Skip to main content

Advertisement

Log in

Exercise Reshapes the Brain: Molecular, Cellular, and Structural Changes Associated with Cognitive Improvements

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Physical exercise is well known as a non-pharmacological and holistic therapy believed to prevent and mitigate numerous neurological conditions and alleviate ageing-related cognitive decline. To do so, exercise affects the central nervous system (CNS) at different levels. It changes brain physiology and structure, promoting cognitive improvements, which ultimately improves quality of life. Most of these effects are mediated by neurotrophins release, enhanced adult hippocampal neurogenesis, attenuation of neuroinflammation, modulation of cerebral blood flow, and structural reorganisation, besides to promote social interaction with beneficial cognitive outcomes. In this review, we discuss, based on experimental and human research, how exercise impacts the brain structure and function and how these changes contribute to cognitive improvements. Understanding the mechanisms by which exercise affects the brain is essential to understand the brain plasticity following exercise, guiding therapeutic approaches to improve the quality of life, especially in obesity, ageing, neurodegenerative disorders, and following traumatic brain injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Dasso NA (2019) How is exercise different from physical activity? A concept analysis. Nurs Forum 54(1):45–52. https://doi.org/10.1111/nuf.12296

    Article  PubMed  Google Scholar 

  2. Dietrich MO, Andrews ZB, Horvath TL (2008) Exercise-induced synaptogenesis in the hippocampus is dependent on UCP2-regulated mitochondrial adaptation. J Neurosci 28(42):10766–10771. https://doi.org/10.1523/JNEUROSCI.2744-08.2008

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Bloor CM (2005) Angiogenesis during exercise and training. Angiogenesis 8(3):263–271. https://doi.org/10.1007/s10456-005-9013-x

    Article  PubMed  Google Scholar 

  4. van Praag H et al (1999) Running enhances neurogenesis, learning, and long-term potentiation in mice. Proc Natl Acad Sci U S A 96(23):13427–13431

    Article  PubMed  PubMed Central  Google Scholar 

  5. Seo DY et al (2019) Exercise and neuroinflammation in health and disease. Int Neurourol J 23(Suppl 2):S82-92. https://doi.org/10.5213/inj.1938214.107

    Article  PubMed  PubMed Central  Google Scholar 

  6. Hötting K, Röder B (2013) Beneficial effects of physical exercise on neuroplasticity and cognition. Neurosci Biobehav Rev 37(9, Part B):2243–2257. https://doi.org/10.1016/j.neubiorev.2013.04.005

    Article  PubMed  Google Scholar 

  7. Diederich K et al (2017) Effects of different exercise strategies and intensities on memory performance and neurogenesis. Front Behav Neurosci 11:47. https://doi.org/10.3389/fnbeh.2017.00047

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Zhou XA et al (2021) Neurogenic-dependent changes in hippocampal circuitry underlie the procognitive effect of exercise in aging mice. iScience 24(12):103450. https://doi.org/10.1016/j.isci.2021.103450

    Article  PubMed  PubMed Central  Google Scholar 

  9. Okamoto M et al (2021) High-intensity intermittent training enhances spatial memory and hippocampal neurogenesis associated with BDNF signaling in rats. Cereb Cortex 31(9):4386–4397. https://doi.org/10.1093/cercor/bhab093

    Article  PubMed  Google Scholar 

  10. Choi SH et al (2018) Combined adult neurogenesis and BDNF mimic exercise effects on cognition in an Alzheimer’s mouse model. Science 361(6406). https://doi.org/10.1126/science.aan8821

  11. Ji J-F et al (2014) Forced running exercise attenuates hippocampal neurogenesis impairment and the neurocognitive deficits induced by whole-brain irradiation via the BDNF-mediated pathway. Biochem Biophys Res Commun 443(2):646–651. https://doi.org/10.1016/j.bbrc.2013.12.031

    Article  PubMed  CAS  Google Scholar 

  12. Trejo JL, Llorens-Martin MV, Torres-Aleman I (2008) The effects of exercise on spatial learning and anxiety-like behavior are mediated by an IGF-I-dependent mechanism related to hippocampal neurogenesis. Mol Cell Neurosci 37(2):402–411. https://doi.org/10.1016/j.mcn.2007.10.016

    Article  PubMed  CAS  Google Scholar 

  13. Ding Q et al (2006) Insulin-like growth factor I interfaces with brain-derived neurotrophic factor-mediated synaptic plasticity to modulate aspects of exercise-induced cognitive function. Neuroscience 140(3):823–833. https://doi.org/10.1016/j.neuroscience.2006.02.084

    Article  PubMed  CAS  Google Scholar 

  14. Karakilic A et al (2021) Regular aerobic exercise increased VEGF levels in both soleus and gastrocnemius muscles correlated with hippocampal learning and VEGF levels. Acta Neurobiol Exp (Wars) 81(1):1–9. https://doi.org/10.21307/ane-2021-001

    Article  PubMed  Google Scholar 

  15. Koester-Hegmann C et al (2019) High-altitude cognitive impairment is prevented by enriched environment including exercise via VEGF signaling. Front Cell Neurosci 12:532. https://doi.org/10.3389/fncel.2018.00532

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Chen Z et al (2019) Effects of treadmill exercise on motor and cognitive function recovery of MCAO mice through the caveolin-1/VEGF signaling pathway in ischemic penumbra. Neurochem Res 44(4):930–946. https://doi.org/10.1007/s11064-019-02728-1

    Article  PubMed  CAS  Google Scholar 

  17. So JH et al (2017) Intense exercise promotes adult hippocampal neurogenesis but not spatial discrimination. Front Cell Neurosci 11:13. https://doi.org/10.3389/fncel.2017.00013

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Blackmore DG et al (2021) An exercise “sweet spot” reverses cognitive deficits of aging by growth-hormone-induced neurogenesis. iScience 24(11):103275. https://doi.org/10.1016/j.isci.2021.103275

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Speisman RB et al (2013) Daily exercise improves memory, stimulates hippocampal neurogenesis and modulates immune and neuroimmune cytokines in aging rats. Brain Behav Immun 28:25–43. https://doi.org/10.1016/j.bbi.2012.09.013

    Article  PubMed  CAS  Google Scholar 

  20. Mela V et al (2020) Exercise-induced re-programming of age-related metabolic changes in microglia is accompanied by a reduction in senescent cells. Brain Behav Immun 87:413–428. https://doi.org/10.1016/j.bbi.2020.01.012

    Article  PubMed  CAS  Google Scholar 

  21. Horowitz AM et al (2020) Blood factors transfer beneficial effects of exercise on neurogenesis and cognition to the aged brain. Science 369(6500):167–173. https://doi.org/10.1126/science.aaw2622

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Zhang X et al (2019) Treadmill exercise decreases Aβ deposition and counteracts cognitive decline in APP/PS1 mice, possibly via hippocampal microglia modifications. Front Aging Neurosci 11:78. https://doi.org/10.3389/fnagi.2019.00078

