Skip to main content
Log in

NLRP3 Activation Contributes to Memory Impairment in an Experimental Model of Pneumococcal Meningitis

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Bacterial meningitis is considered a life-threatening condition with high mortality rates. In response to the infection, signaling cascades, producing pro-inflammatory mediators trigger an exacerbated host immune response. Another inflammatory pathway occurs through the activation of inflammasomes. Studies highlight the role of the NLR family pyrin domain containing 3 (NLRP3) in central nervous system disorders commonly involved in neuroinflammation. We aimed to investigate the role of NLRP3 and its inhibitor MCC950 on neurochemical, immunological, and behavioral parameters in the early and late stages of experimental pneumococcal meningitis. For this, adult male Wistar rats received an intracisternal injection of Streptococcus pneumoniae or artificial cerebrospinal fluid as a placebo. The animals were divided into control/saline, control/MCC950, meningitis/saline, and meningitis/MCC950. Immediately after the meningitis induction, the animals received 140 ng/kg MCC950 via intracisternal injection. For the acute protocol, 24 h after induction, brain structures were collected to evaluate cytokines, NLRP3, and microglia. In the long-term group, the animals were submitted to open field and recognition of new objects tests at ten days after the meningitis induction. After the behavioral tests, the same markers were evaluated. The animals in the meningitis group at 24 h showed increased levels of cytokines, NLRP3, and IBA-1 expression, and the use of the MCC950 significantly reduced those levels. Although free from infection, ten days after meningitis induction, the animals in the meningitis group had elevated cytokine levels and demonstrated behavioral deficits; however, the single dose of NLRP3 inhibitor rescued the behavior deficits and decreased the brain inflammatory profile.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The datasets generated and analyzed from this current study are available from the corresponding author upon reasonable request.

Code Availability

Not applicable.

References

  1. Liechti FD, Grandgirard D, Leib SL (2015) Bacterial meningitis: insights into pathogenesis and evaluation of new treatment options: a perspective from experimental studies. Future Microbiol 10(7):1195–1213

    Article  CAS  PubMed  Google Scholar 

  2. Yau B, Hunt NH, Mitchell AJ, Too LK (2018) Blood-brain barrier pathology and cns outcomes in streptococcus pneumoniae meningitis. Int J Mol Sci 19(11):3555

    Article  PubMed  PubMed Central  Google Scholar 

  3. Thakur KT, Wilson MR (2018) Chronic meningitis. Continuum (Minneap Minn) 24(5, Neuroinfectious Disease):1298–1326

    PubMed  Google Scholar 

  4. Bijlsma MW, Brouwer MC, Kasanmoentalib ES, Kloek AT, Lucas MJ, Tanck MW, van der Ende A, van de Beek D (2016) Community-acquired bacterial meningitis in adults in the Netherlands, 2006–14: a prospective cohort study. Lancet Infect Dis 16(3):339–347

    Article  PubMed  Google Scholar 

  5. Hasbun R, Rosenthal N, Balada-Llasat JM, Chung J, Duff S, Bozzette S, Zimmer L, Ginocchio CC (2017) Epidemiology of Meningitis and Encephalitis in the United States, 2011–2014. Clin Infect Dis 65(3):359–363

    Article  PubMed  Google Scholar 

  6. Doran KS, Fulde M, Gratz N, Kim BJ, Nau R, Prasadarao N, Schubert-Unkmeir A, Tuomanen EI et al (2016) Host-pathogen interactions in bacterial meningitis. Acta Neuropathol 131(2):185–209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Priller J, Prinz M (2019) Targeting microglia in brain disorders. Science 365(6448):32–33

    Article  CAS  PubMed  Google Scholar 

  8. Barichello T, Generoso JS, Simoes LR, Elias SG, Quevedo J (2013) Role of oxidative stress in the pathophysiology of pneumococcal meningitis. Oxid Med Cell Longev 2013:371465

    Article  PubMed  PubMed Central  Google Scholar 

  9. Schroder K, Tschopp J (2010) The inflammasomes. Cell 140(6):821–832

    Article  CAS  PubMed  Google Scholar 

  10. Martinon F, Burns K, Tschopp J (2002) The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol Cell 10(2):417–426

    Article  CAS  PubMed  Google Scholar 

  11. Barichello T, dos Santos I, Savi GD, Florentino AF, Silvestre C, Comim CM, Feier G, Sachs D et al (2009) Tumor necrosis factor alpha (TNF-alpha) levels in the brain and cerebrospinal fluid after meningitis induced by Streptococcus pneumoniae. Neurosci Lett 467(3):217–219

