Scholar 

  4. Hariri AR, Holmes A (2015) Finding translation in stress research. Nat Neurosci 18(10):1347–1352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Celio MR, Spreafico R, De Biasi S, Vitellaro-Zuccarello L (1998) Perineuronal nets: past and present. Trends Neurosci 21(12):510–515

    Article  CAS  PubMed  Google Scholar 

  6. Deepa SS, Carulli D, Galtrey C, Rhodes K, Fukuda J, Mikami T et al (2006) Composition of perineuronal net extracellular matrix in rat brain: a different disaccharide composition for the net-associated proteoglycans. J Biol Chem 281(26):17789–17800

    Article  CAS  PubMed  Google Scholar 

  7. Sorg BA, Berretta S, Blacktop JM, Fawcett JW, Kitagawa H, Kwok JCF et al (2016) Casting a wide net: role of perineuronal nets in neural plasticity. J Neurosci 36(45):11459–11468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Fawcett JW, Oohashi T, Pizzorusso T (2019) The roles of perineuronal nets and the perinodal extracellular matrix in neuronal function. Nat Rev Neurosci 20(8):451–465

    Article  CAS  PubMed  Google Scholar 

  9. Reichelt AC, Hare DJ, Bussey TJ, Saksida LM (2019) Perineuronal nets: plasticity, protection, and therapeutic potential. Trends Neurosci 42(7):458–470

    Article  CAS  PubMed  Google Scholar 

  10. Fawcett JW, Fyhn M, Jendelova P, Kwok JCF, Ruzicka J, Sorg BA (2022) The extracellular matrix and perineuronal nets in memory. Mol Psychiatry 27(8):3192–3203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Tewari BP, Chaunsali L, Campbell SL, Patel DC, Goode AE, Sontheimer H (2018) Perineuronal nets decrease membrane capacitance of peritumoral fast spiking interneurons in a model of epilepsy. Nat Commun 9(1):4724

    Article  PubMed  PubMed Central  Google Scholar 

  12. Enwright JF, Sanapala S, Foglio A, Berry R, Fish KN, Lewis DA (2016) Reduced labeling of parvalbumin neurons and perineuronal nets in the dorsolateral prefrontal cortex of subjects with schizophrenia. Neuropsychopharmacology 41(9):2206–2214

    Article  PubMed  PubMed Central  Google Scholar 

  13. Wen TH, Binder DK, Ethell IM, Razak KA (2018) The perineuronal ‘safety’ net? Perineuronal net abnormalities in neurological disorders. Front Mol Neurosci 11:270

  14. Mauney SA, Athanas KM, Pantazopoulos H, Shaskan N, Passeri E, Berretta S et al (2013) Developmental pattern of perineuronal nets in the human prefrontal cortex and their deficit in schizophrenia. Biol Psychiatry 74(6):427–435

    Article  PubMed  PubMed Central  Google Scholar 

  15. Page CE, Coutellier L (2018) Adolescent stress disrupts the maturation of anxiety-related behaviors and alters the developmental trajectory of the prefrontal cortex in a sex- and age-specific manner. Neuroscience 390:265–277

    Article  CAS  PubMed  Google Scholar 

  16. Santiago AN, Lim KY, Opendak M, Sullivan RM, Aoki C (2018) Early life trauma increases threat response of peri-weaning rats, reduction of axo-somatic synapses formed by parvalbumin cells and perineuronal net in the basolateral nucleus of amygdala. J Comp Neurol 526(16):2647–2664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Castillo-Gómez E, Pérez-Rando M, Bellés M, Gilabert-Juan J, Llorens JV, Carceller H et al (2017) Early social isolation stress and perinatal NMDA receptor antagonist treatment induce changes in the structure and neurochemistry of inhibitory neurons of the adult amygdala and prefrontal cortex. eNeuro 4(2):ENEURO.0034-17.2017

  18. Yu Z, Han Y, Hu D, Chen N, Zhang Z, Chen W et al (2022) Neurocan regulates vulnerability to stress and the anti-depressant effect of ketamine in adolescent rats. Mol Psychiatry 27(5):2522–2532

    Article  CAS  PubMed  Google Scholar 

  19. Klimczak P, Rizzo A, Castillo-Gómez E, Perez-Rando M, Gramuntell Y, Beltran M et al (2021) Parvalbumin interneurons and perineuronal nets in the hippocampus and retrosplenial cortex of adult male mice after early social isolation stress and perinatal nmda receptor antagonist treatment. Front Synaptic Neurosci 13:733989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ueno H, Suemitsu S, Murakami S, Kitamura N, Wani K, Okamoto M et al (2017) Region-specific impairments in parvalbumin interneurons in social isolation-reared mice. Neuroscience 359:196–208

    Article  CAS  PubMed  Google Scholar 

  21. Gomes FV, Zhu X, Grace AA (2020) The pathophysiological impact of stress on the dopamine system is dependent on the state of the critical period of vulnerability. Mol Psychiatry 25(12):3278–3291

