Skip to main content

Advertisement

Log in

The Role of Resveratrol on Spinal Cord Injury: from Bench to Bedside

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Spinal cord injury (SCI) is a severe and disabling injury of the central nervous system, with complex pathological mechanisms leading to sensory and motor dysfunction. Pathological processes, such as oxidative stress, inflammatory response, apoptosis, and glial scarring are important factors that aggravate SCI. Therefore, the inhibition of these pathological processes may contribute to the treatment of SCI. Currently, the pathogenesis of SCI remains under investigation as SCI treatment has not progressed considerably. Resveratrol, a natural polyphenol with anti-inflammatory and antioxidant properties, is considered a potential therapeutic drug for various diseases and plays a beneficial role in nerve damage. Preclinical studies have confirmed that signaling pathways are closely related to the pathological processes in SCI, and resveratrol is believed to exert therapeutic effects in SCI by activating the related signaling pathways. Based on current research on the pathways of resveratrol and its role in SCI, resveratrol may be a potentially effective treatment for SCI. This review summarizes the role of resveratrol in promoting the recovery of nerve function by regulating oxidative stress, inflammation, apoptosis, and glial scar formation in SCI through various mechanisms and pathways, as well as the deficiency of resveratrol in SCI research and the current and anticipated research trends of resveratrol. In addition, this review provides a background for further studies on the molecular mechanisms of SCI and the development of potential therapeutic agents. This information could also help clinicians understand the known mechanisms of action of resveratrol and provide better treatment options for patients with SCI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

Not applicable.

Abbreviations

SCI:

Spinal cord injury

Bcl-2:

B-cell lymphoma-2

ERK:

Extracellular signal-regulated protein kinase

IKK:

IκB kinase

JNK:

Jun N-terminal kinase

MyD88:

Myeloid differentiation primary response gene 88

PI3K:

Phosphoinositide 3-kinase

SIRT1:

Sirtuin 1

TLRs:

Toll-like receptors

TRIF:

TIR-domain-containing adapter-inducing interferon-β

TBI:

Traumatic brain injury

SAH:

Subarachnoid hemorrhage

ROS:

Reactive oxygen

HIF-1α:

Hypoxia-inducing factor 1-α

CNS:

Central nervous system

iNOS:

Inducible nitric oxide synthase

MAPK:

Mitogen-activated protein kinase

AMPK:

Adenylate activated protein excitation

mTOR:

Mammalian target of rapamycin

LPS:

Lipopolysaccharide

LPO:

Lipid peroxidase

GSH:

Glutathione

SOD:

Superoxide dismutase,

PC:

Protein carbonyl,

GSK-3β:

Glycogen synthase kinase-3β,

ULK1:

Unc-51-like autophagy activating kinase 1,

Nrf2:

Nuclear factor erythrocyte 2 related factor 2,

PMMSN:

Manganese-doped silicon dioxide nanomedical system,

BSCB:

Blood-spinal barrier

References

  1. Hewson DW, Bedforth NM, Hardman JG (2018) Spinal cord injury arising in anaesthesia practice. Anaesthesia 73(Suppl 1):43–50

    Article  PubMed  Google Scholar 

  2. Wang H, Liu X, Zhao Y, Ou L, Zhou Y, Li C, Liu J, Chen Y et al (2016) Incidence and pattern of traumatic spinal fractures and associated spinal cord injury resulting from motor vehicle collisions in China over 11 years: An observational study. Medicine 95(43):e5220

  3. Chen J, Chen Z, Zhang K, Song D, Wang C, Xuan T (2021) Epidemiological features of traumatic spinal cord injury in Guangdong Province, China. J Spinal Cord Med 44(2):276–281

  4. Tator CH (1995) Update on the pathophysiology and pathology of acute spinal cord injury. Brain Pathol (Zurich, Switzerland) 5(4):407–413

    Article  CAS  Google Scholar 

  5. Reinisalo M, Kårlund A, Koskela A, Kaarniranta K, Karjalainen RO (2015) Polyphenol stilbenes: molecular mechanisms of defence against oxidative stress and aging-related diseases. Oxidative Med Cell Longev 2015:340520

  6. Pyo IS, Yun S, Yoon YE, Choi JW, Lee SJ (2020) Mechanisms of aging and the preventive effects of resveratrol on age-related diseases. Molecules (Basel, Switzerland) 25(20):4649

  7. Berman AY, Motechin RA, Wiesenfeld MY, Holz MK (2017) The therapeutic potential of resveratrol: a review of clinical trials. NPJ Precision Oncol 1:35

  8. Singh AP, Singh R, Verma SS, Rai V, Kaschula CH, Maiti P, Gupta SC (2019) Health benefits of resveratrol: evidence from clinical studies. Med Res Rev 39(5):1851–1891

  9. Coyoy-Salgado A, Segura-Uribe JJ, Guerra-Araiza C, Orozco-Suárez S, Salgado-Ceballos H, Feria-Romero IA, Gallardo JM, Orozco-Barrios CE (2019) The importance of natural antioxidants in the treatment of spinal cord injury in animal models: an overview. Oxid Med Cell Longev 2019:3642491

  10. Lopez MS, Dempsey RJ, Vemuganti R (2015) Resveratrol neuroprotection in stroke and traumatic CNS injury. Neurochem Int 89:75–82

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Davis CK, Vemuganti R (2022) Antioxidant therapies in traumatic brain injury. Neurochem Int 152:105255

    Article  CAS  PubMed  Google Scholar 

  12. Xu BP, Yao M, Li ZJ, Tian ZR, Ye J, Wang YJ, Cui X-J (2020) Neurological recovery and antioxidant effects of resveratrol in rats with spinal cord injury: a meta-analysis. Neural Regen Res 15(3):482–490

