Skip to main content

Advertisement

Log in

Non-invasive Biomarkers for Early Detection of Alzheimer’s Disease: a New-Age Perspective

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder that primarily affects the elderly population. It gradually leads to memory loss, loss of thinking ability, and an overall cognitive decline. However, exhaustive literature is available to suggest that pathological changes in the brain occur decades before the first clinical symptoms appear. This review provides insight into the non-invasive biomarkers for early detection of AD that have been successfully studied in populations across the globe. These biomarkers have been detected in the blood, saliva, breath, and urine samples. Retinal imaging techniques are also reported. In this study, PubMed and Google scholar were the databases employed using keywords “Alzheimer’s disease,” “neurodegeneration,” “non-invasive biomarkers,” “early diagnosis,” “blood-based biomarkers,” and “preclinical AD,” among others. The evaluation of these biomarkers will provide early diagnosis of AD in the preclinical stages due to their positive correlation with brain pathology in AD. Early diagnosis with reliable and timely intervention can effectively manage this disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Source: created with BioRender.com

Similar content being viewed by others

Data Availability

Not applicable.

Abbreviations

AD:

Alzheimer’s disease

Aβ:

Amyloid-β

APOE4:

Apolipoprotein E4

APP:

Amyloid precursor protein

BHT:

Butylated hydroxytoluene

BBB:

Blood-brain barrier

CSF:

Cerebrospinal fluid

CN:

Cognitively normal

ELISA:

Enzyme-linked immunosorbent assay

FBP-PET:

18F-Florbetapir amyloid-β PET

FTP-PET:

18F-Flortaucipir tau PET

FUPLC-MS:

Fast ultra-high-performance liquid chromatography coupled with time-of-flight mass spectrometry

GC-MS:

Gas chromatography-mass spectrometry

GFAP:

Glial fibrillary acidic protein

HS score:

Hyperspectral score

1H-NMR:

1H-Nuclear magnetic resonance

LC-FTICR-MS:

Liquid chromatography/Fourier transform ion cyclotron resonance mass spectrometry

Lf:

Lactoferrin

MCI:

Mild cognitive impairment

miRNA:

MicroRNA

MCP-1:

Monocyte chemoattractant protein-1

NfL:

Neurofilament light chain

OCT:

Optical coherence tomography

PET:

Positron emission tomography

PS:

Presenilin

PS-OCT:

Polarization-sensitive optical coherence tomography

qRT-PCR:

Quantitative reverse transcription-polymerase chain reaction

rHSI:

Retinal hyperspectral imaging, RNFL

SCD:

Subjective cognitive decline

sCR1:

Soluble complement receptor 1

SD-OCT:

Spectral domain optical coherence tomography

SMC:

Subjective memory complainers

Simoa:

Single-molecule array

TNFR-1:

Tumor necrosis factor-receptor-1

UHPLC-MS:

Ultra-high-performance liquid chromatography-mass spectrometry

UPLC:

Ultra-performance liquid chromatography

VOC:

Volatile organic compound

YKL-40:

Chitinase 3-like-protein-1

References

  1. Samhan L, Alfarra A, Abu-Naser SS, Amassi I (2022) Classification of Alzheimer’s disease using convolutional neural networks. Int J Acad Inf Syst Res (IJAISR) 6:18–23

    Google Scholar 

  2. Nichols E, Szoeke CEI, Vollset SE et al (2019) Global, regional, and national burden of Alzheimer’s disease and other dementias, 1990–2016: a systematic analysis for the global burden of disease study 2016. Lancet Neurol 18:88–106. https://doi.org/10.1016/S1474-4422(18)30403-4

    Article  Google Scholar 

  3. Nichols E, Steinmetz JD, Vollset SE et al (2022) Estimation of the global prevalence of dementia in 2019 and forecasted prevalence in 2050: an analysis for the global burden of disease study 2019. Lancet Public Health 7:e105–e125. https://doi.org/10.1016/S2468-2667(21)00249-8

    Article  Google Scholar 

  4. Jahn H (2013) Memory loss in Alzheimer’s disease. In: Dialogues in Clin Neurosci 445–454. https://doi.org/10.31887/DCNS.2013.15.4/hjahn

  5. Tilley L, Morgan KKN (1998) Reviews genetic risk factors in Alzheimer’s disease. J Clin Pathol: Mol Pathol 51(6):293–304. https://doi.org/10.1136/mp.51.6.293