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Kim D, Cho J, Kang H (2019) Protective effect of exercise training against the progression of Alzheimer’s disease in 3xTg-AD mice. Behav Brain Res 374:112105. https://doi.org/10.1016/j.bbr.2019.112105

    Article  PubMed  CAS  Google Scholar 

  24. Liu Y et al (2020) Short-term resistance exercise inhibits neuroinflammation and attenuates neuropathological changes in 3xTg Alzheimer’s disease mice. J Neuroinflammation 17(1):4. https://doi.org/10.1186/s12974-019-1653-7

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Nichol KE et al (2008) Exercise alters the immune profile in Tg2576 Alzheimer mice toward a response coincident with improved cognitive performance and decreased amyloid. J Neuroinflammation 5:13–13. https://doi.org/10.1186/1742-2094-5-13

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Parachikova A, Nichol KE, Cotman CW (2008) Short-term exercise in aged Tg2576 mice alters neuroinflammation and improves cognition. Neurobiol Dis 30(1):121–129. https://doi.org/10.1016/j.nbd.2007.12.008

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Griesbach GS et al (2004) Voluntary exercise following traumatic brain injury: brain-derived neurotrophic factor upregulation and recovery of function. Neuroscience 125(1):129–139. https://doi.org/10.1016/j.neuroscience.2004.01.030

    Article  PubMed  CAS  Google Scholar 

  28. Piao C-S et al (2013) Late exercise reduces neuroinflammation and cognitive dysfunction after traumatic brain injury. Neurobiol Dis 54:252–263. https://doi.org/10.1016/j.nbd.2012.12.017

    Article  PubMed  PubMed Central  Google Scholar 

  29. Zhao Z et al (2015) Voluntary exercise preconditioning activates multiple antiapoptotic mechanisms and improves neurological recovery after experimental traumatic brain injury. J Neurotrauma 32(17):1347–1360. https://doi.org/10.1089/neu.2014.3739

    Article  PubMed  PubMed Central  Google Scholar 

  30. Kang EB et al (2016) Neuroprotective effects of endurance exercise against high-fat diet-induced hippocampal neuroinflammation. J Neuroendocrinol 28(5). https://doi.org/10.1111/jne.12385

  31. Graham LC et al (2019) Exercise prevents obesity-induced cognitive decline and white matter damage in mice. Neurobiol Aging 80:154–172. https://doi.org/10.1016/j.neurobiolaging.2019.03.018

    Article  PubMed  PubMed Central  Google Scholar 

  32. Augusto-Oliveira M et al (2019) Adult hippocampal neurogenesis in different taxonomic groups: possible functional similarities and striking controversies. Cells 8(2). https://doi.org/10.3390/cells8020125

  33. Augusto-Oliveira M et al (2019) Adult hippocampal neurogenesis in different taxonomic groups: possible functional similarities and striking controversies. Cells 8(2):125

    Article  PubMed  PubMed Central  Google Scholar 

  34. Kempermann G, Kuhn HG, Gage FH (1997) More hippocampal neurons in adult mice living in an enriched environment. Nature 386(6624):493–495. https://doi.org/10.1038/386493a0

    Article  PubMed  CAS  Google Scholar 

  35. van Praag H, Kempermann G, Gage FH (1999) Running increases cell proliferation and neurogenesis in the adult mouse dentate gyrus. Nat Neurosci 2(3):266–270. https://doi.org/10.1038/6368

    Article  PubMed  Google Scholar 

  36. Kobilo T et al (2011) Running is the neurogenic and neurotrophic stimulus in environmental enrichment. Learn Mem 18(9):605–609. https://doi.org/10.1101/lm.2283011

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Diederich K et al (2017) Effects of different exercise strategies and intensities on memory performance and neurogenesis. Front Behav Neurosci 11(47). https://doi.org/10.3389/fnbeh.2017.00047

  38. Vivar C, Peterson BD, van Praag H (2016) Running rewires the neuronal network of adult-born dentate granule cells. Neuroimage 131:29–41. https://doi.org/10.1016/j.neuroimage.2015.11.031

    Article  PubMed  Google Scholar 

  39. Sah N et al (2017) Running reorganizes the circuitry of one-week-old adult-born hippocampal neurons. Sci Rep 7(1):10903. https://doi.org/10.1038/s41598-017-11268-z

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Lattanzi D et al (2022) Short-term, voluntary exercise affects morpho-functional maturation of adult-generated neurons in rat hippocampus. Int J Mol Sci 23(12). https://doi.org/10.3390/ijms23126866

  41. Trinchero MF, Herrero M, Schinder AF (2019) Rejuvenating the brain with chronic exercise through adult neurogenesis. Front Neurosci 13(1000). https://doi.org/10.3389/fnins.2019.01000

  42. Cotman CW, Berchtold NC, Christie LA (2007) Exercise builds brain health: key roles of growth factor cascades and inflammation. Trends Neurosci 30(9):464–472. https://doi.org/10.1016/j.tins.2007.06.011

    Article  PubMed  CAS  Google Scholar 

  43. Kujach S et al (2019) Acute sprint interval exercise increases both cognitive functions and peripheral neurotrophic factors in humans: the possible involvement of lactate. Front Neurosci 13:1455. https://doi.org/10.3389/fnins.2019.01455

    Article  PubMed  Google Scholar 

  44. Lippi G, Mattiuzzi C, Sanchis-Gomar F (2020) Updated overview on interplay between physical exercise, neurotrophins, and cognitive function in humans. J Sport Health Sci 9(1):74–81. https://doi.org/10.1016/j.jshs.2019.07.012

    Article  PubMed  Google Scholar 

  45. Wrann CD et al (2013) Exercise induces hippocampal BDNF through a PGC-1α/FNDC5 pathway. Cell Metab 18(5):649–659. https://doi.org/10.1016/j.cmet.2013.09.008

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Liu PZ, Nusslock R (2018) Exercise-mediated neurogenesis in the hippocampus via BDNF. Front Neurosci 12:52. https://doi.org/10.3389/fnins.2018.00052

    Article  PubMed  PubMed Central  Google Scholar 

  47. Taliaz D et al (2010) Knockdown of brain-derived neurotrophic factor in specific brain sites precipitates behaviors associated with depression and reduces neurogenesis. Mol Psychiatry 15(1):80–92. https://doi.org/10.1038/mp.2009.67

    Article  PubMed  CAS  Google Scholar 

  48. Li Y et al (2008) TrkB regulates hippocampal neurogenesis and governs sensitivity to antidepressive treatment. Neuron 59(3):399–412. https://doi.org/10.1016/j.neuron.2008.06.023

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Voss MW et al (2013) Bridging animal and human models of exercise-induced brain plasticity. Trends Cogn Sci 17(10):525–544. https://doi.org/10.1016/j.tics.2013.08.001