  13. Girbovan C, Morin L, Plamondon H (2012) Repeated resveratrol administration confers lasting protection against neuronal damage but induces dose-related alterations of behavioral impairments after global ischemia. Behav Pharmacol 23(1):1–13

    Article  CAS  PubMed  Google Scholar 

  14. Karalis F, Soubasi V, Georgiou T, Nakas CT, Simeonidou C, Guiba-Tziampiri O, Spandou E (2011) Resveratrol ameliorates hypoxia/ischemia-induced behavioral deficits and brain injury in the neonatal rat brain. Brain Res 1425:98–110

  15. Singleton RH, Yan HQ, Fellows-Mayle W, Dixon CE (2010) Resveratrol attenuates behavioral impairments and reduces cortical and hippocampal loss in a rat controlled cortical impact model of traumatic brain injury. J Neurotrauma 27(6):1091–1099

  16. Shao AW, Wu HJ, Chen S, Ammar AB, Zhang JM, Hong Y (2014) Resveratrol attenuates early brain injury after subarachnoid hemorrhage through inhibition of NF-κB-dependent inflammatory/MMP-9 pathway. CNS Neurosci Ther 20(2):182–185

  17. Ates O, Cayli S, Altinoz E, Gurses I, Yucel N, Kocak A, Yologlu S, Turkoz Y (2006) Effects of resveratrol and methylprednisolone on biochemical, neurobehavioral and histopathological recovery after experimental spinal cord injury. Acta Pharmacol Sin 27(10):1317–1325

  18. Kaplan S, Bisleri G, Morgan JA, Cheema FH, Oz MC (2005) Resveratrol, a natural red wine polyphenol, reduces ischemia-reperfusion-induced spinal cord injury. Ann Thorac Surg 80(6):2242–2249

  19. Zhang C, Ma J, Fan L, Zou Y, Dang X, Wang K, Song J (2015) Neuroprotective effects of safranal in a rat model of traumatic injury to the spinal cord by anti-apoptotic, anti-inflammatory and edema-attenuating. Tissue Cell 47(3):291–300

  20. Wang C, Wang P, Zeng W, Li W (2016) Tetramethylpyrazine improves the recovery of spinal cord injury via Akt/Nrf2/HO-1 pathway. Bioorg Med Chem Lett 26(4):1287–1291

  21. Yang YB, Piao YJ (2003) Effects of resveratrol on secondary damages after acute spinal cord injury in rats. Acta Pharmacol Sin 24(7):703–710

    CAS  PubMed  Google Scholar 

  22. Zhao H, Chen S, Gao K, Zhou Z, Wang C, Shen Z, Guo Y, Li Z et al (2017) Resveratrol protects against spinal cord injury by activating autophagy and inhibiting apoptosis mediated by the SIRT1/AMPK signaling pathway. Neuroscience 348:241–51

  23. Zhou J, Huo X, Botchway BOA, Xu L, Meng X, Zhang S, Liu X (2018) Beneficial effects of resveratrol-mediated inhibition of the mTOR pathway in spinal cord injury. Neural Plast 2018:7513748

  24. Lu Y, Yang J, Wang X, Ma Z, Li S, Liu Z, Fan X (2020) Research progress in use of traditional Chinese medicine for treatment of spinal cord injury. Biomed Pharmacother 127:110136

  25. Kim AL, Zhu Y, Zhu H, Han L, Kopelovich L, Bickers DR, Athar M (2006) Resveratrol inhibits proliferation of human epidermoid carcinoma A431 cells by modulating MEK1 and AP-1 signalling pathways. Exp Dermatol 15(7):538–546

  26. Athar M, Back JH, Tang X, Kim KH, Kopelovich L, Bickers DR, Kim AL (2007) Resveratrol: a review of preclinical studies for human cancer prevention. Toxicol Appl Pharmacol 224(3):274–283

  27. Bishayee A, Darvesh AS, Politis T, McGory R (2010) Resveratrol and liver disease: from bench to bedside and community. Liver Int: Off J Int Assoc Study Liver 30(8):1103–1114

  28. Meng Q, Guo T, Li G, Sun S, He S, Cheng B, Shi B, Shan A (2018) Dietary resveratrol improves antioxidant status of sows and piglets and regulates antioxidant gene expression in placenta by Keap1-Nrf2 pathway and Sirt1. J Anim Sci Biotechnol 9:34

  29. Nunes S, Danesi F, Del Rio D, Silva P (2018) Resveratrol and inflammatory bowel disease: the evidence so far. Nutr Res Rev 31(1):85–97

  30. Duthie GG, Duthie SJ, Kyle JA (2000) Plant polyphenols in cancer and heart disease: implications as nutritional antioxidants. Nutr Res Rev 13(1):79–106

    Article  CAS  PubMed  Google Scholar 

  31. Brasnyó P, Molnár GA, Mohás M, Markó L, Laczy B, Cseh J, Mikolás E, Szijártó IA et al (2011) Resveratrol improves insulin sensitivity, reduces oxidative stress and activates the Akt pathway in type 2 diabetic patients. Br J Nutr 106(3):383–9

  32. Cheng L, Jin Z, Zhao R, Ren K, Deng C, Yu S (2015) Resveratrol attenuates inflammation and oxidative stress induced by myocardial ischemia-reperfusion injury: role of Nrf2/ARE pathway. Int J Clin Exp Med 8(7):10420–10428

  33. Kung HC, Lin KJ, Kung CT, Lin TK (2021) Oxidative stress, mitochondrial dysfunction, and neuroprotection of polyphenols with respect to resveratrol in Parkinson’s disease. Biomedicines 9(8):918

  34. Pourhanifeh MH, Shafabakhsh R, Reiter RJ, Asemi Z (2019) The effect of resveratrol on neurodegenerative disorders: possible protective actions against autophagy, apoptosis, inflammation and oxidative stress. Curr Pharm Des 25(19):2178–2191