    Article  CAS  Google Scholar 

  6. Dubois B, Feldman HH, Jacova C et al (2007) Research criteria for the diagnosis of Alzheimer’s disease: revising the NINCDS-ADRDA criteria. Lancet Neurol 6(8):734–746. https://doi.org/10.1016/S1474-4422(07)70178-3

    Article  PubMed  Google Scholar 

  7. Reitz C, Brayne C, Mayeux R (2011) Epidemiology of Alzheimer disease. Nat Rev Neurol 7(3):137–152. https://doi.org/10.1038/nrneurol.2011.2

    Article  PubMed  PubMed Central  Google Scholar 

  8. Stockmann J, Verberk IMW, Timmesfeld N et al (2021) Correction to: Amyloid-β misfolding as a plasma biomarker indicates risk for future clinical Alzheimer’s disease in individuals with subjective cognitive decline (Alzheimer’s Research & Therapy, (2020), 12, 1, (169). 10.1186/s13195-020-00738-8). Alzheimers Res Ther 13:1–13. https://doi.org/10.1186/s13195-021-00770-2

    Article  Google Scholar 

  9. Rasmussen J, Langerman H (2019) Alzheimer’s disease – why we need early diagnosis. Degener Neurol Neuromuscul Dis 9:123–130. https://doi.org/10.2147/dnnd.s228939

    Article  PubMed  PubMed Central  Google Scholar 

  10. Goodsell DS (2006) Amyloid-beta precursor protein. RCSB Protein Data Bank. https://doi.org/10.2210/rcsb_pdb/mom_2006_7

    Article  Google Scholar 

  11. Gu L, Guo Z (2013) Alzheimer’s Aβ42 and Aβ40 peptides form interlaced amyloid fibrils. J Neurochem 126:305–311. https://doi.org/10.1111/jnc.12202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Fischer SK, Joyce A, Spengler M et al (2015) Emerging technologies to increase ligand binding assay sensitivitY. AAPS J 17:93–101. https://doi.org/10.1208/s12248-014-9682-8

    Article  CAS  PubMed  Google Scholar 

  13. Beyer L, Stocker H, Rujescu D et al (2022) Amyloid-beta misfolding and GFAP predict risk of clinical Alzheimer’s disease diagnosis within 17 years. Alzheimers Dement. https://doi.org/10.1002/alz.12745

    Article  PubMed  Google Scholar 

  14. Guo T, Noble W, Hanger DP (2017) Roles of tau protein in health and disease. Acta Neuropathol 133:665–704. https://doi.org/10.1007/s00401-017-1707-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Moscoso A, Grothe MJ, Ashton NJ et al (2021) Time course of phosphorylated-tau181 in blood across the Alzheimer’s disease spectrum. Brain 144:325–339. https://doi.org/10.1093/brain/awaa399

    Article  PubMed  Google Scholar 

  16. Wang YL, Chen J, Du ZL et al (2021) Plasma p-tau181 level predicts neurodegeneration and progression to Alzheimer’s dementia: a longitudinal study. Front Neurol 12:. https://doi.org/10.3389/fneur.2021.695696

  17. Barthélemy NR, Horie K, Sato C, Bateman RJ (2020) Blood plasma phosphorylated-tau isoforms track CNS change in Alzheimer’s disease. J Exp Med 217:1–12. https://doi.org/10.1084/JEM.20200861

    Article  Google Scholar 

  18. Benedet AL, Leuzy A, Pascoal TA et al (2020) Stage-specific links between plasma neurofilament light and imaging biomarkers of Alzheimer’s disease. Brain 143:3793–3804. https://doi.org/10.1093/brain/awaa342

    Article  PubMed  PubMed Central  Google Scholar 

  19. Giacomucci G, Mazzeo S, Bagnoli S et al (2022) Plasma neurofilament light chain as a biomarker of Alzheimer’s disease in Subjective Cognitive Decline and Mild Cognitive Impairment. J Neurol 269:4270–4280. https://doi.org/10.1007/s00415-022-11055-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Silvestro S, Bramanti P, Mazzon E (2019) Role of miRNAs in Alzheimer’s disease and possible fields of application. Int J Mol Sci 20:1–26. https://doi.org/10.3390/ijms20163979

    Article  CAS  Google Scholar 

  21. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297. https://doi.org/10.1016/S0092-8674(04)00045-5

    Article  CAS  PubMed  Google Scholar 

  22. Millan MJ (2017) Linking deregulation of non-coding RNA to the core pathophysiology of Alzheimer’s disease: an integrative review. Prog Neurobiol 156:1–68. https://doi.org/10.1016/j.pneurobio.2017.03.004

