Skip to main content
Log in

Bifidobacterium breve Probiotic Compared to Lactobacillus casei Causes a Better Reduction in Demyelination and Oxidative Stress in Cuprizone-Induced Demyelination Model of Rat

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Despite the anatomical separation, strong evidence suggested a bidirectional association between gut microbiota and central nervous system. Cross-talk between gut microbiota and brain has an important role in the pathophysiology of neurodegenerative disorders and regenerative processes. However, choosing the appropriate probiotics and combination therapy of probiotics to provide a synergistic effect is very crucial. In the present study, we investigated the effect of Lactobacillus casei (L. casei) and Bifidobacterium breve (B. breve) on alternation performance, oxidant/antioxidant biomarkers, the extent of demyelination, and the expression level of HO-1, Nrf-2, Olig2, MBP, PDGFRα, and BDNF in cuprizone (CPZ)-induced demyelination model of rat corpus callosum. In order to induce this model, rats received oral administration of CPZ 0.6% w/w in corn oil for 28 days. Then, L. casei, B. breve, or their combinations were orally administrated for 28 days. Y maze test was performed to investigate the alternation performance. Oxidant/antioxidant biomarkers were determined by colorimetric methods. Extent of demyelination was investigated using FluoroMyelin staining. The genes’ expression levels of antioxidant and myelin lineage cells were assessed by quantitative real time PCR. The results showed the probiotics supplementation significantly improve the alternation performance and antioxidant capacity in demyelinated corpus callosum. Interestingly, B. breve supplementation alleviated demyelination and oxidative stress levels more than the administration of L. casei alone or the combination of two probiotics. These observations suggest that B. breve could provide a supplementary strategy for the treatment of multiple sclerosis by increasing antioxidant capacity and remyelination.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The datasets analyzed during the current study are available from the corresponding author on reasonable request.

References 

  1. das Neves SP, Sousa JC, Sousa N, Cerqueira JJ, Marques F (2021) Altered astrocytic function in experimental neuroinflammation and multiple sclerosis. Glia 69:1341–1368. https://doi.org/10.1002/glia.23940

    Article  PubMed  Google Scholar 

  2. Duffy SS, Lees JG, Moalem-Taylor G (2014) The contribution of immune and glial cell types in experimental autoimmune encephalomyelitis and multiple sclerosis. Mult Scler Int. https://doi.org/10.1155/2014/285245

    Article  PubMed  PubMed Central  Google Scholar 

  3. Stys PK, Zamponi GW, Van Minnen J, Geurts JJ (2012) Will the real multiple sclerosis please stand up? Nat Rev Neurosci 13:507–514. https://doi.org/10.1038/nrn3275

    Article  CAS  PubMed  Google Scholar 

  4. Nouri M, Bredberg A, Weström B, Lavasani S (2014) Intestinal barrier dysfunction develops at the onset of experimental autoimmune encephalomyelitis, and can be induced by adoptive transfer of auto-reactive T cells. PloS One 9:e106335. https://doi.org/10.1371/journal.pone.0106335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Buscarinu MC, Cerasoli B, Annibali V, Policano C, Lionetto L, Capi M, Mechelli R, Romano S et al (2017) Altered intestinal permeability in patients with relapsing–remitting multiple sclerosis: a pilot study. Mult Scler 23:442–446. https://doi.org/10.1177/135245851665249

    Article  PubMed  Google Scholar 

  6. Bhargava P, Mowry EM (2014) Gut microbiome and multiple sclerosis. Curr Neurol Neurosci Rep 14:1–8. https://doi.org/10.1038/ncomms12015

    Article  CAS  Google Scholar 

  7. Eshraghi RS, Deth RC, Mittal R, Aranke M, Kay S-IS, Moshiree B, Eshraghi AA (2018) Early disruption of the microbiome leading to decreased antioxidant capacity and epigenetic changes: implications for the rise in autism. Front Cell Neurosci. https://doi.org/10.3389/fncel.2018.00256