    Article  PubMed  PubMed Central  Google Scholar 

  50. Mackay CP, Kuys SS, Brauer SG (2017) The effect of aerobic exercise on brain-derived neurotrophic factor in people with neurological disorders: a systematic review and meta-analysis. Neural Plast 2017:4716197. https://doi.org/10.1155/2017/4716197

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Leckie RL et al (2014) BDNF mediates improvements in executive function following a 1-year exercise intervention. Front Hum Neurosci 8:985. https://doi.org/10.3389/fnhum.2014.00985

    Article  PubMed  PubMed Central  Google Scholar 

  52. Llorens-Martin M, Torres-Aleman I, Trejo JL (2009) Mechanisms mediating brain plasticity: IGF1 and adult hippocampal neurogenesis. Neuroscientist 15(2):134–148. https://doi.org/10.1177/1073858408331371

    Article  PubMed  CAS  Google Scholar 

  53. Schwarz AJ et al (1996) Acute effect of brief low- and high-intensity exercise on circulating insulin-like growth factor (IGF) I, II, and IGF-binding protein-3 and its proteolysis in young healthy men. J Clin Endocrinol Metab 81(10):3492–3497. https://doi.org/10.1210/jcem.81.10.8855791

    Article  PubMed  CAS  Google Scholar 

  54. Mir S et al (2017) IGF-1 mediated neurogenesis involves a novel RIT1/Akt/Sox2 cascade. Sci Rep 7(1):3283. https://doi.org/10.1038/s41598-017-03641-9

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Bruel-Jungerman E et al (2009) Inhibition of PI3K-Akt signaling blocks exercise-mediated enhancement of adult neurogenesis and synaptic plasticity in the dentate gyrus. PLoS One 4(11):e7901–e7901. https://doi.org/10.1371/journal.pone.0007901

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Ransome MI, Hannan AJ (2013) Impaired basal and running-induced hippocampal neurogenesis coincides with reduced Akt signaling in adult R6/1 HD mice. Mol Cell Neurosci 54:93–107. https://doi.org/10.1016/j.mcn.2013.01.005

    Article  PubMed  CAS  Google Scholar 

  57. McCusker RH et al (2006) Insulin-like growth factor-I enhances the biological activity of brain-derived neurotrophic factor on cerebrocortical neurons. J Neuroimmunol 179(1–2):186–190. https://doi.org/10.1016/j.jneuroim.2006.06.014

    Article  PubMed  CAS  Google Scholar 

  58. Ballard HJ (2017) Exercise makes your brain bigger: skeletal muscle VEGF and hippocampal neurogenesis. J Physiol 595(17):5721–5722. https://doi.org/10.1113/JP274658

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Calvo C-F et al (2011) Vascular endothelial growth factor receptor 3 directly regulates murine neurogenesis. Genes Dev 25(8):831–844. https://doi.org/10.1101/gad.615311

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Fournier NM et al (2012) Vascular endothelial growth factor regulates adult hippocampal cell proliferation through MEK/ERK- and PI3K/Akt-dependent signaling. Neuropharmacology 63(4):642–652. https://doi.org/10.1016/j.neuropharm.2012.04.033

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Zhao Y et al (2017) Treadmill exercise promotes neurogenesis in ischemic rat brains via caveolin-1/VEGF signaling pathways. Neurochem Res 42(2):389–397. https://doi.org/10.1007/s11064-016-2081-z

    Article  PubMed  CAS  Google Scholar 

  62. Cao L et al (2004) VEGF links hippocampal activity with neurogenesis, learning and memory. Nat Genet 36(8):827–835. https://doi.org/10.1038/ng1395

    Article  PubMed  CAS  Google Scholar 

  63. Licht T et al (2011) Reversible modulations of neuronal plasticity by VEGF. Proc Natl Acad Sci USA 108(12):5081–5086. https://doi.org/10.1073/pnas.1007640108

    Article  PubMed  PubMed Central  Google Scholar 

  64. Vonderwalde I, Kovacs-Litman A (2018) Aerobic exercise promotes hippocampal neurogenesis through skeletal myofiber-derived vascular endothelial growth factor. J Physiol 596(5):761–763. https://doi.org/10.1113/JP275582

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Rich B et al (2017) Skeletal myofiber vascular endothelial growth factor is required for the exercise training-induced increase in dentate gyrus neuronal precursor cells. J Physiol 595(17):5931–5943. https://doi.org/10.1113/JP273994

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Fabel K et al (2003) VEGF is necessary for exercise-induced adult hippocampal neurogenesis. Eur J Neurosci 18(10):2803–2812. https://doi.org/10.1111/j.1460-9568.2003.03041.x

    Article  PubMed  Google Scholar 

  67. Tang K et al (2010) Exercise-induced VEGF transcriptional activation in brain, lung and skeletal muscle. Respir Physiol Neurobiol 170(1):16–22. https://doi.org/10.1016/j.resp.2009.10.007

    Article  PubMed  CAS  Google Scholar 

  68. Morland C et al (2017) Exercise induces cerebral VEGF and angiogenesis via the lactate receptor HCAR1. Nat Commun 8:15557. https://doi.org/10.1038/ncomms15557

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Koester-Hegmann C et al (2019) High-altitude cognitive impairment is prevented by enriched environment including exercise via VEGF signaling. Front Cell Neurosci 12(532). https://doi.org/10.3389/fncel.2018.00532

  70. So JH et al (2017) Intense exercise promotes adult hippocampal neurogenesis but not spatial discrimination. Front Cell Neurosci 11(13). https://doi.org/10.3389/fncel.2017.00013

  71. DiSabato DJ, Quan N, Godbout JP (2016) Neuroinflammation: the devil is in the details. J Neurochem 139(Suppl 2):136–153. https://doi.org/10.1111/jnc.13607

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Kumar A (2018) Editorial: neuroinflammation and cognition. Front Aging Neurosci 10:413–413. https://doi.org/10.3389/fnagi.2018.00413

    Article  PubMed  PubMed Central  Google Scholar 

  73. Zhao J et al (2019) Neuroinflammation induced by lipopolysaccharide causes cognitive impairment in mice. Sci Rep 9(1):5790. https://doi.org/10.1038/s41598-019-42286-8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Pizza V et al (2011) Neuroinflammation and ageing: current theories and an overview of the data. Rev Recent Clin Trials 6(3):189–203. https://doi.org/10.2174/157488711796575577

    Article  PubMed  CAS  Google Scholar 

  75. Barrientos RM et al (2015) Neuroinflammation in the normal aging hippocampus. Neuroscience 309:84–99. https://doi.org/10.1016/j.neuroscience.2015.03.007

    Article  PubMed  CAS  Google Scholar 

  76. Augusto-Oliveira M et al (2022) Plasticity of microglia. Biol Rev Camb Philos Soc 97(1):217–250. https://doi.org/10.1111/brv.12797