    Article  CAS  PubMed  Google Scholar 

  22. Ueno H, Suemitsu S, Murakami S, Kitamura N, Wani K, Matsumoto Y et al (2018) Juvenile stress induces behavioral change and affects perineuronal net formation in juvenile mice. BMC Neurosci 19(1):41

    Article  PubMed  PubMed Central  Google Scholar 

  23. de Araújo Costa Folha OA, Bahia CP, de Aguiar GPS, Herculano AM, Coelho NLG, de Sousa MBC et al (2017) Effect of chronic stress during adolescence in prefrontal cortex structure and function. Behav Brain Res 326:44–51

  24. Lee J, Lee K (2021) Parvalbumin-expressing GABAergic interneurons and perineuronal nets in the prelimbic and orbitofrontal cortices in association with basal anxiety-like behaviors in adult mice. Behav Brain Res 398:112915

    Article  CAS  PubMed  Google Scholar 

  25. Lin D, Li L, Chen WB, Chen J, Ren D, Zheng ZH et al (2023) LHPP, a risk factor for major depressive disorder, regulates stress-induced depression-like behaviors through its histidine phosphatase activity. Mol Psychiatry 28(2):908–918

    Article  CAS  PubMed  Google Scholar 

  26. Liu WZ, Zhang WH, Zheng ZH, Zou JX, Liu XX, Huang SH et al (2020) Identification of a prefrontal cortex-to-amygdala pathway for chronic stress-induced anxiety. Nat Commun 11(1):2221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Luo B, Liu Z, Lin D, Chen W, Ren D, Yu Z et al (2021) ErbB4 promotes inhibitory synapse formation by cell adhesion, independent of its kinase activity. Transl Psychiatry 11(1):361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Chen P, Liu Z, Zhang Q, Lin D, Song L, Liu J et al (2022) DSCAM deficiency leads to premature spine maturation and autism-like behaviors. J Neurosci 42(4):532–551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Han S, Tai C, Westenbroek RE, Yu FH, Cheah CS, Potter GB et al (2012) Autistic-like behaviour in Scn1a+/− mice and rescue by enhanced GABA-mediated neurotransmission. Nature 489(7416):385–390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Pellow S, Chopin P, File SE, Briley M (1985) Validation of open:closed arm entries in an elevated plus-maze as a measure of anxiety in the rat. J Neurosci Methods 14(3):149–167

    Article  CAS  PubMed  Google Scholar 

  31. LeDoux JE (2000) Emotion circuits in the brain. Annu Rev Neurosci 23:155–184

    Article  CAS  PubMed  Google Scholar 

  32. Park J, Moghaddam B (2017) Impact of anxiety on prefrontal cortex encoding of cognitive flexibility. Neuroscience 345:193–202

    Article  CAS  PubMed  Google Scholar 

  33. Bishop S, Duncan J, Brett M, Lawrence AD (2004) Prefrontal cortical function and anxiety: controlling attention to threat-related stimuli. Nat Neurosci 7(2):184–188

    Article  CAS  PubMed  Google Scholar 

  34. Treadway MT, Waskom ML, Dillon DG, Holmes AJ, Park MTM, Chakravarty MM et al (2015) Illness progression, recent stress, and morphometry of hippocampal subfields and medial prefrontal cortex in major depression. Biol Psychiatry 77(3):285–294

    Article  PubMed  Google Scholar 

  35. Alcaide J, Guirado R, Crespo C, Blasco-Ibáñez JM, Varea E, Sanjuan J et al (2019) Alterations of perineuronal nets in the dorsolateral prefrontal cortex of neuropsychiatric patients. Int J Bipolar Disord 7(1):24

    Article  PubMed  PubMed Central  Google Scholar 

  36. Amat J, Baratta MV, Paul E, Bland ST, Watkins LR, Maier SF (2005) Medial prefrontal cortex determines how stressor controllability affects behavior and dorsal raphe nucleus. Nat Neurosci 8(3):365–371

    Article  CAS  PubMed  Google Scholar 

  37. Kenwood MM, Kalin NH, Barbas H (2022) The prefrontal cortex, pathological anxiety, and anxiety disorders. Neuropsychopharmacology 47(1):260–275

    Article  PubMed  Google Scholar 

  38. Pine DS, Wise SP, Murray EA (2021) Evolution, Emotion, and Episodic Engagement. Am J Psychiatry 178(8):701–714

    Article  PubMed  PubMed Central  Google Scholar 

  39. Shang J, Fu Y, Ren Z, Zhang T, Du M, Gong Q et al (2014) The common traits of the ACC and PFC in anxiety disorders in the DSM-5: meta-analysis of voxel-based morphometry studies. PLoS ONE 9(3):e93432