    Article  PubMed  PubMed Central  Google Scholar 

  8. Bagarolli RA, Tobar N, Oliveira AG, Araújo TG, Carvalho BM, Rocha GZ, Vecina JF, Calisto K et al (2017) Probiotics modulate gut microbiota and improve insulin sensitivity in DIO mice. J Nut Biochem 50:16–25. https://doi.org/10.1016/j.jnutbio.2017.08.006

    Article  CAS  Google Scholar 

  9. Lavasani S, Dzhambazov B, Nouri M, Fåk F, Buske S, Molin G, Thorlacius H, Alenfall J et al (2010) A novel probiotic mixture exerts a therapeutic effect on experimental autoimmune encephalomyelitis mediated by IL-10 producing regulatory T cells. PloS One 5:e9009. https://doi.org/10.1371/journal.pone.0009009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gharehkhani Digehsara S, Esfandiari B, Karim E, Taheri S, Tajabadi-Ebrahimi M, Arasteh J (2021) Effects of Lactobacillus casei strain T2 (IBRC-M10783) on the modulation of Th17/Treg and evaluation of miR-155, miR-25, and IDO-1 expression in a Cuprizone-induced C57BL/6 mouse model of demyelination. Inflammation 44:334–343. https://doi.org/10.1007/s10753-020-01339-1

    Article  CAS  PubMed  Google Scholar 

  11. Tamtaji OR, Kouchaki E, Salami M, Aghadavod E, Akbari E, Tajabadi-Ebrahimi M, Asemi Z (2017) The effects of probiotic supplementation on gene expression related to inflammation, insulin, and lipids in patients with multiple sclerosis: a randomized, double-blind, placebo-controlled trial. J Am Coll Nutr 36:660–665. https://doi.org/10.1080/07315724.2017.1347074

    Article  CAS  PubMed  Google Scholar 

  12. Xiao J, Katsumata N, Bernier F, Ohno K, Yamauchi Y, Odamaki T, Yoshikawa K, Ito K et al (2020) Probiotic Bifidobacterium breve in improving cognitive functions of older adults with suspected mild cognitive impairment: a randomized, double-blind, placebo-controlled trial. J Alzheimer’s Dis 77:139–147. https://doi.org/10.3233/JAD-200488

    Article  CAS  Google Scholar 

  13. Ohno K, Bernier F, Katsumata N, Shimizu T, Xiao JZ (2021) Anti-inflammation as one of the mechanisms in the improvement of cognitive function by probiotic Bifidobacterium breve strain. Alzheimers Dement 17:e051966. https://doi.org/10.1002/alz.051966

    Article  Google Scholar 

  14. Heuvelin E, Lebreton C, Grangette C, Pot B, Cerf-Bensussan N, Heyman M (2009) Mechanisms involved in alleviation of intestinal inflammation by Bifidobacterium breve soluble factors. PLoS One 4:e5184. https://doi.org/10.1371/journal.pone.0005184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Matsuki T, Pe’dron T, Regnault B, Mulet C, Hara T, Sansonetti Ph (2013) Epithelial cell proliferation arrest induced by lactate and acetate from Lactobacillus casei and bifidobacterium breve. PLoS One 8:e63053. https://doi.org/10.1371/journal.pone.0063053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hashemian M, Ghasemi-Kasman M, Parsian H, Sadeghi F (2019) Fingolimod (FTY720) improves the functional recovery and myelin preservation of the optic pathway in focal demyelination model of rat optic chiasm. Brain Res Bull 153:109–121. https://doi.org/10.1016/j.brainresbull.2019.08.014