    Article  PubMed  Google Scholar 

  77. Koellhoffer EC, McCullough LD, Ritzel RM (2017) Old maids: aging and its impact on microglia function. Int J Mol Sci 18(4):769. https://doi.org/10.3390/ijms18040769

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Mee-Inta O, Zhao ZW, Kuo YM (2019) Physical exercise inhibits inflammation and microglial activation. Cells 8(7). https://doi.org/10.3390/cells8070691

  79. Augusto-Oliveira M, Verkhratsky A (2021) Lifestyle-dependent microglial plasticity: training the brain guardians. Biol Direct 16(1):12. https://doi.org/10.1186/s13062-021-00297-4

    Article  PubMed  PubMed Central  Google Scholar 

  80. Biber K et al (2007) Neuronal ‘On’ and ‘Off’ signals control microglia. Trends Neurosci 30(11):596–602. https://doi.org/10.1016/j.tins.2007.08.007

    Article  PubMed  CAS  Google Scholar 

  81. Sung YH et al (2012) Treadmill exercise ameliorates dopaminergic neuronal loss through suppressing microglial activation in Parkinson’s disease mice. Life Sci 91(25–26):1309–1316. https://doi.org/10.1016/j.lfs.2012.10.003

    Article  PubMed  CAS  Google Scholar 

  82. Bobinski F et al (2018) Interleukin-4 mediates the analgesia produced by low-intensity exercise in mice with neuropathic pain. Pain 159(3):437–450. https://doi.org/10.1097/j.pain.0000000000001109

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Patterson SL (2015) Immune dysregulation and cognitive vulnerability in the aging brain: interactions of microglia, IL-1β BDNF and synaptic plasticity. Neuropharmacology 96(Pt A):11–18. https://doi.org/10.1016/j.neuropharm.2014.12.020

    Article  PubMed  CAS  Google Scholar 

  84. Corlier F et al (2018) Systemic inflammation as a predictor of brain aging: contributions of physical activity, metabolic risk, and genetic risk. Neuroimage 172:118–129. https://doi.org/10.1016/j.neuroimage.2017.12.027

    Article  PubMed  Google Scholar 

  85. Nascimento CM et al (2014) Physical exercise in MCI elderly promotes reduction of pro-inflammatory cytokines and improvements on cognition and BDNF peripheral levels. Curr Alzheimer Res 11(8):799–805. https://doi.org/10.2174/156720501108140910122849

    Article  PubMed  CAS  Google Scholar 

  86. Colcombe SJ et al (2003) Aerobic fitness reduces brain tissue loss in aging humans. J Gerontol A Biol Sci Med Sci 58(2):176–180. https://doi.org/10.1093/gerona/58.2.m176

    Article  PubMed  Google Scholar 

  87. Braskie MN et al (2014) Physical activity, inflammation, and volume of the aging brain. Neuroscience 273:199–209. https://doi.org/10.1016/j.neuroscience.2014.05.005

    Article  PubMed  CAS  Google Scholar 

  88. Papenberg G et al (2016) Physical activity and inflammation: effects on gray-matter volume and cognitive decline in aging. Hum Brain Mapp 37(10):3462–3473. https://doi.org/10.1002/hbm.23252

    Article  PubMed  PubMed Central  Google Scholar 

  89. Gopinath B et al (2018) Physical activity as a determinant of successful aging over ten years. Sci Rep 8(1):10522. https://doi.org/10.1038/s41598-018-28526-3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Marquez DX et al (2020) A systematic review of physical activity and quality of life and well-being. Transl Behav Med 10(5):1098–1109. https://doi.org/10.1093/tbm/ibz198

    Article  PubMed  PubMed Central  Google Scholar 

  91. Hamer M, Chida Y (2009) Physical activity and risk of neurodegenerative disease: a systematic review of prospective evidence. Psychol Med 39(1):3–11. https://doi.org/10.1017/s0033291708003681

    Article  PubMed  CAS  Google Scholar 

  92. Larson EB et al (2006) Exercise is associated with reduced risk for incident dementia among persons 65 years of age and older. Ann Intern Med 144(2):73–81. https://doi.org/10.7326/0003-4819-144-2-200601170-00004

    Article  PubMed  Google Scholar 

  93. De la Rosa A et al (2020) Physical exercise in the prevention and treatment of Alzheimer’s disease. J Sport Health Sci. https://doi.org/10.1016/j.jshs.2020.01.004

    Article  PubMed  PubMed Central  Google Scholar 

  94. Kelly ÁM (2018) Exercise-induced modulation of neuroinflammation in models of Alzheimer’s disease. Brain Plasticity (Amsterdam, Netherlands) 4(1):81–94. https://doi.org/10.3233/BPL-180074

    Article  PubMed  Google Scholar 

  95. Stephen R et al (2017) Physical activity and Alzheimer’s disease: a systematic review. J Gerontol A Biol Sci Med Sci 72(6):733–739. https://doi.org/10.1093/gerona/glw251

    Article  PubMed  Google Scholar 

  96. Heneka MT et al (2015) Neuroinflammation in Alzheimer’s disease. Lancet Neurol 14(4):388–405. https://doi.org/10.1016/S1474-4422(15)70016-5

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Zou C et al (2016) Neuroinflammation impairs adaptive structural plasticity of dendritic spines in a preclinical model of Alzheimer’s disease. Acta Neuropathol 131(2):235–246. https://doi.org/10.1007/s00401-015-1527-8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Valero J et al (2017) Impact of neuroinflammation on hippocampal neurogenesis: relevance to aging and Alzheimer’s disease. J Alzheimers Dis 60(s1):S161-s168. https://doi.org/10.3233/jad-170239

    Article  PubMed  CAS  Google Scholar 

  99. Passamonti L et al (2019) Neuroinflammation and functional connectivity in Alzheimer’s disease: interactive influences on cognitive performance. J Neurosci 39(36):7218. https://doi.org/10.1523/JNEUROSCI.2574-18.2019

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Colonna M, Wang Y (2016) TREM2 variants: new keys to decipher Alzheimer disease pathogenesis. Nat Rev Neurosci 17(4):201–207. https://doi.org/10.1038/nrn.2016.7

    Article  PubMed  CAS  Google Scholar 

  101. Zhong L et al (2019) Soluble TREM2 ameliorates pathological phenotypes by modulating microglial functions in an Alzheimer’s disease model. Nat Commun 10(1):1365. https://doi.org/10.1038/s41467-019-09118-9

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Jensen CS et al (2019) Exercise as a potential modulator of inflammation in patients with Alzheimer’s disease measured in cerebrospinal fluid and plasma. Exp Gerontol 121:91–98. https://doi.org/10.1016/j.exger.2019.04.003

    Article  PubMed  CAS  Google Scholar 

  103. Wisniewski T, Sigurdsson EM (2010) Murine models of Alzheimer’s disease and their use in developing immunotherapies. Biochim Biophys Acta 1802(10):847–859. https://doi.org/10.1016/j.bbadis.2010.05.004