  35. Yilmaz Demirtas C, Bircan FS, Pasaoglu OT, Turkozkan N (2018) The effects of resveratrol on hepatic oxidative stress in metabolic syndrome model induced by high fructose diet. Bratislavske Lekarske Listy 119(1):36–40

  36. He LN, Lan YR, He GM, Guo SJ, Wen FQ, Wang T (2020) Resveratrol inhibits hypoxia-induced oxidative stress and proliferation in pulmonary artery smooth muscle cells through the HIF-1α/NOX4/ROS signaling pathway. Sheng Li Xue Bao 72(5):551–558

  37. Kim TH, Park JH, Woo JS (2019) Resveratrol induces cell death through ROS-dependent downregulation of Notch1/PTEN/Akt signaling in ovarian cancer cells. Mol Med Rep 19(4):3353–3360

    CAS  PubMed  Google Scholar 

  38. Park DW, Baek K, Kim JR, Lee JJ, Ryu SH, Chin BR, Baek SH (2009) Resveratrol inhibits foam cell formation via NADPH oxidase 1- mediated reactive oxygen species and monocyte chemotactic protein-1. Exp Mol Med 41(3):171–179

  39. Breuss JM, Atanasov AG, Uhrin P (2019) Resveratrol and its effects on the vascular system. Int J Mol Sci 20(7):1523

  40. Hui Y, Chengyong T, Cheng L, Haixia H, Yuanda Z, Weihua Y (2018) Resveratrol attenuates the cytotoxicity induced by amyloid-β(1–42) in PC12 cells by upregulating heme oxygenase-1 via the PI3K/Akt/Nrf2 pathway. Neurochem Res 43(2):297–305

  41. Palsamy P, Subramanian S (2011) Resveratrol protects diabetic kidney by attenuating hyperglycemia-mediated oxidative stress and renal inflammatory cytokines via Nrf2-Keap1 signaling. Biochim Biophys Acta 1812(7):719–31

  42. Baur JA, Sinclair DA (2006) Therapeutic potential of resveratrol: the in vivo evidence. Nat Rev Drug Discov 5(6):493–506

    Article  CAS  PubMed  Google Scholar 

  43. Gao Y, Fu R, Wang J, Yang X, Wen L, Feng J (2018) Resveratrol mitigates the oxidative stress mediated by hypoxic-ischemic brain injury in neonatal rats via Nrf2/HO-1 pathway. Pharm Biol 56(1):440–449

  44. Xie Y-K, Zhou X, Yuan H-T, Qiu J, Xin D-Q, Chu X-L, Wang D-C, Wang Z (2019) Resveratrol reduces brain injury after subarachnoid hemorrhage by inhibiting oxidative stress and endoplasmic reticulum stress. Neural Regen Res 14(10):1734–1742

  45. Ren Z, Wang L, Cui J, Huoc Z, Xue J, Cui H, Mao Q, Yang R (2013) Resveratrol inhibits NF-kB signaling through suppression of p65 and IkappaB kinase activities. Pharmazie 68(8):689–694

  46. Rauf A, Imran M, Butt MS, Nadeem M, Peters DG, Mubarak MS (2018) Resveratrol as an anti-cancer agent: a review. Crit Rev Food Sci Nutr 58(9):1428–1447

  47. Mu Q, Najafi M (2021) Resveratrol for targeting the tumor microenvironment and its interactions with cancer cells. Int Immunopharmacol 98:107895

    Article  CAS  PubMed  Google Scholar 

  48. Agrawal M, Kumar V, Kashyap MP, Khanna VK, Randhawa GS, Pant AB (2011) Ischemic insult induced apoptotic changes in PC12 cells: protection by trans resveratrol. Eur J Pharmacol 666(1–3):5–11

  49. Hou CY, Tain YL, Yu HR, Huang LT (2019) The effects of resveratrol in the treatment of metabolic syndrome. Int J Mol Sci 20(3):535

  50. Ganji A, Jalali-Mashayekhi F, Hajihossein R, Eslamirad Z, Bayat PD, Sakhaie M (2022) Anti-parasitic effects of resveratrol on protoscolices and hydatid cyst layers. Expl Parasitol 241:108360

  51. Lukovic D, Stojkovic M, Moreno-Manzano V, Jendelova P, Sykova E, Bhattacharya SS, Erceg S (2015) Concise review: reactive astrocytes and stem cells in spinal cord injury: good guys or bad guys? Stem Cells 33(4):1036–41

  52. Zhang Q, Yang H, An J, Zhang R, Chen B, Hao DJ (2016) Therapeutic effects of traditional chinese medicine on spinal cord injury: a promising supplementary treatment in future. Evid Based Complement Alternat Med: eCAM 2016:8958721

  53. Kim YH, Ha KY, Kim SI (2017) Spinal cord injury and related clinical trials. Clin Orthop Surg 9(1):1–9

    Article  PubMed  PubMed Central  Google Scholar 

  54. Kwon BK, Tetzlaff W, Grauer JN, Beiner J, Vaccaro AR (2004) Pathophysiology and pharmacologic treatment of acute spinal cord injury. Spine J 4(4):451–464

  55. Zechner D, Fujita Y, Hülsken J, Müller T, Walther I, Taketo MM, Crenshaw EB 3rd, Birchmeier W et al (2003) beta-Catenin signals regulate cell growth and the balance between progenitor cell expansion and differentiation in the nervous system. Dev Biol 258(2):406–418

  56. Silva NA, Sousa N, Reis RL, Salgado AJ (2014) From basics to clinical: a comprehensive review on spinal cord injury. Prog Neurobiol 114:25–57