    Article  CAS  PubMed  Google Scholar 

  17. Mansoor SR, Hashemian M, Khalili-Fomehi M, Ashrafpour M, Moghadamnia A, Ghasemi-Kasman M (2018) Upregulation of klotho and erythropoietin contributes to the neuroprotection induced by curcumin-loaded nanoparticles in experimental model of chronic Epilepsy. Brain Res Bull 142:281–288. https://doi.org/10.1016/j.brainresbull.2018.08.010

    Article  CAS  PubMed  Google Scholar 

  18. Ganji R, Razavi S, Ghasemi N, Mardani M (2020) Improvement of remyelination in demyelinated corpus callosum using human adipose-derived stem cells (hADSCs) and pregnenolone in the cuprizone rat model of multiple sclerosis. J Mol Neurosci 70:1088–1099. https://doi.org/10.1007/s12031-020-01515-w

    Article  CAS  PubMed  Google Scholar 

  19. Benzie IF, Strain JJ (1996) The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Analyt Biochem 239:70–76. https://doi.org/10.1006/abio.1996.0292

    Article  CAS  PubMed  Google Scholar 

  20. Wu H-J, Wu E (2012) The role of gut microbiota in immune homeostasis and autoimmunity. Gut microbes 3:4–14. https://doi.org/10.4161/gmic.19320

    Article  PubMed  PubMed Central  Google Scholar 

  21. Lee PW, Severin ME, Lovett-Racke AE (2017) TGF-β regulation of encephalitogenic and regulatory T cells in multiple sclerosis. Eur J Immunol 47:446–453. https://doi.org/10.1002/eji.201646716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Shahzad T, Iqbal S, Nasir M, Anjum AA, Imran M, Saeed F, Mahomoodally MF, Mehmood T et al (2022) Comparative analysis of preventive role of different probiotics and prebiotics against the markers of liver damage, oxidative stress markers and inflammatory markers in the non-alcoholic fatty liver disease induced rats. Int J Food Prop 25:2514–2529. https://doi.org/10.1080/10942912.2022.2144881

    Article  CAS  Google Scholar 

  23. Sadeghirashed S, Kazemi F, Taheri S, Ebrahimi MT, Arasteh J (2022) A novel probiotic strain exerts therapeutic effects on mouse model of multiple sclerosis by altering the expression of inflammasome and IDO genes and modulation of T helper cytokine profile. Metab Brain Dis. https://doi.org/10.1007/s11011-021-00857-7

    Article  PubMed  Google Scholar 

  24. Omotoso GO, Olajide OJ, Gbadamosi IT, Adebayo JO, Enaibe BU, Akinola OB, Owoyele BV (2019) Cuprizone toxicity and garcinia kola biflavonoid complex activity on hippocampal morphology and neurobehaviour. Heliyon 5:e02102. https://doi.org/10.1016/j.heliyon.2019.e02102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Krumbeck JA, Rasmussen HE, Hutkins RW, Clarke J, Shawron K, Keshavarzian A, Walter J (2018) Probiotic Bifidobacterium strains and galactooligosaccharides improve intestinal barrier function in obese adults but show no synergism when used together as synbiotics. Microbiome 6:1–16. https://doi.org/10.1186/s40168-018-0494-4

    Article  Google Scholar 

  26. Naderi A, Kasra-Kermanshahi R, Gharavi S, Imani Fooladi AA, Abdollahpour Alitappeh M, Saffarian P (2013) Study of antagonistic effects of Lactobacillus strains as probiotics on multi drug resistant (MDR) bacteria isolated from urinary tract infections (UTIs).

