Skip to main content

Advertisement

Log in

DjFARP Contributes to the Regeneration and Maintenance of the Brain through Activation of DjRac1 in Dugesia japonica

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

FERM, RhoGEF, and Pleckstrin domain protein (FARP) mediated RhoGTPase pathways are involved in diverse biological processes, such as neuronal development and tumorigenesis. However, little is known about their role in neural regeneration. We uncovered for the first time that FARP-Rac1 signaling plays an important role in neural regeneration in Dugesia japonica, a planarian that possesses unparalleled regenerative capacities. The planarian FARP homolog DjFARP was primarily expressed in both intact and regenerating brain and pharynx tissue. Functional studies suggested that downregulation of DjFARP with dsRNA in Dugesia japonica led to smaller brain sizes, defects in brain lateral branches, and loss of cholinergic, GABAergic, and dopaminergic neurons in both intact and regenerating animals. Moreover, the Rho GTPase DjRac1 was shown to play a similar role in neural regeneration and maintenance. Rac1 activation assay showed that DjFARP acts as a guanine nucleotide exchange factor (GEF) for DjRac1. Together, these findings indicate that the brain defects seen in DjFARP knockdown animals may be attributable to DjRac1 inactivation. In conclusion, our study demonstrated that DjFARP-DjRac1 signaling was required for the maintenance and proper regeneration of the brain in Dugesia japonica.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The datasets supporting the findings of this study are available from the corresponding author on reasonable request.

Abbreviations

AD:

Alzheimer’s disease

AP:

Anterior-posterior

BSA:

Bovine serum albumin

CNS:

Central nervous system

Co-IP:

Co- immunoprecipitation

dFISH:

Double fluorescent in situ hybridization

DH:

Dbl-homology

dpa:

Days post-amputation

FARP:

FERM, RhoGEF, and Pleckstrin domain protein

GEF:

Guanine nucleotide exchange factor

H3P:

Anti-phospho-histone H3

HRP:

Horseradish peroxidase

PCR:

Polymerase chain reaction

PD:

Parkinson’s disease

PH:

Pleckstrin homology

qPCR:

Real-time quantitative-PCR

RACE:

Rapid amplification of cDNA ends

RNAi:

RNA interference

TBST:

Tris-buffered saline with Tween20

WISH:

Whole-mount in situ hybridization

References

  1. Goldman SM, Tanner CM, Oakes D, Bhudhikanok GS, Gupta A, Langston JW (2006) Head injury and Parkinson’s disease risk in twins. Ann Neurol 60(1):65–72

    Article  PubMed  Google Scholar 

  2. Bates K, Vink R, Martins R, Harvey A (2014) Aging, cortical injury and Alzheimer’s disease-like pathology in the guinea pig brain. Neurobiology of Aging 35(6):1345–1351

    Article  PubMed  Google Scholar 

  3. Reddy AP, Ravichandran J, Carkaci-Salli N (2020) Neural regeneration therapies for Alzheimer’s and Parkinson’s disease-related disorders. Biochim Biophys Acta (BBA) - Molec Basis Dis 1866(4):1655064

  4. Vasic V, Barth K, Schmidt MHH (2019) Neurodegeneration and Neuro-Regeneration—Alzheimer’s Disease and Stem Cell Therapy. Int J Mol Sci 20(17):4272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Spalding, Kirsty L., Bergmann, O., Alkass, K., Bernard, S., Salehpour, M., Huttner, Hagen B., Boström, E., Westerlund, I., Vial, C., Buchholz, Bruce A., Possnert, G., Mash, Deborah C., Druid, H. and Frisén, J. (2013). Dynamics of Hippocampal Neurogenesis in Adult Humans. Cell, [online] 153(6), pp.1219–1227. Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4394608/ [Accessed 4 May 2019].

  6. Obernier K, Tong CK, Alvarez-Buylla A (2014) Restricted nature of adult neural stem cells: re-evaluation of their potential for brain repair. Front Neurosci 8:162

    Article  PubMed  PubMed Central  Google Scholar 

  7. Brown, D.D.R. and Pearson, B.J. (2017). A Brain Unfixed: Unlimited Neurogenesis and Regeneration of the Adult Planarian Nervous System. Frontiers in Neuroscience, [online] 11, p.289. Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5441136/ [Accessed 5 Mar. 2022].