  57. Yip PK, Malaspina A (2012) Spinal cord trauma and the molecular point of no return. Mol Neurodegener 7:6

    Article  PubMed  PubMed Central  Google Scholar 

  58. DeVivo MJ, Go BK, Jackson AB (2002) Overview of the national spinal cord injury statistical center database. J Spinal Cord Med 25(4):335–338

  59. Quadri SA, Farooqui M, Ikram A, Zafar A, Khan MA, Suriya SS, Claus CF, Fiani B et al (2020) Recent update on basic mechanisms of spinal cord injury. Neurosurg Rev 43(2):425–441

  60. Fan YD, Zhu ML, Geng D, Zhou K, Du GJ, Wang ZL (2018) The study on pathological mechanism and solution method for spinal cord ischemia reperfusion injury. Eur Rev Med Pharmacol Sci 22(13):4063–4068

  61. Shi Z, Yuan S, Shi L, Li J, Ning G, Kong X, Feng S (2021) Programmed cell death in spinal cord injury pathogenesis and therapy. Cell Prolif 54(3):e12992

  62. Orr MB, Gensel JC (2018) Spinal cord injury scarring and inflammation: therapies targeting glial and inflammatory responses. Neurotherapeutics 15(3):541–553

  63. Tran AP, Warren PM, Silver J (2018) The biology of regeneration failure and success after spinal cord injury. Physiol Rev 98(2):881–917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Silver J, Miller JH (2004) Regeneration beyond the glial scar. Nat Rev Neurosci 5(2):146–156

    Article  CAS  PubMed  Google Scholar 

  65. Yan P, Bai L, Lu W, Gao Y, Bi Y, Lv G (2017) Regulation of autophagy by AMP-activated protein kinase/sirtuin 1 pathway reduces spinal cord neurons damage. Iran J Basic Med Sci 20(9):1029–1036

  66. Meng HY, Shao DC, Li H, Huang XD, Yang G, Xu B, Niu HY (2018) Resveratrol improves neurological outcome and neuroinflammation following spinal cord injury through enhancing autophagy involving the AMPK/mTOR pathway. Mol Med Rep 18(2):2237–2244

  67. Wang P, Jiang L, Zhou N, Zhou H, Liu H, Zhao W, Zhang H, Zhang X et al (2018) Resveratrol ameliorates autophagic flux to promote functional recovery in rats after spinal cord injury. Oncotarget 9(9):8427–8440

  68. Liu X, Botchway BOA, Tan X, Zhang Y, Fang M (2019) Resveratrol treatment of spinal cord injury in rat model. Microsc Res Tech 82(3):296–303

  69. Çiftçi U, Delen E, Vural M, Uysal O, Turgut Coşan D, Baydemir C, Doğaner F (2016) Efficiacy of resveratrol and quercetin after experimental spinal cord injury. Ulusal Travma Ve Acil Cerrahi Dergisi = Turk J Trauma Emerg Surg: TJTES 22(5):423–31

  70. Fu S, Lv R, Wang L, Hou H, Liu H, Shao S (2018) Resveratrol, an antioxidant, protects spinal cord injury in rats by suppressing MAPK pathway. Saudi J Biol Sci 25(2):259–266

  71. Naseem M, Parvez S (2014) Role of melatonin in traumatic brain injury and spinal cord injury. Sci World J 2014:586270

    Article  Google Scholar 

  72. Chen G, Zhang S, Shi J, Ai J, Qi M, Hang C (2009) Simvastatin reduces secondary brain injury caused by cortical contusion in rats: possible involvement of TLR4/NF-kappaB pathway. Exp Neurol 216(2):398–406

  73. Kumar A, Negi G, Sharma SS (2013) Neuroprotection by resveratrol in diabetic neuropathy: concepts & mechanisms. Curr Med Chem 20(36):4640–5

  74. Recalde MD, Miguel CA, Noya-Riobó MV, González SL, Villar MJ, Coronel MF (2020) Resveratrol exerts anti-oxidant and anti-inflammatory actions and prevents oxaliplatin-induced mechanical and thermal allodynia. Brain Res 1748:147079

    Article  CAS  PubMed  Google Scholar 

  75. Yao XQ, Liu ZY, Chen JY, Huang ZC, Liu JH, Sun BH, Zhu QA, Ding RT et al (2021) Proteomics and bioinformatics reveal insights into neuroinflammation in the acute to subacute phases in rat models of spinal cord contusion injury. FASEB J 35(7):e21735

  76. Oyinbo CA (2011) Secondary injury mechanisms in traumatic spinal cord injury: a nugget of this multiply cascade. Acta Neurobiol Exp (Wars) 71(2):281–99

  77. Norden DM, Trojanowski PJ, Villanueva E, Navarro E, Godbout JP (2016) Sequential activation of microglia and astrocyte cytokine expression precedes increased Iba-1 or GFAP immunoreactivity following systemic immune challenge. Glia 64(2):300–16

  78. Benveniste EN (1998) Cytokine actions in the central nervous system. Cytokine Growth Factor Rev 9(3–4):259–275

    Article  CAS  PubMed  Google Scholar 

  79. Guadagno J, Xu X, Karajgikar M, Brown A, Cregan SP (2013) Microglia-derived TNFα induces apoptosis in neural precursor cells via transcriptional activation of the Bcl-2 family member Puma. Cell Death Dis 4(3):e538

  80. Teeling JL, Perry VH (2009) Systemic infection and inflammation in acute CNS injury and chronic neurodegeneration: underlying mechanisms. Neuroscience 158(3):1062–73

  81. Fan R, Zhang Y, Botchway BOA, Liu X (2021) Resveratrol can attenuate astrocyte activation to treat spinal cord injury by inhibiting inflammatory responses. Mol Neurobiol 58(11):5799–5813