  27. Kilinc E, Ankarali S, Ayhan D, Ankarali H, Torun IE, Cetinkaya A (2021) Protective effects of long-term probiotic mixture supplementation against pentylenetetrazole-induced seizures, inflammation and oxidative stress in rats. J Nut Biochem 98:108830. https://doi.org/10.1016/j.jnutbio.2021.108830

    Article  CAS  Google Scholar 

  28. Mansouri A, Reiner Ž, Ruscica M, Tedeschi-Reiner E, Radbakhsh S, Bagheri Ekta M, Sahebkar A (2022) Antioxidant effects of statins by modulating Nrf2 and Nrf2/HO-1 signaling in different diseases. J Clin Med 11:1313. https://doi.org/10.3390/jcm11051313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Son Y, Lee JH, Chung H-T, Pae H-O (2013) Therapeutic roles of heme oxygenase-1 in metabolic diseases: curcumin and resveratrol analogues as possible inducers of heme oxygenase-1. Oxid Med Cell Longev. https://doi.org/10.1155/2013/639541

    Article  PubMed  PubMed Central  Google Scholar 

  30. Xu Z, Adilijiang A, Wang W, You P, Lin D, Li X, He J (2019) Arecoline attenuates memory impairment and demyelination in a cuprizone-induced mouse model of chizophrenia. NeuroReport 30(2):134–138. https://doi.org/10.1097/WNR.0000000000001172

    Article  CAS  PubMed  Google Scholar 

  31. Zhang N, Jin L, Liu C, Zhang R, Siebert H-C, Li Y, Loers G, Petridis AK et al (2021) An antarctic krill oil-based diet elicits neuroprotective effects by inhibiting oxidative stress and rebalancing the M1/M2 microglia phenotype in a cuprizone model for demyelination. J Func Food 76:104309. https://doi.org/10.1016/j.jff.2020.104309

    Article  CAS  Google Scholar 

  32. Akbari E, Asemi Z, Daneshvar Kakhaki R, Bahmani F, Kouchaki E, Tamtaji OR, Hamidi GA, Salami M (2016) Effect of probiotic supplementation on cognitive function and metabolic status in Alzheimer’s disease: a randomized, double-blind and controlled trial. Front Aging Neurosci 8:256. https://doi.org/10.3389/fnagi.2016.00256

    Article  PubMed  PubMed Central  Google Scholar 

  33. Upadhayay S, Mehan S (2021) Targeting Nrf2/HO-1 anti-oxidant signaling pathway in the progression of multiple sclerosis and influences on neurological dysfunctions. Brain Dis 3:100019. https://doi.org/10.1016/j.dscb.2021.100019

    Article  CAS  Google Scholar 

  34. Nellessen A, Nyamoya S, Zendedel A, Slowik A, Wruck C, Beyer C, Fragoulis A, Clarner T (2020) Nrf2 deficiency increases oligodendrocyte loss, demyelination, neuroinflammation and axonal damage in an MS animal model. Metab Brain Dis 35:353–362. https://doi.org/10.1007/s11011-019-00488-z

    Article  PubMed  Google Scholar 

  35. Bagheri S, Heydari A, Alinaghipour A, Salami M (2019) Effect of probiotic supplementation on seizure activity and cognitive performance in PTZ-induced chemical kindling. EpilepBehav 95:43–50. https://doi.org/10.1016/j.yebeh.2019.03.038

    Article  Google Scholar 

  36. Zhuang G, Liu X-M, Zhang Q-X, Tian F-W, Zhang H, Zhang H-P, Chen W (2012) Research advances with regards to clinical outcome and potential mechanisms of the cholesterol-lowering effects of probiotics. Clin Lipidol 7:501–507. https://doi.org/10.2217/clp.12.40

    Article  CAS  Google Scholar 

  37. St-Onge M-P, Farnworth ER, Jones PJ (2000) Consumption of fermented and nonfermented dairy products: effects on cholesterol concentrations and metabolism. Amr J Clin Nut 71:674–681. https://doi.org/10.1093/ajcn/71.3.674

    Article  CAS  Google Scholar 

  38. Salami M, Kouchaki E, Asemi Z, Tamtaji OR (2019) How probiotic bacteria influence the motor and mental behaviors as well as immunological and oxidative biomarkers in multiple sclerosis? A double blind clinical trial. J Func Food 52:8–13. https://doi.org/10.1016/j.jff.2018.10.023