    Article  CAS  PubMed  Google Scholar 

  12. Barichello T, dos Santos I, Savi GD, Simoes LR, Silvestre T, Comim CM, Sachs D, Teixeira MM et al (2010) TNF-alpha, IL-1beta, IL-6, and cinc-1 levels in rat brain after meningitis induced by Streptococcus pneumoniae. J Neuroimmunol 221(1–2):42–45

    Article  CAS  PubMed  Google Scholar 

  13. Barichello T, Dos Santos I, Savi GD, Simoes LR, Generoso JS, Comim CM, Sachs D, Teixeira AL et al (2010) Depressive-like-behavior and proinflamatory interleukine levels in the brain of rats submitted to pneumococcal meningitis. Brain Res Bull 82(5–6):243–246

    Article  CAS  PubMed  Google Scholar 

  14. Kamei S (2016) Cognitive Impairment in Patients with Bacterial Meningitis and Encephalitides. Brain Nerve 68(4):317–327

    PubMed  Google Scholar 

  15. Barichello T, Silva GZ, Generoso JS, Savi GD, Michelon CM, Feier G, Comim CM, Quevedo J (2010) Time-dependent behavioral recovery after pneumococcal meningitis in rats. J Neural Transm (Vienna) 117(7):819–826

    Article  PubMed  Google Scholar 

  16. Barichello T, Generoso JS, Simoes LR, Elias SG, Tashiro MH, Dominguini D, Comim CM, Vilela MC et al (2013) Inhibition of indoleamine 2,3-dioxygenase prevented cognitive impairment in adult Wistar rats subjected to pneumococcal meningitis. Transl Res 162(6):390–397

    Article  CAS  PubMed  Google Scholar 

  17. Heneka MT, McManus RM, Latz E (2018) Inflammasome signalling in brain function and neurodegenerative disease. Nat Rev Neurosci 19(10):610–621

    Article  CAS  PubMed  Google Scholar 

  18. Witzenrath M, Pache F, Lorenz D, Koppe U, Gutbier B, Tabeling C, Reppe K, Meixenberger K et al (2011) The NLRP3 inflammasome is differentially activated by pneumolysin variants and contributes to host defense in pneumococcal pneumonia. J Immunol 187(1):434–440

    Article  CAS  PubMed  Google Scholar 

  19. Karmakar M, Katsnelson M, Malak HA, Greene NG, Howell SJ, Hise AG, Camilli A, Kadioglu A et al (2015) Neutrophil IL-1beta processing induced by pneumolysin is mediated by the NLRP3/ASC inflammasome and caspase-1 activation and is dependent on K+ efflux. J Immunol 194(4):1763–1775

    Article  CAS  PubMed  Google Scholar 

  20. Rabes A, Suttorp N, Opitz B (2016) Inflammasomes in pneumococcal infection: innate immune sensing and bacterial evasion strategies. Curr Top Microbiol Immunol 397:215–227

    CAS  PubMed  Google Scholar 

  21. Coll RC, Robertson AA, Chae JJ, Higgins SC, Muñoz-Planillo R, Inserra MC, Vetter I, Dungan LS et al (2015) A small-molecule inhibitor of the NLRP3 inflammasome for the treatment of inflammatory diseases. Nat Med 21(3):248–255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. van der Heijden T, Kritikou E, Venema W, van Duijn J, van Santbrink PJ, Slütter B, Foks AC, Bot I et al (2017) NLRP3 inflammasome inhibition by MCC950 reduces atherosclerotic lesion development in apolipoprotein E-deficient mice-brief report. Arterioscler Thromb Vasc Biol 37(8):1457–1461

    Article  PubMed  Google Scholar 

  23. Joaquim LS, Danielski LG, Bonfante S, Biehl E, Mathias K, Denicol T, Bagio E, Lanzzarin EV et al (2023) NLRP3 inflammasome activation increases brain oxidative stress after transient global cerebral ischemia in rats. Int J Neurosci 133(4):375–388

    Article  CAS  PubMed  Google Scholar 

  24. Danielski LG, Giustina AD, Bonfante S, de Souza Goldim MP, Joaquim L, Metzker KL, Biehl EB, Vieira T et al (2020) NLRP3 Activation contributes to acute brain damage leading to memory impairment in sepsis-surviving rats. Mol Neurobiol 57(12):5247–5262