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Ameen-Ali KE et al (2017) Review: neuropathology and behavioural features of transgenic murine models of Alzheimer’s disease. Neuropathol Appl Neurobiol 43(7):553–570. https://doi.org/10.1111/nan.12440

    Article  PubMed  CAS  Google Scholar 

  105. Zhang X et al (2019) Treadmill exercise decreases Aβ deposition and counteracts cognitive decline in APP/PS1 mice, possibly via hippocampal microglia modifications. Front Aging Neurosci 11(78). https://doi.org/10.3389/fnagi.2019.00078

  106. Rajan KB et al (2021) Population estimate of people with clinical Alzheimer’s disease and mild cognitive impairment in the United States (2020–2060). Alzheimers Dement 17(12):1966–1975. https://doi.org/10.1002/alz.12362

    Article  PubMed  PubMed Central  Google Scholar 

  107. da Silva FC et al (2018) Effects of physical exercise programs on cognitive function in Parkinson’s disease patients: a systematic review of randomized controlled trials of the last 10 years. PLoS One 13(2):e0193113. https://doi.org/10.1371/journal.pone.0193113

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Li G et al (2023) The effect of exercise on cognitive function in people with multiple sclerosis: a systematic review and meta-analysis of randomized controlled trials. J Neurol 270(6):2908–2923. https://doi.org/10.1007/s00415-023-11649-7

    Article  PubMed  Google Scholar 

  109. Inskip MJ et al (2022) Promoting independence in Lewy body dementia through exercise: the PRIDE study. BMC Geriatr 22(1):650. https://doi.org/10.1186/s12877-022-03347-2

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Kumar RG et al (2018) The effects of post-traumatic depression on cognition, pain, fatigue, and headache after moderate-to-severe traumatic brain injury: a thematic review. Brain Inj 32(4):383–394. https://doi.org/10.1080/02699052.2018.1427888

    Article  PubMed  CAS  Google Scholar 

  111. Loane DJ et al (2014) Progressive neurodegeneration after experimental brain trauma: association with chronic microglial activation. J Neuropathol Exp Neurol 73(1):14–29. https://doi.org/10.1097/nen.0000000000000021

    Article  PubMed  CAS  Google Scholar 

  112. Ritzel RM et al (2020) Sustained neuronal and microglial alterations are associated with diverse neurobehavioral dysfunction long after experimental brain injury. Neurobiol Dis 136:104713. https://doi.org/10.1016/j.nbd.2019.104713

    Article  PubMed  CAS  Google Scholar 

  113. Henry RJ et al (2020) Microglial depletion with CSF1R inhibitor during chronic phase of experimental traumatic brain injury reduces neurodegeneration and neurological deficits. J Neurosci 40(14):2960–2974. https://doi.org/10.1523/jneurosci.2402-19.2020

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Kozlowski DA, James DC, Schallert T (1996) Use-dependent exaggeration of neuronal injury after unilateral sensorimotor cortex lesions. J Neurosci 16(15):4776–4786. https://doi.org/10.1523/jneurosci.16-15-04776.1996

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Donat CK et al (2017) Microglial activation in traumatic brain injury. Front Aging Neurosci 9:208. https://doi.org/10.3389/fnagi.2017.00208

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Schimmel SJ, Acosta S, Lozano D (2017) Neuroinflammation in traumatic brain injury: a chronic response to an acute injury. Brain Circ 3(3):135–142. https://doi.org/10.4103/bc.bc_18_17

    Article  PubMed  PubMed Central  Google Scholar 

  117. Mota BC et al (2012) Exercise pre-conditioning reduces brain inflammation and protects against toxicity induced by traumatic brain injury: behavioral and neurochemical approach. Neurotox Res 21(2):175–184. https://doi.org/10.1007/s12640-011-9257-8

    Article  PubMed  CAS  Google Scholar 

  118. Chio C-C et al (2017) Exercise attenuates neurological deficits by stimulating a critical HSP70/NF-κB/IL-6/synapsin I axis in traumatic brain injury rats. J Neuroinflammation 14(1):90–90. https://doi.org/10.1186/s12974-017-0867-9

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. de Castro MRT et al (2017) Previous physical exercise alters the hepatic profile of oxidative-inflammatory status and limits the secondary brain damage induced by severe traumatic brain injury in rats. J Physiol 595(17):6023–6044. https://doi.org/10.1113/jp273933

    Article  PubMed  PubMed Central  Google Scholar 

  120. Hang CH et al (2004) Effect of systemic LPS injection on cortical NF-kappaB activity and inflammatory response following traumatic brain injury in rats. Brain Res 1026(1):23–32. https://doi.org/10.1016/j.brainres.2004.07.090

    Article  PubMed  CAS  Google Scholar 

  121. Ziebell JM et al (2011) Attenuated neurological deficit, cell death and lesion volume in Fas-mutant mice is associated with altered neuroinflammation following traumatic brain injury. Brain Res 1414:94–105. https://doi.org/10.1016/j.brainres.2011.07.056

    Article  PubMed  CAS  Google Scholar 

  122. Nybo L et al (2002) Interleukin-6 release from the human brain during prolonged exercise. J Physiol 542(Pt 3):991–995. https://doi.org/10.1113/jphysiol.2002.022285

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Svensson M, Lexell J, Deierborg T (2015) Effects of physical exercise on neuroinflammation, neuroplasticity, neurodegeneration, and behavior: what we can learn from animal models in clinical settings. Neurorehabil Neural Repair 29(6):577–589. https://doi.org/10.1177/1545968314562108

    Article  PubMed  Google Scholar 

  124. Ley EJ et al (2011) IL6 deficiency affects function after traumatic brain injury. J Surg Res 170(2):253–256. https://doi.org/10.1016/j.jss.2011.03.006

    Article  PubMed  CAS  Google Scholar 

  125. Bouchard C, Depres J-P, Tremblay A (1993) Exercise and obesity. Obes Res 1(2):133–147. https://doi.org/10.1002/j.1550-8528.1993.tb00603.x

    Article  PubMed  CAS  Google Scholar 

  126. Shaw K et al (2006) Exercise for overweight or obesity. Cochrane Database Syst Rev (4):Cd003817. https://doi.org/10.1002/14651858.CD003817.pub3

  127. Fonseca-Junior SJ et al (2013) Physical exercise and morbid obesity: a systematic review. Arquivos brasileiros de cirurgia digestiva : ABCD = Brazilian archives of digestive surgery 26(Suppl 1):67–73. https://doi.org/10.1590/s0102-67202013000600015

  128. Prickett C, Brennan L, Stolwyk R (2015) Examining the relationship between obesity and cognitive function: a systematic literature review. Obes Res Clin Pract 9(2):93–113. https://doi.org/10.1016/j.orcp.2014.05.001