  82. Lv R, Du L, Liu X, Zhou F, Zhang Z, Zhang L (2019) Polydatin alleviates traumatic spinal cord injury by reducing microglial inflammation via regulation of iNOS and NLRP3 inflammasome pathway. Int Immunopharmacol 70:28–36

  83. Zhang M, Xue Y, Chen H, Meng L, Chen B, Gong H, Zhao Y, Qi R (2019) Resveratrol inhibits MMP3 and MMP9 expression and secretion by suppressing TLR4/NF-κB/STAT3 activation in Ox-LDL-Treated HUVECs. Oxidative Med Cell Longev 2019:9013169

  84. Xu X, Liu X, Yang Y, He J, Jiang M, Huang Y, Liu X, Liu L et al (2020) Resveratrol exerts anti-osteoarthritic effect by inhibiting TLR4/NF-κB signaling pathway via the TLR4/Akt/FoxO1 Axis in IL-1β-Stimulated SW1353 Cells. Drug Des Dev Ther 14:2079–2090

  85. Li J, Li L, Wang S, Zhang C, Zheng L, Jia Y, Xu M, Zhu T et al (2018) Resveratrol alleviates inflammatory responses and oxidative stress in rat kidney ischemia-reperfusion injury and H2O2-Induced NRK-52E cells via the Nrf2/TLR4/NF-κB pathway. Cell Physiol Biochem 45(4):1677–1689

  86. Liu J, Yi L, Xiang Z, Zhong J, Zhang H, Sun T (2015) Resveratrol attenuates spinal cord injury-induced inflammatory damage in rat lungs. Int J Clin Exp Pathol 8(2):1237–46

  87. Mo X, Wang X, Ge Q, Bian F (2019) The effects of SIRT1/FoxO1 on LPS induced INS-1 cells dysfunction. Stress (Amsterdam, Netherlands) 22(1):70–82

  88. Zhao H, Mei X, Yang D, Tu G (2021) Resveratrol inhibits inflammation after spinal cord injury via SIRT-1/NF-κB signaling pathway. Neurosci Lett 762:136151

  89. Varma AK, Das A, Wallace Gt 4th, Barry J, Vertegel AA, Ray SK, Banik NL (2013) Spinal cord injury: a review of current therapy, future treatments, and basic science frontiers. Neurochem Res 38(5):895–905

  90. Macchi B, Marino-Merlo F, Nocentini U, Pisani V, Cuzzocrea S, Grelli S, Mastino A (2015) Role of inflammation and apoptosis in multiple sclerosis: Comparative analysis between the periphery and the central nervous system. J Neuroimmunol 287:80–7

  91. Beattie MS, Farooqui AA, Bresnahan JC (2000) Review of current evidence for apoptosis after spinal cord injury. J Neurotrauma 17(10):915–925

    Article  CAS  PubMed  Google Scholar 

  92. Springer JE, Azbill RD, Knapp PE (1999) Activation of the caspase-3 apoptotic cascade in traumatic spinal cord injury. Nat Med 5(8):943–946

    Article  CAS  PubMed  Google Scholar 

  93. Lin HY, Tang HY, Davis FB, Davis PJ (2011) Resveratrol and apoptosis. Ann N Y Acad Sci 1215:79–88

  94. Bastianetto S, Ménard C, Quirion R (1852) Neuroprotective action of resveratrol. Biochimica et Biophysica Acta 6:1195–201

    Google Scholar 

  95. Kesherwani V, Atif F, Yousuf S, Agrawal SK (2013) Resveratrol protects spinal cord dorsal column from hypoxic injury by activating Nrf-2. Neuroscience 241:80–8

  96. Senturk S, Yaman ME, Aydin HE, Guney G, Bozkurt I, Paksoy K, Abdioglu AA (2018) Effects of resveratrol on inflammation and apoptosis after experimental spinal cord injury. Turk Neurosurg 28(6):889–896

  97. Iside C, Scafuro M, Nebbioso A, Altucci L (2020) SIRT1 activation by natural phytochemicals: an overview. Front Pharmacol 11:1225

  98. Tian Q, Fan X, Ma J, Han Y, Li D, Jiang S, Zhang F, Guang H et al (2020) Resveratrol ameliorates lipopolysaccharide-induced anxiety-like behavior by attenuating YAP-mediated neuro-inflammation and promoting hippocampal autophagy in mice. Toxicol Appl Pharmacol 408:115261

  99. Tian H, Zhao H, Mei X, Li D, Lin J, Lin S, Song C (2021) Resveratrol inhibits LPS-induced apoptosis in VSC4.1 motoneurons through enhancing SIRT1-mediated autophagy. Iran J Basic Med Sci 24(1):38–43

  100. Fan Y, Li Y, Huang S, Xu H, Li H, Liu B (2020) Resveratrol-primed exosomes strongly promote the recovery of motor function in SCI rats by activating autophagy and inhibiting apoptosis via the PI3K signaling pathway. Neurosci Lett 736:135262

  101. Fan H, Zhang K, Shan L, Kuang F, Chen K, Zhu K, Ma H, Ju G et al (2016) Reactive astrocytes undergo M1 microglia/macrohpages-induced necroptosis in spinal cord injury. Mol Neurodegener 11:14

  102. Wang H, Song G, Chuang H, Chiu C, Abdelmaksoud A, Ye Y, Zhao L (2018) Portrait of glial scar in neurological diseases. Int J Immunopathol Pharmacol 31:2058738418801406

  103. Ren J, Mao X, Chen M, Zhang W, Liu Y, Duan C, Zhang H, Sun C et al (2015) TCTP Expression after rat spinal cord injury: implications for astrocyte proliferation and migration. J Mol Neurosci 57(3):366–375