    Article  CAS  PubMed  Google Scholar 

  23. Serpente M, Fenoglio C, D’Anca M et al (2020) MiRNA profiling in plasma neural-derived small extracellular vesicles from patients with Alzheimer’s disease. Cells 9:. https://doi.org/10.3390/cells9061443

  24. Liu Y, Xu Y, Yu M (2022) MicroRNA-4722–5p and microRNA-615–3p serve as potential biomarkers for Alzheimer’s disease. Exp Ther Med 23:. https://doi.org/10.3892/etm.2022.11166

  25. Wang R, Chopra N, Nho K et al (2022) Human microRNA (miR-20b-5p) modulates Alzheimer’s disease pathways and neuronal function, and a specific polymorphism close to the MIR20B gene influences Alzheimer’s biomarkers. Mol Psychiatry 27:1256–1273. https://doi.org/10.1038/s41380-021-01351-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Peña-Bautista C, Tarazona-Sánchez A, Braza-Boils A et al (2022) Plasma microRNAs as potential biomarkers in early Alzheimer disease expression. Sci Rep 12:1–10. https://doi.org/10.1038/s41598-022-19862-6

    Article  CAS  Google Scholar 

  27. Sabry R, El Sharkawy RE, Gad NM (2020) MiRNA -483–5p as a potential noninvasive biomarker for early detection of Alzheimer’s disease. Egypt J Immunol 27(2):59–72

    PubMed  Google Scholar 

  28. Nagaraj S, Laskowska-Kaszub K, Debski KJ et al (2017) Profile of 6 microRNA in blood plasma distinguish early stage Alzheimer’s disease patients from non-demented subjects. Oncotarget 8:16122–16143. https://doi.org/10.18632/oncotarget.15109

    Article  PubMed  PubMed Central  Google Scholar 

  29. Ardura-Fabregat A, Boddeke EWGM, Boza-Serrano A et al (2017) Targeting neuroinflammation to treat alzheimer’s disease. CNS Drugs 31(12):1057–1082. https://doi.org/10.1007/s40263-017-0483-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Prins S, de Kam ML, Teunissen CE, Groeneveld GJ (2022) Inflammatory plasma biomarkers in subjects with preclinical Alzheimer’s disease. Alzheimers Res Ther 14:. https://doi.org/10.1186/s13195-022-01051-2

  31. Cristina d’Abramo C, D’Adamio L, Giliberto L (2020) Significance of blood and cerebrospinal fluid biomarkers for Alzheimer’s disease: sensitivity, specificity and potential for clinical use. In: Villa C (ed) Novel biomarkers in Alzheimer’s disease. J Pers Med MDPI, pp 67–106. https://doi.org/10.3390/jpm10030116

  32. Muramori F, Kobayashi K, Nakamura I (1998) A quantitative study of neurofibrillary tangles, senile plaques and astrocytes in the hippocampal subdivisions and entorhinal cortex in Alzheimer’s disease, normal controls and non-Alzheimer neuropsychiatric diseases. Psychiatry Clin Neurosci 52:. https://doi.org/10.1111/j.1440-1819.1998.tb02706.x

  33. Chatterjee P, Pedrini S, Stoops E et al (2021) Plasma glial fibrillary acidic protein is elevated in cognitively normal older adults at risk of Alzheimer’s disease. Transl Psychiatry 11:1–10. https://doi.org/10.1038/s41398-020-01137-1

    Article  CAS  Google Scholar 

  34. Gross AL, Walker KA, Moghekar AR et al (2019) Plasma markers of inflammation linked to clinical progression and decline during preclinical AD. Front Aging Neurosci 11:1–9. https://doi.org/10.3389/fnagi.2019.00229

    Article  CAS  Google Scholar 

  35. Morgan AR, Touchard S, Leckey C et al (2019) Inflammatory biomarkers in Alzheimer’s disease plasma. Alzheimers Dement 15:776–787. https://doi.org/10.1016/j.jalz.2019.03.007

    Article  PubMed  PubMed Central  Google Scholar 

  36. Majeed A, Marwick B, Yu H et al (2021) Ophthalmic biomarkers for Alzheimer’s disease: a review. Front Aging Neurosci 13:1–17. https://doi.org/10.3389/fnagi.2021.720167

    Article  CAS  Google Scholar 

  37. Koronyo-Hamaoui M, Koronyo Y, Ljubimov AV et al (2011) Identification of amyloid plaques in retinas from Alzheimer’s patients and noninvasive in vivo optical imaging of retinal plaques in a mouse model. Neuroimage 54:S204–S217. https://doi.org/10.1016/j.neuroimage.2010.06.020