    Article  PubMed  Google Scholar 

  129. Sun X et al (2021) Effects of physical activity interventions on cognitive performance of overweight or obese children and adolescents: a systematic review and meta-analysis. Pediatr Res 89(1):46–53. https://doi.org/10.1038/s41390-020-0941-3

    Article  PubMed  CAS  Google Scholar 

  130. Inoue DS et al (2020) Acute increases in brain-derived neurotrophic factor following high or moderate-intensity exercise is accompanied with better cognition performance in obese adults. Sci Rep 10(1):13493. https://doi.org/10.1038/s41598-020-70326-1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  131. Napoli N et al (2014) Effect of weight loss, exercise, or both on cognition and quality of life in obese older adults. Am J Clin Nutr 100(1):189–198. https://doi.org/10.3945/ajcn.113.082883

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  132. Coll-Padrós N et al (2019) Physical activity is associated with better global cognition and frontal function in overweight/obese older adults with metabolic syndrome. Eur Rev Aging Phys Act:Off J Eur Group Res Into Elderly Phys Act 16:23–23. https://doi.org/10.1186/s11556-019-0229-y

    Article  Google Scholar 

  133. Baker LD et al (2010) Aerobic exercise improves cognition for older adults with glucose intolerance, a risk factor for Alzheimer’s disease. J Alzheimer’s Dis:JAD 22(2):569–579. https://doi.org/10.3233/JAD-2010-100768

    Article  PubMed  CAS  Google Scholar 

  134. Castanon N, Luheshi G, Laye S (2015) Role of neuroinflammation in the emotional and cognitive alterations displayed by animal models of obesity. Front Neurosci 9(229). https://doi.org/10.3389/fnins.2015.00229

  135. Leocádio PCL et al (2019) Obesity: more than an inflammatory, an infectious disease? Front Immunol 10:3092. https://doi.org/10.3389/fimmu.2019.03092

    Article  PubMed  CAS  Google Scholar 

  136. Miller AA, Spencer SJ (2014) Obesity and neuroinflammation: a pathway to cognitive impairment. Brain Behav Immun 42:10–21. https://doi.org/10.1016/j.bbi.2014.04.001

    Article  PubMed  CAS  Google Scholar 

  137. Puig J et al (2015) Hypothalamic damage is associated with inflammatory markers and worse cognitive performance in obese subjects. J Clin Endocrinol Metab 100(2):E276–E281. https://doi.org/10.1210/jc.2014-2682

    Article  PubMed  CAS  Google Scholar 

  138. Yi C-X et al (2012) Exercise protects against high-fat diet-induced hypothalamic inflammation. Physiol Behav 106(4):485–490. https://doi.org/10.1016/j.physbeh.2012.03.021

    Article  PubMed  CAS  Google Scholar 

  139. Laing BT et al (2016) Voluntary exercise improves hypothalamic and metabolic function in obese mice. J Endocrinol 229(2):109–122. https://doi.org/10.1530/joe-15-0510

    Article  PubMed  CAS  Google Scholar 

  140. Thaler JP, Schwartz MW (2010) Minireview: inflammation and obesity pathogenesis: the hypothalamus heats up. Endocrinology 151(9):4109–4115. https://doi.org/10.1210/en.2010-0336

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  141. Spyridaki EC, Avgoustinaki PD, Margioris AN (2016) Obesity, inflammation and cognition. Curr Opin Behav Sci 9:169–175. https://doi.org/10.1016/j.cobeha.2016.05.004

    Article  Google Scholar 

  142. Ropelle ER et al (2010) IL-6 and IL-10 anti-inflammatory activity links exercise to hypothalamic insulin and leptin sensitivity through IKKβ and ER stress inhibition. PLOS Biol 8(8):e1000465. https://doi.org/10.1371/journal.pbio.1000465

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  143. Mejido DCP et al (2020) Insulin and leptin as potential cognitive enhancers in metabolic disorders and Alzheimer’s disease. Neuropharmacology 171:108115. https://doi.org/10.1016/j.neuropharm.2020.108115

    Article  PubMed  CAS  Google Scholar 

  144. Cope EC et al (2018) Microglia play an active role in obesity-associated cognitive decline. J Neurosci 38(41):8889. https://doi.org/10.1523/JNEUROSCI.0789-18.2018

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  145. Kohman RA et al (2013) Exercise reduces activation of microglia isolated from hippocampus and brain of aged mice. J Neuroinflammation 10(1):885. https://doi.org/10.1186/1742-2094-10-114

    Article  CAS  Google Scholar 

  146. Scheinberg P et al (1954) Effects of vigorous physical exercise on cerebral circulation and metabolism. Am J Med 16(4):549–554. https://doi.org/10.1016/0002-9343(54)90371-x

    Article  PubMed  CAS  Google Scholar 

  147. Globus M et al (1983) Effect of exercise on cerebral circulation. J Cereb Blood Flow Metab 3(3):287–290. https://doi.org/10.1038/jcbfm.1983.43

    Article  PubMed  CAS  Google Scholar 

  148. Jørgensen LG, Perko G, Secher NH (1992) Regional cerebral artery mean flow velocity and blood flow during dynamic exercise in humans. J Appl Physiol (1985) 73(5):1825–30. https://doi.org/10.1152/jappl.1992.73.5.1825

    Article  PubMed  Google Scholar 

  149. Ogoh S et al (2005) The effect of changes in cardiac output on middle cerebral artery mean blood velocity at rest and during exercise. J Physiol 569(Pt 2):697–704. https://doi.org/10.1113/jphysiol.2005.095836

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  150. Ogoh S et al (2005) Middle cerebral artery flow velocity and pulse pressure during dynamic exercise in humans. Am J Physiol Heart Circ Physiol 288(4):H1526–H1531. https://doi.org/10.1152/ajpheart.00979.2004

    Article  PubMed  CAS  Google Scholar 

  151. Ainslie PN et al (2008) Elevation in cerebral blood flow velocity with aerobic fitness throughout healthy human ageing. J Physiol 586(16):4005–4010. https://doi.org/10.1113/jphysiol.2008.158279

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  152. Rooks CR et al (2010) Effects of incremental exercise on cerebral oxygenation measured by near-infrared spectroscopy: a systematic review. Prog Neurobiol 92(2):134–150. https://doi.org/10.1016/j.pneurobio.2010.06.002

    Article  PubMed  Google Scholar 

  153. Chaddock-Heyman L et al (2016) Aerobic fitness is associated with greater hippocampal cerebral blood flow in children. Dev Cogn Neurosci 20:52–58. https://doi.org/10.1016/j.dcn.2016.07.001

    Article  PubMed  PubMed Central  Google Scholar 

  154. Brown AD et al (2010) Effects of cardiorespiratory fitness and cerebral blood flow on cognitive outcomes in older women. Neurobiol Aging 31(12):2047–2057. https://doi.org/10.1016/j.neurobiolaging.2008.11.002