    Article  CAS  Google Scholar 

  39. Pourrajab B, Fatahi S, Sohouli MH, Găman M-A, Shidfar F (2021) The effects of probiotic/synbiotic supplementation compared to placebo on biomarkers of oxidative stress in adults: a systematic review and meta-analysis of randomized controlled trials. Crit Rev Food Sci Nutr 62:490–507. https://doi.org/10.1080/10408398.2020.1821166

    Article  CAS  Google Scholar 

  40. Bund T, Boggs JM, Harauz G, Hellmann N, Hinderberger D (2010) Copper uptake induces self-assembly of 18.5 kDa myelin basic protein (MBP). Biophys J 99:3020–3028. https://doi.org/10.1016/j.bpj.2010.08.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Samani SA, Moloudi MR, Ramezanzadeh R, Abdi M, Nikkhoo B, Izadpanah E, Roshani D, Abdolahi A et al (2022) Oral administration of probiotic enterococcus durans to ameliorate experimental autoimmune encephalomyelitis in mice. Basic Clin Neurosci 13:35–46. https://doi.org/10.32598/bcn.2021.1955.1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Dehghan S, Javan M, Pourabdolhossein F, Mirnajafi-Zadeh J, Baharvand H (2012) Basic fibroblast growth factor potentiates myelin repair following induction of experimental demyelination in adult mouse optic chiasm and nerves. J Mol Neurosci 48:77–85. https://doi.org/10.1007/s12031-012-9777-6

    Article  CAS  PubMed  Google Scholar 

  43. Vana AC, Flint NC, Harwood NE, Le TQ, Fruttiger M, Armstrong RC (2007) Platelet-derived growth factor promotes repair of chronically demyelinated white matter. J Neuropathol Exp Neurol 66:975–988. https://doi.org/10.1097/NEN.0b013e3181587d46

    Article  CAS  PubMed  Google Scholar 

  44. Mori F, Rossi S, Piccinin S, Motta C, Mango D, Kusayanagi H, Bergami A, Studer V et al (2013) Synaptic plasticity and PDGF signaling defects underlie clinical progression in multiple sclerosis. JNeurosci 33:19112–19119. https://doi.org/10.1523/JNEUROSCI.2536-13.2013

    Article  CAS  Google Scholar 

  45. Mohajeri M, Sadeghizadeh M, Fi N, Javan M (2015) Polymerized Nano-curcumin attenuates neurological symptoms in EAE model of multiple sclerosis through down regulation of inflammatory and oxidative processes and enhancing neuroprotection and myelin repair. Neuropharmacol 99:156–167. https://doi.org/10.1016/j.neuropharm.2015.07.013

    Article  CAS  Google Scholar 

  46. Nasrnezhad R, Halalkhor S, Sadeghi F, Pourabdolhossein F (2021) Piperine improves experimental autoimmune encephalomyelitis (EAE) in lewis rats through its neuroprotective, anti-inflammatory, and antioxidant effects. Mol Neurobiol 58(11):5473–5493. https://doi.org/10.1007/s12035-021-02497-5

    Article  CAS  PubMed  Google Scholar 

  47. Qu Z, Zheng N, Zhang Y, Zhang L, Liu J, Wang Q, Yin L (2016) Preventing the BDNF and NGF loss involved in the efects of cornel iridoid glycoside on attenuation of experimental autoimmune encephalomyelitis in mice. Neurol Res 38(9):831–837. https://doi.org/10.1080/01616412.2016.1200766

    Article  CAS  PubMed  Google Scholar 

  48. Makar TK, Trisler D, Sura KT, Sultana S, Patel N, Bever CT (2008) Brain derived neurotrophic factor treatment reduces infammation and apoptosis in experimental allergic encephalomyelitis. J Neurol Sci 270(1–2):70–76. https://doi.org/10.1016/j.jns.2008.02.011