    Article  CAS  PubMed  Google Scholar 

  38. Hadoux X, Hui F, Lim JKH et al (2019) Non-invasive in vivo hyperspectral imaging of the retina for potential biomarker use in Alzheimer’s disease. Nat Commun 10:1–12. https://doi.org/10.1038/s41467-019-12242-1

    Article  CAS  Google Scholar 

  39. Budenz DL, Anderson DR, Varma R et al (2007) Determinants of normal retinal nerve fiber layer thickness measured by stratus OCT. Ophthalmology 114:1046–1052. https://doi.org/10.1016/j.ophtha.2006.08.046

    Article  PubMed  Google Scholar 

  40. Kirbas S, Turkyilmaz K, Anlar O et al (2013) Retinal nerve fiber layer thickness in patients with Alzheimer disease. J Neuroophthalmol 33:58–61. https://doi.org/10.1097/WNO.0b013e318267fd5f

    Article  PubMed  Google Scholar 

  41. Kwon JY, Yang JH, Han JS, Kim DG (2017) Analysis of the retinal nerve fiber layer thickness in alzheimer disease and mild cognitive impairment. Korean J Ophthalmol 31:548. https://doi.org/10.3341/kjo.2016.0118

    Article  PubMed  PubMed Central  Google Scholar 

  42. Lim JKH, Li Q-X, He Z et al (2016) The eye as a biomarker for Alzheimer’s disease. Front Neurosci 10:. https://doi.org/10.3389/fnins.2016.00536

  43. Pircher M, Hitzenberger CK, Schmidt-Erfurth U (2011) Polarization sensitive optical coherence tomography in the human eye. Prog Retin Eye Res 30:431–451. https://doi.org/10.1016/j.preteyeres.2011.06.003

    Article  PubMed  PubMed Central  Google Scholar 

  44. Martins RN, Villemagne V, Sohrabi HR et al (2018) Alzheimer’s disease: a journey from amyloid peptides and oxidative stress, to biomarker technologies and disease prevention strategies-gains from AIBL and DIAN cohort studies. J Alzheimers Dis 62:965–992. https://doi.org/10.3233/JAD-171145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Mark NJA, Henrik I, Kaj Blennow Z et al (n.d.) Salivary biomarkers for alzheimer’s disease and related disorders. Neurol Ther 8:. https://doi.org/10.6084/m9.figshare.9792335

  46. González-Sánchez M, Bartolome F, Antequera D et al (2020) Decreased salivary lactoferrin levels are specific to Alzheimer’s disease. J Clean Prod 57:. https://doi.org/10.1016/j.ebiom.2020.102834

  47. Guo C, Yang ZH, Zhang S et al (2017) Intranasal lactoferrin enhances α-secretase-dependent amyloid precursor protein processing via the ERK1/2-CREB and HIF-1α pathways in an Alzheimer’s disease mouse model. Neuropsychopharmacology 42:2504–2515. https://doi.org/10.1038/npp.2017.8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Dominy SS, Lynch C, Ermini F et al (2019) Porphyromonas gingivalis in Alzheimer’s disease brains: evidence for disease causation and treatment with small-molecule inhibitors. Sci Adv 5:1–22. https://doi.org/10.1126/sciadv.aau3333

    Article  CAS  Google Scholar 

  49. Beydoun MA, Beydoun HA, Hossain S et al (2020) Clinical and bacterial markers of periodontitis and their association with incident all-cause and Alzheimer’s disease dementia in a large national survey. J Alzheimers Dis 75:157–172. https://doi.org/10.3233/jad-200064

    Article  CAS  PubMed  Google Scholar 

  50. Liang Q, Liu H, Li X, Zhang AH (2016) High-throughput metabolomics analysis discovers salivary biomarkers for predicting mild cognitive impairment and Alzheimer’s disease. RSC Adv 6:75499–75504. https://doi.org/10.1039/c6ra16802g

    Article  CAS  Google Scholar 

  51. Yilmaz A, Geddes T, Han B et al (2017) Diagnostic biomarkers of Alzheimer’s disease as identified in saliva using 1H NMR-based metabolomics. J Alzheimers Dis 58:355–359. https://doi.org/10.3233/JAD-161226