    Article  PubMed  Google Scholar 

  155. Chapman SB et al (2013) Shorter term aerobic exercise improves brain, cognition, and cardiovascular fitness in aging. Front Aging Neurosci 5:75–75. https://doi.org/10.3389/fnagi.2013.00075

    Article  PubMed  PubMed Central  Google Scholar 

  156. Kleinloog JPD et al (2019) Aerobic exercise training improves cerebral blood flow and executive function: a randomized, controlled cross-over trial in sedentary older men. Front Aging Neurosci 11(333). https://doi.org/10.3389/fnagi.2019.00333

  157. Guadagni V et al (2020) Aerobic exercise improves cognition and cerebrovascular regulation in older adults. Neurology 94(21):e2245–e2257. https://doi.org/10.1212/wnl.0000000000009478

    Article  PubMed  PubMed Central  Google Scholar 

  158. Thomas BP et al (2020) Brain perfusion change in patients with mild cognitive impairment after 12 months of aerobic exercise training. J Alzheimers Dis 75(2):617–631. https://doi.org/10.3233/jad-190977

    Article  PubMed  PubMed Central  Google Scholar 

  159. Bliss ES et al (2020) Benefits of exercise training on cerebrovascular and cognitive function in ageing. J Cereb Blood Flow Metab 0271678X20957807. https://doi.org/10.1177/0271678X20957807

  160. Rink C, Khanna S (2011) Significance of brain tissue oxygenation and the arachidonic acid cascade in stroke. Antioxid Redox Signal 14(10):1889–1903. https://doi.org/10.1089/ars.2010.3474

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  161. Wolters FJ et al (2017) Cerebral perfusion and the risk of dementia: a population-based study. Circulation 136(8):719–728. https://doi.org/10.1161/circulationaha.117.027448

    Article  PubMed  Google Scholar 

  162. Chao LL et al (2010) ASL perfusion MRI predicts cognitive decline and conversion from MCI to dementia. Alzheimer Dis Assoc Disord 24(1):19–27. https://doi.org/10.1097/WAD.0b013e3181b4f736

    Article  PubMed  PubMed Central  Google Scholar 

  163. Alfini AJ et al (2019) Resting cerebral blood flow after exercise training in mild cognitive impairment. J Alzheimers Dis:JAD 67(2):671–684. https://doi.org/10.3233/JAD-180728

    Article  PubMed  CAS  Google Scholar 

  164. Østergaard L et al (2013) The capillary dysfunction hypothesis of Alzheimer’s disease. Neurobiol Aging 34(4):1018–1031. https://doi.org/10.1016/j.neurobiolaging.2012.09.011

    Article  PubMed  Google Scholar 

  165. Weaver SR et al (2021) Cerebral hemodynamic and neurotrophic factor responses are dependent on the type of exercise. Front Physiol 11:609935–609935. https://doi.org/10.3389/fphys.2020.609935

    Article  PubMed  PubMed Central  Google Scholar 

  166. Colcombe SJ et al (2006) Aerobic exercise training increases brain volume in aging humans. J Gerontol:Series A 61(11):1166–1170. https://doi.org/10.1093/gerona/61.11.1166

    Article  Google Scholar 

  167. Erickson KI, Leckie RL, Weinstein AM (2014) Physical activity, fitness, and gray matter volume. Neurobiol Aging 35:S20–S28. https://doi.org/10.1016/j.neurobiolaging.2014.03.034

    Article  PubMed  Google Scholar 

  168. Firth J et al (2018) Effect of aerobic exercise on hippocampal volume in humans: a systematic review and meta-analysis. Neuroimage 166:230–238. https://doi.org/10.1016/j.neuroimage.2017.11.007

    Article  PubMed  Google Scholar 

  169. Erickson KI et al (2009) Aerobic fitness is associated with hippocampal volume in elderly humans. Hippocampus 19(10):1030–1039. https://doi.org/10.1002/hipo.20547

    Article  PubMed  PubMed Central  Google Scholar 

  170. Chaddock L et al (2010) A neuroimaging investigation of the association between aerobic fitness, hippocampal volume, and memory performance in preadolescent children. Brain Res 1358:172–183. https://doi.org/10.1016/j.brainres.2010.08.049

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  171. Chaddock L et al (2010) Basal ganglia volume is associated with aerobic fitness in preadolescent children. Dev Neurosci 32(3):249–256. https://doi.org/10.1159/000316648

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  172. Erickson KI et al (2011) Exercise training increases size of hippocampus and improves memory. Proc Natl Acad Sci U S A 108(7):3017–3022. https://doi.org/10.1073/pnas.1015950108

    Article  PubMed  PubMed Central  Google Scholar 

  173. Ruscheweyh R et al (2011) Physical activity and memory functions: an interventional study. Neurobiol Aging 32(7):1304–1319. https://doi.org/10.1016/j.neurobiolaging.2009.08.001

    Article  PubMed  CAS  Google Scholar 

  174. Marin Bosch B et al (2021) A single session of moderate intensity exercise influences memory, endocannabinoids and brain derived neurotrophic factor levels in men. Sci Rep 11(1):14371. https://doi.org/10.1038/s41598-021-93813-5

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  175. Szabo AN et al (2011) Cardiorespiratory fitness, hippocampal volume, and frequency of forgetting in older adults. Neuropsychology 25(5):545–553. https://doi.org/10.1037/a0022733

    Article  PubMed  PubMed Central  Google Scholar 

  176. Chaddock L et al (2012) Childhood aerobic fitness predicts cognitive performance one year later. J Sports Sci 30(5):421–30. https://doi.org/10.1080/02640414.2011.647706

    Article  PubMed  Google Scholar 

  177. Herting MM, Nagel BJ (2012) Aerobic fitness relates to learning on a virtual Morris Water Task and hippocampal volume in adolescents. Behav Brain Res 233(2):517–525. https://doi.org/10.1016/j.bbr.2012.05.012

    Article  PubMed  PubMed Central  Google Scholar 

  178. Verstynen TD et al (2012) Caudate nucleus volume mediates the link between cardiorespiratory fitness and cognitive flexibility in older adults. J Aging Res 2012:939285. https://doi.org/10.1155/2012/939285

    Article  PubMed  PubMed Central  Google Scholar 

  179. Weinstein AM et al (2012) The association between aerobic fitness and executive function is mediated by prefrontal cortex volume. Brain Behav Immun 26(5):811–819. https://doi.org/10.1016/j.bbi.2011.11.008

    Article  PubMed  Google Scholar 

  180. Chaddock-Heyman L et al (2015) The role of aerobic fitness in cortical thickness and mathematics achievement in preadolescent children. PLoS One 10(8):e0134115. https://doi.org/10.1371/journal.pone.0134115

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  181. Jonasson LS et al (2016) Aerobic exercise intervention, cognitive performance, and brain structure: results from the physical influences on brain in aging (PHIBRA) study. Front Aging Neurosci 8:336. https://doi.org/10.3389/fnagi.2016.00336