    Article  PubMed  PubMed Central  Google Scholar 

  40. Schmitz A, Grillon C (2012) Assessing fear and anxiety in humans using the threat of predictable and unpredictable aversive events (the NPU-threat test). Nat Protoc 7(3):527–532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Adhikari A, Lerner TN, Finkelstein J, Pak S, Jennings JH, Davidson TJ et al (2015) Basomedial amygdala mediates top-down control of anxiety and fear. Nature 527(7577):179–185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Testa D, Prochiantz A, Di Nardo AA (2019) Perineuronal nets in brain physiology and disease. Semin Cell Dev Biol 89:125–135

    Article  PubMed  Google Scholar 

  43. Brückner G, Grosche J, Schmidt S, Härtig W, Margolis RU, Delpech B et al (2000) Postnatal development of perineuronal nets in wild-type mice and in a mutant deficient in tenascin-R. J Comp Neurol 428(4):616–629

    Article  PubMed  Google Scholar 

  44. Freitag S, Schachner M, Morellini F (2003) Behavioral alterations in mice deficient for the extracellular matrix glycoprotein tenascin-R. Behav Brain Res 145(1–2):189–207

    Article  CAS  PubMed  Google Scholar 

  45. Alpar A, Gartner U, Hartig W, Bruckner G (2006) Distribution of pyramidal cells associated with perineuronal nets in the neocortex of rat. Brain Res 1120(1):13–22

    Article  CAS  PubMed  Google Scholar 

  46. Carstens KE, Phillips ML, Pozzo-Miller L, Weinberg RJ, Dudek SM (2016) Perineuronal nets suppress plasticity of excitatory synapses on CA2 pyramidal neurons. J Neurosci 36(23):6312–6320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Sigal YM, Bae H, Bogart LJ, Hensch TK, Zhuang X (2019) Structural maturation of cortical perineuronal nets and their perforating synapses revealed by superresolution imaging. Proc Natl Acad Sci USA 116(14):7071–7076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Favuzzi E, Marques-Smith A, Deogracias R, Winterflood CM, Sanchez-Aguilera A, Mantoan L et al (2017) Activity-Dependent Gating of Parvalbumin Interneuron Function by the Perineuronal Net Protein Brevican. Neuron 95(3):639–655 e10

  49. Montgomery SA, Henry J, McDonald G, Dinan T, Lader M, Hindmarch I et al (1994) Selective serotonin reuptake inhibitors: meta-analysis of discontinuation rates. Int Clin Psychopharmacol 9(1):47–53

    Article  CAS  PubMed  Google Scholar 

  50. Ferguson JM (2001) SSRI antidepressant medications: adverse effects and tolerability. Prim Care Companion J Clin Psychiatry 3(1):22–27

    PubMed  PubMed Central  Google Scholar 

  51. Sanchez C, Reines EH, Montgomery SA (2014) A comparative review of escitalopram, paroxetine, and sertraline: Are they all alike? Int Clin Psychopharmacol 29(4):185–196

    Article  PubMed  PubMed Central  Google Scholar 

  52. Edinoff AN, Akuly HA, Hanna TA, Ochoa CO, Patti SJ, Ghaffar YA et al (2021) Selective serotonin reuptake inhibitors and adverse effects: a narrative review. Neurol Int 13(3):387–401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Campo-Soria C, Chang Y, Weiss DS (2006) Mechanism of action of benzodiazepines on GABAA receptors. Br J Pharmacol 148(7):984–990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Dawson GW, Jue SG, Brogden RN (1984) Alprazolam: a review of its pharmacodynamic properties and efficacy in the treatment of anxiety and depression. Drugs 27(2):132–147

    Article  CAS  PubMed  Google Scholar 

  55. Chouinard G, Annable L, Fontaine R, Solyom L (1982) Alprazolam in the treatment of generalized anxiety and panic disorders: a double-blind placebo-controlled study. Psychopharmacology 77(3):229–233

    Article  CAS  PubMed  Google Scholar 

  56. Cascade E, Kalali AH (2008) Use of benzodiazepines in the treatment of anxiety. Psychiatry (Edgmont) 5(9):21–22

    PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank all the members in the lab for the constructive discussion.

Funding

This research was supported by grant from the National Natural Science Foundation of China (82271558).

Author information

Authors and Affiliations

Authors

Contributions

XL, DR and BL conceived and designed the research project. XL, DR, ZL, NL and BL performed experiments and collected the data. XL and DR analyzed the data. DR and XL prepared the figures. EF and DR wrote the manuscript. TZ provided technical and intellectual support. All authors provided critical reviews of the results and approved the manuscript.

Corresponding author

Correspondence to Erkang Fei.

Ethics declarations

Ethics Approval

All animal protocols used in this study were approved by the Experimental Animal Welfare Ethics Committee of Nanchang University, in accordance with EN Directive 2010/63/EU on the protection of animals used for scientific purposes.

Consent to Participate

Not applicable.

Consent for Publish

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Ren, D., Luo, B. et al. Perineuronal Nets Alterations Contribute to Stress-Induced Anxiety-Like Behavior. Mol Neurobiol 61, 411–422 (2024). https://doi.org/10.1007/s12035-023-03596-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-023-03596-1

Keywords

Navigation