    Article  CAS  PubMed  Google Scholar 

  52. Zheng J, Dixon RA, Li L (2012) Development of isotope labeling LC-MS for human salivary metabolomics and application to profiling metabolome changes associated with mild cognitive impairment. Anal Chem 84:10802–10811. https://doi.org/10.1021/ac3028307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Rummel NG, Butterfield DA (2022) Altered metabolism in Alzheimer disease brain: role of oxidative stress. Antioxid Redox Signal 36:1289–1305. https://doi.org/10.1089/ars.2021.0177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Tisch U, Schlesinger I, Ionescu R et al (2013) Detection of Alzheimer’s and Parkinson’s disease from exhaled breath using nanomaterial-based sensors. Nanomedicine 8:43–56. https://doi.org/10.2217/nnm.12.105

    Article  CAS  PubMed  Google Scholar 

  55. Emam S, Nasrollahpour M, Colarusso B et al (2020) Detection of presymptomatic Alzheimer’s disease through breath biomarkers. Alzheimers Dement: Diagn, Assess Dis Monit 12:1–9. https://doi.org/10.1002/dad2.12088

    Article  Google Scholar 

  56. Kurbatova N, Garg M, Whiley L et al (2020) Urinary metabolic phenotyping for Alzheimer’s disease. Sci Rep 10:1–17. https://doi.org/10.1038/s41598-020-78031-9

    Article  CAS  Google Scholar 

  57. Watanabe Y, Hirao Y, Kasuga K et al (2020) Urinary apolipoprotein C3 is a potential biomarker for Alzheimer’s disease. Dement Geriatr Cogn Dis Extra 10:94–104. https://doi.org/10.1159/000509561

    Article  PubMed  PubMed Central  Google Scholar 

  58. Watanabe Y, Hirao Y, Kasuga K et al (2019) Molecular network analysis of the urinary proteome of Alzheimer’s disease patients. Dement Geriatr Cogn Dis Extra 9:53–65. https://doi.org/10.1159/000496100

    Article  PubMed  PubMed Central  Google Scholar 

  59. Kimball BA, Wilson DA, Wesson DW (2016) Alterations of the volatile metabolome in mouse models of Alzheimer’s disease. Sci Rep 6:1–8. https://doi.org/10.1038/srep19495

    Article  CAS  Google Scholar 

  60. Yu J, Kong L, Zhang A et al (2017) High-throughput metabolomics for discovering potential metabolite biomarkers and metabolic mechanism from the APPswe/PS1dE9 transgenic model of Alzheimer’s disease. J Proteome Res 16:3219–3228. https://doi.org/10.1021/acs.jproteome.7b00206

    Article  CAS  PubMed  Google Scholar 

  61. Schindler SE, Bollinger JG, Ovod V et al (2019) High-precision plasma β-amyloid 42/40 predicts current and future brain amyloidosis. Neurology 93:e1647–e1659. https://doi.org/10.1212/WNL.0000000000008081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Heneka MT, Carson MJ, el Khoury J et al (2015) Neuroinflammation in Alzheimer’s disease. Lancet Neurol 14:388–405. https://doi.org/10.1016/S1474-4422(15)70016-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Mr. Rohit Joshi and Mr. Abbas Jawadwala for their input. We are thankful to the Institute of Chemical Technology, Mumbai, for the facilities and resources.

Author information

Authors and Affiliations

Authors

Contributions

Writing, literature survey, data analysis—Akash Haria; writing, drafting, conceptualization—Niyamat M.A Chimthanawala; editing, supervision—Sadhana Sathaye. All authors have reviewed and approved the final version of the manuscript prior to submission.

Corresponding author

Correspondence to Sadhana Sathaye.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Methods

This study was conducted by reviewing papers from reputed journals that have been indexed in databases like PubMed and Google Scholar. The papers chosen were latest in the field of non-invasive biomarkers for early diagnosis of Alzheimer’s disease from 2010 onwards. The keywords selected were “Alzheimer’s disease,” “neurodegeneration,” “non-invasive biomarkers,” “early diagnosis,” “blood-based biomarkers,” “fluid-based biomarkers,” “early-AD,” “mild cognitive impairment,” and “preclinical AD,” among others, as per the scope of the study. Both clinical and preclinical studies of relevance were included. Studies regarding invasive techniques and imaging methods were not included.

Niyamat M. A. Chimthanawala and Akash Haria contributed equally.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chimthanawala, N.M.A., Haria, A. & Sathaye, S. Non-invasive Biomarkers for Early Detection of Alzheimer’s Disease: a New-Age Perspective. Mol Neurobiol 61, 212–223 (2024). https://doi.org/10.1007/s12035-023-03578-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-023-03578-3

Keywords

Navigation