    Article  PubMed  Google Scholar 

  182. Den Ouden L et al (2018) The influence of aerobic exercise on hippocampal integrity and function: preliminary findings of a multi-modal imaging analysis. Brain Plast 4(2):211–216. https://doi.org/10.3233/bpl-170053

    Article  Google Scholar 

  183. Siddarth P et al (2018) Physical activity and hippocampal sub-region structure in older adults with memory complaints. J Alzheimers Dis 61(3):1089–1096. https://doi.org/10.3233/jad-170586

    Article  PubMed  PubMed Central  Google Scholar 

  184. Suwabe K et al (2018) Rapid stimulation of human dentate gyrus function with acute mild exercise. Proc Natl Acad Sci U S A 115(41):10487–10492. https://doi.org/10.1073/pnas.1805668115

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  185. Opel N et al (2019) White matter microstructure mediates the association between physical fitness and cognition in healthy, young adults. Sci Rep 9(1):12885. https://doi.org/10.1038/s41598-019-49301-y

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  186. Stern Y et al (2019) Effect of aerobic exercise on cognition in younger adults: a randomized clinical trial. Neurology 92(9):e905–e916. https://doi.org/10.1212/wnl.0000000000007003

    Article  PubMed  PubMed Central  Google Scholar 

  187. Nauer RK et al (2020) Improving fitness increases dentate gyrus/CA3 volume in the hippocampal head and enhances memory in young adults. Hippocampus 30(5):488–504. https://doi.org/10.1002/hipo.23166

    Article  PubMed  Google Scholar 

  188. Castells-Sánchez A et al (2021) Exercise and fitness neuroprotective effects: molecular, brain volume and psychological correlates and their mediating role in healthy late-middle-aged women and men. Front Aging Neurosci 13:615247. https://doi.org/10.3389/fnagi.2021.615247

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  189. Puzo C et al (2019) Independent effects of white matter hyperintensities on cognitive, neuropsychiatric, and functional decline: a longitudinal investigation using the national alzheimer’s coordinating center uniform data set. Alzheimers Res Ther 11(1):64. https://doi.org/10.1186/s13195-019-0521-0

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  190. Maasakkers CM et al (2020) The association of sedentary behaviour and cognitive function in people without dementia: a coordinated analysis across five cohort studies from COSMIC. Sports Med 50(2):403–413. https://doi.org/10.1007/s40279-019-01186-7

    Article  PubMed  Google Scholar 

  191. Maasakkers CM et al (2021) Hemodynamic and structural brain measures in high and low sedentary older adults. J Cereb Blood Flow Metab 41(10):2607–2616. https://doi.org/10.1177/0271678x211009382

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  192. Stillman CM et al (2020) Effects of exercise on brain and cognition across age groups and health states. Trends Neurosci 43(7):533–543. https://doi.org/10.1016/j.tins.2020.04.010

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  193. Suwabe K et al (2018) Rapid stimulation of human dentate gyrus function with acute mild exercise. Proc Natl Acad Sci 115(41):10487. https://doi.org/10.1073/pnas.1805668115

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  194. Smith PJ et al (2010) Aerobic exercise and neurocognitive performance: a meta-analytic review of randomized controlled trials. Psychosom Med 72(3):239–252. https://doi.org/10.1097/PSY.0b013e3181d14633

    Article  PubMed  PubMed Central  Google Scholar 

  195. Lambourne K, Tomporowski P (2010) The effect of exercise-induced arousal on cognitive task performance: a meta-regression analysis. Brain Res 1341:12–24. https://doi.org/10.1016/j.brainres.2010.03.091

    Article  PubMed  CAS  Google Scholar 

  196. Chang YK et al (2012) The effects of acute exercise on cognitive performance: a meta-analysis. Brain Res 1453:87–101. https://doi.org/10.1016/j.brainres.2012.02.068

    Article  PubMed  CAS  Google Scholar 

  197. McMorris T, Hale BJ (2012) Differential effects of differing intensities of acute exercise on speed and accuracy of cognition: a meta-analytical investigation. Brain Cogn 80(3):338–351. https://doi.org/10.1016/j.bandc.2012.09.001

    Article  PubMed  Google Scholar 

  198. Esteban-Cornejo I et al (2015) Physical activity and cognition in adolescents: a systematic review. J Sci Med Sport 18(5):534–539. https://doi.org/10.1016/j.jsams.2014.07.007

    Article  PubMed  Google Scholar 

  199. Browne SE et al (2017) Effects of acute high-intensity exercise on cognitive performance in trained individuals: a systematic review. Prog Brain Res 234:161–187. https://doi.org/10.1016/bs.pbr.2017.06.003

    Article  PubMed  Google Scholar 

  200. Vanderbeken I, Kerckhofs E (2017) A systematic review of the effect of physical exercise on cognition in stroke and traumatic brain injury patients. NeuroRehabilitation 40(1):33–48. https://doi.org/10.3233/nre-161388

    Article  PubMed  Google Scholar 

  201. Gallardo-Gómez D et al (2022) Optimal dose and type of exercise to improve cognitive function in older adults: a systematic review and bayesian model-based network meta-analysis of RCTs. Ageing Res Rev 76:101591. https://doi.org/10.1016/j.arr.2022.101591

    Article  PubMed  Google Scholar 

  202. Sanders LMJ et al (2019) Dose-response relationship between exercise and cognitive function in older adults with and without cognitive impairment: a systematic review and meta-analysis. PLoS One 14(1):e0210036. https://doi.org/10.1371/journal.pone.0210036

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  203. Marek S et al (2022) Reproducible brain-wide association studies require thousands of individuals. Nature 603(7902):654–660. https://doi.org/10.1038/s41586-022-04492-9

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

M.E.C-L. and L.F.F.R. thank the CNPq for recognition as highly productive researchers. Also, L.S.S., A.L.A., and C.G.L.N. thank Fundação Amazônia de Amparo a Estudos e Pesquisa (FAPESPA, Brazil) for their PhD fellowships.

Funding

We appreciate the support of the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, grant numbers 427784/2018–2, 313406/2021–9, and 406442/2022–3). The APC was funded by the Pró-Reitoria de Pesquisa e Pós-graduação da Universidade Federal do Pará (PROPESP-UFPA).

Author information

Authors and Affiliations

Authors

Contributions

M.A-O and M.E.C-L contributed to the study conception and design and wrote the first draft of this manuscript. All authors have made significant comments on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Marcus Augusto-Oliveira or Maria Elena Crespo-Lopez.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Augusto-Oliveira, M., Arrifano, G.P., Leal-Nazaré, C.G. et al. Exercise Reshapes the Brain: Molecular, Cellular, and Structural Changes Associated with Cognitive Improvements. Mol Neurobiol 60, 6950–6974 (2023). https://doi.org/10.1007/s12035-023-03492-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-023-03492-8

Keywords

Navigation