    Article  CAS  PubMed  Google Scholar 

  49. Mohamed Ibrahim MHI, Sheikh A, Khalil HE, Khalifa A (2023) Bacillus amyloliquifaciens-supplemented camel milk suppresses neuroinflammation of autoimmune encephalomyelitis in a mouse model by regulating inflammatory. Nutrients 15(3):550. https://doi.org/10.3390/nu15030550

    Article  CAS  Google Scholar 

  50. Rahimlou M, Hosseini SA, Majdinasab N, Haghighizadeh MH, Husain D (2022) Effects of long-term administration of Multi-Strain probiotic on circulating levels of BDNF, NGF, IL-6 and mental health in patients with multiple sclerosis: a randomized, double-blind, placebo-controlled trial. Nutr Neurosci 25(2):411–422. https://doi.org/10.1080/1028415X.2020.1758887

    Article  CAS  PubMed  Google Scholar 

  51. Baken KA, Ezendam J, Gremmer ER, de Klerk A, Pennings JLA, Matthee B, Peijnenburg AACM, van Loveren H (2006) Evaluation of immunomodulation by Lactobacillus casei Shirota: immune function, autoimmunity and gene expression. Int J Food Microbiol 112(1):8–18. https://doi.org/10.1016/j.ijfoodmicro.2006.06.009

    Article  CAS  PubMed  Google Scholar 

  52. McMurran CE, Guzman de la Fuente A, Penalva R, Ben Menachem-Zidon O, Dombrowski Y, Falconer J, Gonzalez GA, Zhao C et al (2019) The microbiota regulates murine inflammatory responses to toxin-induced CNS demyelination but has minimal impact on remyelination. Proc Natl Acad Sci 116:25311–25321. https://doi.org/10.1073/pnas.1905787116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kobayashi T, Kato I, Nanno M, Shida K, Shibuya K, Matsuoka Y, Onoue M (2010) Oral administration of probiotic bacteria, Lactobacillus casei and Bifidobacterium breve, does not exacerbate neurological symptoms in experimental autoimmune encephalomyelitis. Immunopharmacol Immunotoxicol 32(1):116–124. https://doi.org/10.3109/08923970903200716

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the kind assistance of Mr. Moein Shirzad.

Funding

This study was performed as a part of Master of Science thesis and has been financially supported by Babol University of Medical Sciences, Babol, Iran (Grant No. 724133976).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Sahar Rostami-Mansoor; Nima Hasaniani; methodology: Nima Hasaniani, Sahar Rostami-Mansoor, Maryam Ghasemi-Kasman; Mehrdad Halaji; formal analysis and investigation: Sahar Rostami-Mansoor; Maryam Ghasemi-Kasman; writing original draft preparation: Sahar Rostami-Mansoor; editing: Maryam Ghasemi-Kasman, Mehrdad Halaji; supervision: Sahar Rostami-Mansoor.

Corresponding author

Correspondence to Sahar Rostami-Mansoor.

Ethics declarations

Ethical Approval

This study was approved by the ethical committee of Babol University of Medical Sciences (Approval No.: IR.MUBABOL.AEC.1401.005).

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

L. casei and B. breve supplementation improves working memory in CPZ-induced demyelination model.

L. casei and B. breve supplementation decreases oxidative stress in the brain of CPZ receiving rats.

L. casei and B. breve supplementation decreases the extent of demyelination in the corpus callosum of CPZ-receiving rats.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hasaniani, N., Ghasemi-Kasman, M., Halaji, M. et al. Bifidobacterium breve Probiotic Compared to Lactobacillus casei Causes a Better Reduction in Demyelination and Oxidative Stress in Cuprizone-Induced Demyelination Model of Rat. Mol Neurobiol 61, 498–509 (2024). https://doi.org/10.1007/s12035-023-03593-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-023-03593-4

Keywords

Navigation