  104. Lin B, Xu Y, Zhang B, He Y, Yan Y, He MC (2014) MEK inhibition reduces glial scar formation and promotes the recovery of sensorimotor function in rats following spinal cord injury. Exp Ther Med 7(1):66–72

  105. Goldshmit Y, Kanner S, Zacs M, Frisca F, Pinto AR, Currie PD, Pinkas-Kramarski R (2015) Rapamycin increases neuronal survival, reduces inflammation and astrocyte proliferation after spinal cord injury. Mol Cell Neurosci 68:82–91

  106. Tang ZM, Zhai XX, Ding JC (2017) Expression of mTOR/70S6K signaling pathway in pathological scar fibroblasts and the effects of resveratrol intervention. Mol Med Rep 15(5):2546–2550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Guo D, Zou J, Wong M (2017) Rapamycin attenuates acute seizure-induced astrocyte injury in mice in vivo. Sci Rep 7(1):2867

    Article  PubMed  PubMed Central  Google Scholar 

  108. Luan Y, Chen M, Zhou L (2017) MiR-17 targets PTEN and facilitates glial scar formation after spinal cord injuries via the PI3K/Akt/mTOR pathway. Brain Res Bull 128:68–75

    Article  CAS  PubMed  Google Scholar 

  109. Chen CH, Sung CS, Huang SY, Feng CW, Hung HC, Yang SN, Chen NF, Tai MH et al (2016) The role of the PI3K/Akt/mTOR pathway in glial scar formation following spinal cord injury. Exp Neurol 278:27–41

  110. Guo S, Liao H, Liu J, Liu J, Tang F, He Z, Li Y, Yang Q (2018) Resveratrol activated sonic hedgehog signaling to enhance viability of NIH3T3 cells in vitro via regulation of Sirt1. Cell Physiol Biochem 50(4):1346–1360

  111. Shi J, Xiao H, Li J, Zhang J, Li Y, Zhang J, Wang X, Bai X et al (2018) Wild-type p53-modulated autophagy and autophagic fibroblast apoptosis inhibit hypertrophic scar formation. Lab Investig 98(11):1423–1437

  112. Radad K, Moldzio R, Al-Shraim M, Kranner B, Krewenka C, Rausch WD (2015) Recent advances in autophagy-based neuroprotection. Expert Rev Neurother 15(2):195–205

  113. Suomi F, Mcwilliams TG (2019) Autophagy in the mammalian nervous system: a primer for neuroscientists. Neuronal Signal 3(3):Ns20180134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Wu J, Lipinski MM (2019) Autophagy in neurotrauma: good, bad, or dysregulated. Cells 8(7):693

  115. Bar-Yosef T, Damri O, Agam G (2019) Dual role of autophagy in diseases of the central nervous system. Front Cell Neurosci 13:196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Lipinski MM, Wu J, Faden AI, Sarkar C (2015) Function and mechanisms of autophagy in brain and spinal cord trauma. Antioxid Redox Signal 23(6):565–577

  117. Cherra SJ 3rd, Chu CT (2008) Autophagy in neuroprotection and neurodegeneration: a question of balance. Future Neurol 3(3):309–323

  118. Liao HY, Wang ZQ, Ran R, Zhou KS, Ma CW, Zhang HH (2021) Biological functions and therapeutic potential of autophagy in spinal cord injury. Front Cell Dev Biol 9:761273

  119. Tang P, Hou H, Zhang L, Lan X, Mao Z, Liu D, He C, Du H et al (2014) Autophagy reduces neuronal damage and promotes locomotor recovery via inhibition of apoptosis after spinal cord injury in rats. Mol Neurobiol 49(1):276–87

  120. Park D, Jeong H, Lee MN, Koh A, Kwon O, Yang YR, Noh J, Suh PG et al (2016) Resveratrol induces autophagy by directly inhibiting mTOR through ATP competition. Sci Rep 6:21772

  121. Mariño G, Madeo F, Kroemer G (2011) Autophagy for tissue homeostasis and neuroprotection. Curr Opin Cell Biol 23(2):198–206

    Article  PubMed  Google Scholar 

  122. Hu J, Han H, Cao P, Yu W, Yang C, Gao Y, Yuan W (2017) Resveratrol improves neuron protection and functional recovery through enhancement of autophagy after spinal cord injury in mice. Am J Transl Res 9(10):4607–4616

  123. Fang W, Bi D, Zheng R, Cai N, Xu H, Zhou R, Lu J, Wan M et al (2017) Identification and activation of TLR4-mediated signalling pathways by alginate-derived guluronate oligosaccharide in RAW264.7 macrophages. Sci Rep 7(1):1663

  124. Gensel JC, Zhang B (2015) Macrophage activation and its role in repair and pathology after spinal cord injury. Brain Res 1619:1–11

    Article  CAS  PubMed  Google Scholar 

  125. Ding Y, Chen Q (2022) mTOR pathway: a potential therapeutic target for spinal cord injury. Biomed Pharmacother 145:112430

    Article  CAS  PubMed  Google Scholar 

  126. Cheng P, Liao HY, Zhang HH (2022) The role of Wnt/mTOR signaling in spinal cord injury. J Clin Orthop Trauma 25:101760

    Article  PubMed  PubMed Central  Google Scholar 

  127. Zhou Y, Xia L, Liu Q, Wang H, Lin J, Oyang L, Chen X, Luo X et al (2018) Induction of pro-inflammatory response via activated macrophage-mediated NF-κB and STAT3 pathways in gastric cancer cells. Cell Physiol Biochem: Int J Exp Cell Physiol Biochem Pharmacol 47(4):1399–1410

  128. Fukuchi M, Nakajima M, Fukai Y, Miyazaki T, Masuda N, Sohda M, Manda R, Tsukada K et al (2004) Increased expression of c-Ski as a co-repressor in transforming growth factor-beta signaling correlates with progression of esophageal squamous cell carcinoma. Int J Cancer 108(6):818–24