    Article  CAS  PubMed  Google Scholar 

  25. Simoes LR, Abreu R, Generoso JS, Goularte JA, Collodel A, Giridharan VV, Arumanayagam ACS, Valvassori SS et al (2017) Prevention of memory impairment and neurotrophic factors increased by lithium in wistar rats submitted to pneumococcal meningitis model. Mediators Inflamm 2017:6490652

    Article  PubMed  PubMed Central  Google Scholar 

  26. Barichello T, Goncalves JC, Generoso JS, Milioli GL, Silvestre C, Costa CS, da Rosa Coelho R, Comim CM et al (2013) Attenuation of cognitive impairment by the nonbacteriolytic antibiotic daptomycin in Wistar rats submitted to pneumococcal meningitis. BMC Neurosci 14:42

    Article  PubMed  PubMed Central  Google Scholar 

  27. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193(1):265–275

    Article  CAS  PubMed  Google Scholar 

  28. Vianna MR, Alonso M, Viola H, Quevedo J, de Paris F, Furman M, de Stein ML, Medina JH et al (2000) Role of hippocampal signaling pathways in long-term memory formation of a nonassociative learning task in the rat. Learn Mem 7(5):333–340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. de Lima MN, Laranja DC, Bromberg E, Roesler R, Schroder N (2005) Pre- or post-training administration of the NMDA receptor blocker MK-801 impairs object recognition memory in rats. Behav Brain Res 156(1):139–143

    Article  PubMed  Google Scholar 

  30. Scheld WM, Koedel U, Nathan B, Pfister HW (2002) Pathophysiology of bacterial meningitis: mechanism(s) of neuronal injury. J Infect Dis 186(Suppl 2):S225-233

    Article  CAS  PubMed  Google Scholar 

  31. Sellner J, Tauber MG, Leib SL (2010) Pathogenesis and pathophysiology of bacterial CNS infections. Handb Clin Neurol 96:1–16

    Article  PubMed  Google Scholar 

  32. Leib SL, Tauber MG (1999) Pathogenesis of bacterial meningitis. Infect Dis Clin North Am 13(3):527–548

    Article  CAS  PubMed  Google Scholar 

  33. Sriram K, O’Callaghan JP (2007) Divergent roles for tumor necrosis factor-alpha in the brain. J Neuroimmune Pharmacol 2(2):140–153

    Article  PubMed  Google Scholar 

  34. Grandgirard D, Steiner O, Täuber MG, Leib SL (2007) An infant mouse model of brain damage in pneumococcal meningitis. Acta Neuropathol 114(6):609–617

    Article  PubMed  Google Scholar 

  35. Liu SB, Mi WL, Wang YQ (2013) Research progress on the NLRP3 inflammasome and its role in the central nervous system. Neurosci Bull 29(6):779–787

    Article  PubMed  PubMed Central  Google Scholar 

  36. Hoegen T, Tremel N, Klein M, Angele B, Wagner H, Kirschning C, Pfister HW, Fontana A et al (2011) The NLRP3 inflammasome contributes to brain injury in pneumococcal meningitis and is activated through ATP-dependent lysosomal cathepsin B release. J Immunol 187(10):5440–5451

    Article  CAS  PubMed  Google Scholar 

  37. Mangan MSJ, Olhava EJ, Roush WR, Seidel HM, Glick GD, Latz E (2018) Targeting the NLRP3 inflammasome in inflammatory diseases. Nat Rev Drug Discov 17(8):588–606

    Article  CAS  PubMed  Google Scholar 

  38. Luo Y, Lu J, Ruan W, Guo X, Chen S (2019) MCC950 attenuated early brain injury by suppressing NLRP3 inflammasome after experimental SAH in rats. Brain Res Bull 146:320–326

    Article  CAS  PubMed  Google Scholar 

  39. Coll RC, Hill JR, Day CJ, Zamoshnikova A, Boucher D, Massey NL, Chitty JL, Fraser JA et al (2019) MCC950 directly targets the NLRP3 ATP-hydrolysis motif for inflammasome inhibition. Nat Chem Biol 15(6):556–559