  129. Yuan HX, Guan KL (2016) Structural insights of mTOR complex 1. Cell Res 26(3):267–8

  130. Yuan Y, Wang Y, Hu FF, Jiang CY, Zhang YJ, Yang JL, Zhao SW, Gu JH et al (2016) Cadmium activates reactive oxygen species-dependent AKT/mTOR and mitochondrial apoptotic pathways in neuronal cells. Biomed Environ Sci: BES 29(2):117–126

  131. Luan Y, Chen M, Zhou L (2021) Erratum to “MiR-17 targets PTEN and facilitates glial scar formation after spinal cord injuries via the PI3K/Akt/mTOR Pathway” [Brain Res. Bull. 128 (2017) 68–75]. Brain Res Bull 174: 400–401

  132. Ma C, Teng L, Lin G, Guo B, Zhuo R, Qian X, Guan T, Wu R et al (2021) L-leucine promotes axonal outgrowth and regeneration via mTOR activation. FASEB J 35(5):e21526

  133. Dai J, Sun Y, Chen D, Zhang Y, Yan L, Li X, Wang J (2019) Negative regulation of PI3K/AKT/mTOR axis regulates fibroblast proliferation, apoptosis and autophagy play a vital role in triptolide-induced epidural fibrosis reduction. Eur J Pharmacol 864:172724

  134. Liu C, Shi Z, Fan L, Zhang C, Wang K, Wang B (2011) Resveratrol improves neuron protection and functional recovery in rat model of spinal cord injury. Brain Res 1374:100–9

  135. Wang GY, Bi YG, Liu XD, Han JF, Wei M, Zhang QY (2017) Upregulation of connexin 43 and apoptosis-associated protein expression by high glucose in H9c2 cells was improved by resveratrol via the autophagy signaling pathway. Mol Med Rep 16(3):3262–3268

  136. Wang SJ, Bo QY, Zhao XH, Yang X, Chi ZF, Liu XW (2013) Resveratrol pre-treatment reduces early inflammatory responses induced by status epilepticus via mTOR signaling. Brain Res 1492:122–9

  137. Sun SC (2017) The non-canonical NF-κB pathway in immunity and inflammation. Nat Rev Immunol 17(9):545–558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Lawrence T (2009) The nuclear factor NF-kappaB pathway in inflammation. Cold Spring Harb Perspect Biol 1(6):a001651

    Article  PubMed  PubMed Central  Google Scholar 

  139. Kawai T, Akira S (2010) The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol 11(5):373–84

  140. Yu H, Lin L, Zhang Z, Zhang H, Hu H (2020) Targeting NF-κB pathway for the therapy of diseases: mechanism and clinical study. Signal Transduct Target Ther 5(1):209

  141. Arthur JS, Ley SC (2013) Mitogen-activated protein kinases in innate immunity. Nat Rev Immunol 13(9):679–92

  142. Zhang ZH, Yu LJ, Hui XC, Wu ZZ, Yin KL, Yang H, Xu Y (2014) Hydroxy-safflor yellow A attenuates Aβ1-42-induced inflammation by modulating the JAK2/STAT3/NF-κB pathway. Brain Res 1563:72–80

  143. Zhang Q, Wang J, Gu Z, Zhang Q, Zheng H (2016) Effect of lycopene on the blood-spinal cord barrier after spinal cord injury in mice. Biosci Trends 10(4):288–93

  144. Ni H, Jin W, Zhu T, Wang J, Yuan B, Jiang J, Liang W, Ma Z (2015) Curcumin modulates TLR4/NF-κB inflammatory signaling pathway following traumatic spinal cord injury in rats. J Spinal Cord Med 38(2):199–206

  145. Kulkarni SS, Cantó C (1852) The molecular targets of resveratrol. Biochimica et Biophysica Acta 6:1114–23

    Google Scholar 

  146. Xu L, Botchway BOA, Zhang S, Zhou J, Liu X (2018) Inhibition of NF-κB signaling pathway by resveratrol improves spinal cord injury. Front Neurosci 12:690

  147. Yang H, Zhang W, Pan H, Feldser HG, Lainez E, Miller C, Leung S, Zhong Z et al (2012) SIRT1 activators suppress inflammatory responses through promotion of p65 deacetylation and inhibition of NF-κB activity. PLoS ONE 7(9):e46364

  148. Yan J, Luo A, Gao J, Tang X, Zhao Y, Zhou B, Zhou Z, Li S (2019) The role of SIRT1 in neuroinflammation and cognitive dysfunction in aged rats after anesthesia and surgery. Am J Transl Res 11(3):1555–1568

  149. Zhao H, Wang Q, Cheng X, Li X, Li N, Liu T, Li J, Yang Q et al (2018) Inhibitive effect of resveratrol on the inflammation in cultured astrocytes and microglia induced by Aβ(1–42). Neuroscience 379:390–404

  150. Garcia AL, Udeh A, Kalahasty K, Hackam AS (2018) A growing field: the regulation of axonal regeneration by Wnt signaling. Neural Regen Res 13(1):43–52

  151. Xiang Z, Zhang S, Yao X, Xu L, Hu J, Yin C, Chen J, Xu H (2021) Resveratrol promotes axonal regeneration after spinal cord injury through activating Wnt/β-catenin signaling pathway. Aging 13(20):23603–23619

  152. Hasan SS, Tsaryk R, Lange M, Wisniewski L, Moore JC, Lawson ND, Wojciechowska K, Schnittler H et al (2017) Endothelial Notch signalling limits angiogenesis via control of artery formation. Nat Cell Biol 19(8):928–940