    Article  CAS  PubMed  Google Scholar 

  40. Tapia-Abellan A, Angosto-Bazarra D, Martinez-Banaclocha H, de Torre-Minguela C, Ceron-Carrasco JP, Perez-Sanchez H, Arostegui JI, Pelegrin P (2019) MCC950 closes the active conformation of NLRP3 to an inactive state. Nat Chem Biol 15(6):560–564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Giridharan VV, Scaini G, Colpo GD, Doifode T, Pinjari OF, Teixeira AL, Petronilho F, Macêdo D, Quevedo J, Barichello T (2020) Clozapine prevents poly (I:C) induced inflammation by modulating NLRP3 pathway in microglial cells. Cells 9(3):577

  42. Jiao J, Zhao G, Wang Y, Ren P, Wu M (2020) MCC950, a Selective Inhibitor of NLRP3 Inflammasome, Reduces the Inflammatory Response and Improves Neurological Outcomes in Mice Model of Spinal Cord Injury. Front Mol Biosci 7:37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Fu Q, Wu J, Zhou XY, Ji MH, Mao QH, Li Q, Zong MM, Zhou ZQ et al (2019) NLRP3/Caspase-1 pathway-induced pyroptosis mediated cognitive deficits in a mouse model of sepsis-associated encephalopathy. Inflammation 42(1):306–318

    Article  CAS  PubMed  Google Scholar 

  44. Greter M, Lelios I, Croxford AL (2015) Microglia versus myeloid cell nomenclature during brain inflammation. Front Immunol 6:249

    Article  PubMed  PubMed Central  Google Scholar 

  45. Giridharan VV, Collodel A, Generoso JS, Scaini G, Wassather R, Selvaraj S, Hasbun R, Dal-Pizzol F et al (2020) Neuroinflammation trajectories precede cognitive impairment after experimental meningitis-evidence from an in vivo PET study. J Neuroinflammation 17(1):5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. He WT, Wan H, Hu L, Chen P, Wang X, Huang Z, Yang ZH, Zhong CQ et al (2015) Gasdermin D is an executor of pyroptosis and required for interleukin-1beta secretion. Cell Res 25(12):1285–1298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Tan MS, Tan L, Jiang T, Zhu XC, Wang HF, Jia CD, Yu JT (2014) Amyloid-beta induces NLRP1-dependent neuronal pyroptosis in models of Alzheimer’s disease. Cell Death Dis 5:e1382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kloek AT, Brouwer MC, Schmand B, Tanck MWT, van de Beek D (2020) Long-term neurologic and cognitive outcome and quality of life in adults after pneumococcal meningitis. Clin Microbiol Infect 30(20):30045–30048

    Google Scholar 

  49. Vidrih B, Karlovic D, Pasic MB, Uremovic M, Mufic AK, Matosic A (2012) A review of the psychoneuroimmunologic concepts on the etiology of depressive disorders. Acta Clin Croat 51(3):403–409

    PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), USA (TB and VVG); the Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC) (JSG, CJF, AC, DD, FP, and TB), Brazil, and TB has received grants from the Alzheimer's Association (AARGDNTF-19-619645) and the National Institutes of Health/National Institute on Aging (NIH/NIA grant 1RF1AG072491)

Funding

The Alzheimer's Association Grant number AARGDNTF-19–619645 and U.S. National Institute of Health/National Institute on Aging (NIH/NIA Grant (1RF1AG072491-01) (T.B.).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Jaqueline S. Generoso, Vijayasree V. Giridharan, Cristiano Julio Faller, Allan Collodel, Carlos Henrique Rocha Catalão, and Diogo Dominguini. The first draft of the manuscript was written by Jaqueline S. Generoso, Cristiano Julio Faller, Fabricia Petronilho, and Tatiana Barichello, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Jaqueline S. Generoso or Vijayasree V. Giridharan.

Ethics declarations

Ethics Approval

All procedures were approved by the Animal Care and Experimentation Committee of UNESC (Brazil) sob protocol 033/2019 and followed in accordance with the National Institute of Health Guide for the Care and Use of Laboratory Animals (NIH Publications No. 80–23) revised in 1996.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Jaqueline S. Generoso and Vijayasree V. Giridharan contributed equally.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Generoso, J.S., Faller, C.J., Collodel, A. et al. NLRP3 Activation Contributes to Memory Impairment in an Experimental Model of Pneumococcal Meningitis. Mol Neurobiol 61, 239–251 (2024). https://doi.org/10.1007/s12035-023-03549-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-023-03549-8

Keywords

Navigation