  153. Yan WJ, Liu RB, Wang LK, Ma YB, Ding SL, Deng F, Hu ZY, Wang DB (2018) Sirt3-mediated autophagy contributes to resveratrol-induced protection against ER stress in HT22 Cells. Front Neurosci 12:116

  154. Chen BY, Zheng MH, Chen Y, Du YL, Sun XL, Zhang X, Duan L, Gao F et al (2015) Myeloid-specific blockade of Notch signaling by RBP-J knockout attenuates spinal cord injury accompanied by compromised inflammation Response in Mice. Mol Neurobiol 52(3):1378–1390

  155. Sun W, Zhang H, Wang H, Chiu YG, Wang M, Ritchlin CT, Kiernan A, Boyce BF et al (2017) Targeting Notch-activated M1 macrophages attenuates joint tissue damage in a mouse model of inflammatory arthritis. J Bone Miner Res 32(7):1469–1480

  156. Zhang S, Botchway BOA, Zhang Y, Liu X (2019) Resveratrol can inhibit Notch signaling pathway to improve spinal cord injury. Ann Anat Anat = Anzeiger: Off Organ Anat Ges 223:100–7

  157. Nguyen T, Sherratt PJ, Pickett CB (2003) Regulatory mechanisms controlling gene expression mediated by the antioxidant response element. Annu Rev Pharmacol Toxicol 43:233–60

  158. Guo X, Kang J, Wang Z, Wang Y, Liu M, Zhu D, Yang F, Kang X (2022) Nrf2 signaling in the oxidative stress response after spinal cord injury. Neuroscience 498:311–324

  159. Samarghandian S, Pourbagher-Shahri AM, Ashrafizadeh M, Khan H, Forouzanfar F, Aramjoo H, Farkhondeh T (2020) A pivotal role of the Nrf2 signaling pathway in spinal cord injury: a prospective therapeutics study. CNS Neurol Disord Drug Targets 19(3):207–219

  160. Ulus AT, Turan NN, Seren M, Budak B, Tütün U, Yazicioğlu H, Sürücü S, Akar F et al (2007) In which period of injury is resveratrol treatment effective: ischemia or reperfusion? Ann Vasc Surg 21(3):360–6

  161. Kiziltepe U, Turan NN, Han U, Ulus AT, Akar F (2004) Resveratrol, a red wine polyphenol, protects spinal cord from ischemia-reperfusion injury. J Vasc Surg 40(1):138–45

  162. Ni C, Ye Q, Mi X, Jiao D, Zhang S, Cheng R, Fang Z, Fang M et al (2023) Resveratrol inhibits ferroptosis via activating NRF2/GPX4 pathway in mice with spinal cord injury. Microsc Res Tech. https://doi.org/10.1002/jemt.24335

  163. Zhang G, Liu Y, Xu L, Sha C, Zhang H, Xu W (2019) Resveratrol alleviates lipopolysaccharide-induced inflammation in PC-12 cells and in rat model. BMC Biotechnol 19(1):10

  164. Sheng S, Wang X, Liu X, Hu X, Shao Y, Wang G, Mao D, Li C et al (2022) The role of resveratrol on rheumatoid arthritis: from bench to bedside. Front Pharmacol 13:829677

  165. Tanriverdi G, Kaya-Dagistanli F, Ayla S, Demirci S, Eser M, Unal ZS, Cengiz M, Oktar H (2016) Resveratrol can prevent CCl4-induced liver injury by inhibiting Notch signaling pathway. Histol Histopathol 31(7):769–84

  166. Katevatis C, Fan A, Klapperich CM (2017) Low concentration DNA extraction and recovery using a silica solid phase. PLoS ONE 12(5):e0176848

    Article  PubMed  PubMed Central  Google Scholar 

  167. Jiang X, Liu X, Yu Q, Shen W, Mei X, Tian H, Wu C (2022) Functional resveratrol-biodegradable manganese doped silica nanoparticles for the spinal cord injury treatment. Mater Today Bio 13:100177

  168. Li Y, Zou Z, An J, Wu Q, Tong L, Mei X, Wu C (2022) Chitosan-modified hollow manganese dioxide nanoparticles loaded with resveratrol for the treatment of spinal cord injury. Drug Deliv 29(1):2498–2512

  169. Adamiak M, Sahoo S (2018) Exosomes in myocardial repair: advances and challenges in the development of next-generation therapeutics. Mol Ther 26(7):1635–1643

  170. Reynolds JL, Mahajan SD (2020) Transmigration of tetraspanin 2 (Tspan2) siRNA via microglia derived exosomes across the blood brain barrier modifies the production of immune mediators by microglia cells. J Neuroimmune Pharmacol: Off J Soc NeuroImmune Pharmacol 15(3):554–563

    Article  Google Scholar 

  171. Yang T, Martin P, Fogarty B, Brown A, Schurman K, Phipps R, Yin VP, Lockman P et al (2015) Exosome delivered anticancer drugs across the blood-brain barrier for brain cancer therapy in Danio rerio. Pharm Res 32(6):2003–14

Download references

Funding

This work is supported by funding of the Science and Technology planning project of Jiangxi provincial health commission, China (No.202311919).

Author information

Authors and Affiliations

Authors

Contributions

Fei-xiang Lin, Qi-lin Pan and Fang-jun Zeng conceived and designed the review. Fei-xiang Lin drafted the manuscript; Qi-lin Pan and Fang-jun Zeng edited and revised the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Fei-xiang Lin.

Ethics declarations

Ethics Approval and Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, Fx., Pan, Ql., Gu, Hy. et al. The Role of Resveratrol on Spinal Cord Injury: from Bench to Bedside. Mol Neurobiol 61, 104–119 (2024). https://doi.org/10.1007/s12035-023-03558-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-023-03558-7

Keywords

Navigation