  8. Ross KG, Currie KW, Pearson BJ, Zayas RM (2017) Nervous system development and regeneration in freshwater planarians. Wiley Interdiscip Rev Dev Biol 6(3):e266

    Article  Google Scholar 

  9. Baguna J, Salo E, Auladell C (1989) Regeneration and pattern formation in planarians. III. that neoblasts are totipotent stem cells and the cells. Development, [online] 107(1), pp.77–86. Available at: https://journals.biologists.com/dev/article/107/1/77/36410/Regeneration-and-pattern-formation-in-planarians [Accessed 24 Feb. 2022]

  10. Eisenhoffer GT, Kang H, Alvarado AS (2008) Molecular Analysis of Stem Cells and Their Descendants during Cell Turnover and Regeneration in the Planarian Schmidtea mediterranea. Cell Stem Cell 3(3):327–339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Pellettieri J, Fitzgerald P, Watanabe S, Mancuso J, Green DR, Sánchez Alvarado A (2010) Cell death and tissue remodeling in planarian regeneration. Dev Biol 338(1):76–85

    Article  CAS  PubMed  Google Scholar 

  12. Wenemoser D, Reddien PW (2010) Planarian regeneration involves distinct stem cell responses to wounds and tissue absence. Developmental Biology, [online] 344(2), pp.979–991. Available at: https://www.sciencedirect.com/science/article/pii/S0012160610008377 [Accessed 4 Dec. 2019]

  13. Zeng A, Li H, Guo L, Gao X, McKinney S, Wang Y, Yu Z, Park J, Semerad C, Ross E, Cheng L-C, Davies E, Lei K, Wang W, Perera A, Hall K, Peak A, Box A, Sánchez Alvarado A (2018) Prospectively Isolated Tetraspanin+ Neoblasts Are Adult Pluripotent Stem Cells Underlying Planaria Regeneration. Cell, [online] 173(7), pp.1593–1608.e20. Available at: https://www.cell.com/cell/fulltext/S0092-8674(18)30583-X?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS009286741830583X%3Fshowall%3Dtrue#articleInformation [Accessed 7 Dec. 2019]

  14. Raz AA, Wurtzel O, Reddien PW (2021) Planarian stem cells specify fate yet retain potency during the cell cycle. Cell Stem Cell, [online] 28(7), pp.1307–1322.e5. Available at: https://www.sciencedirect.com/science/article/abs/pii/S1934590921001545 [Accessed 29 Sep. 2021]

  15. Kobayashi C, Saito Y, Ogawa K, Agata K (2007) Wnt signaling is required for antero-posterior patterning of the planarian brain. Dev Biol 306(2):714–724

    Article  CAS  PubMed  Google Scholar 

  16. Gurley KA, Rink JC, Alvarado AS (2008) Catenin Defines Head Versus Tail Identity During Planarian Regeneration and Homeostasis. Science 319(5861):323–327

    Article  CAS  PubMed  Google Scholar 

  17. Rink JC, Gurley KA, Elliott SA, Sanchez Alvarado A (2009) Planarian Hh Signaling Regulates Regeneration Polarity and Links Hh Pathway Evolution to Cilia. Science 326(5958):1406–1410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sureda-Gomez M, Adell T (2019) Planarian organizers. Semin Cell Dev Biol 87:95–104

    Article  PubMed  Google Scholar 

  19. Petersen CP, Reddien PW (2011) Polarized notum Activation at Wounds Inhibits Wnt Function to Promote Planarian Head Regeneration. Science 332(6031):852–855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Cebrià F, Kobayashi C, Umesono Y, Nakazawa M, Mineta K, Ikeo K, Gojobori T, Itoh M, Taira M, Alvarado AS, Agata K (2002) FGFR-related gene nou-darake restricts brain tissues to the head region of planarians. Nature 419(6907):620–624

    Article  PubMed  Google Scholar 

  21. Molina MD, Saló E, Cebrià F (2007) The BMP pathway is essential for re-specification and maintenance of the dorsoventral axis in regenerating and intact planarians. Dev Biol 311(1):79–94

    Article  CAS  PubMed  Google Scholar 

  22. Zhen H, Deng H, Song Q, Zheng M, Yuan Z, Cao Z, Pang Q, Zhao B (2020) The Wnt/Ca2+signaling pathway is essential for the regeneration of GABAergic neurons in planarian Dugesia japonica. FASEB J 34(12):16567–16580

    Article  CAS  PubMed  Google Scholar 

  23. Zamboni V, Jones R, Umbach A, Ammoni A, Passafaro M, Hirsch E, Merlo GR (2018) Rho GTPases in Intellectual Disability: From Genetics to Therapeutic Opportunities. Int J Molec Sci, [online] 19(6), p.1821. Available at: https://www.mdpi.com/1422-0067/19/6/1821/htm [Accessed 6 Nov. 2021]

  24. Ma C, Gao Y, Chai G, Su H, Wang N, Yang Y, Li C, Miao D, Wu W (2010) Djrho2 is involved in regeneration of visual nerves in Dugesia japonica. J Genet Genom 37(11):713–723

    Article  CAS  Google Scholar 

  25. Yujia S, Tingting G, Jiaxin L, Saisai Z, Zhitai H, Qingnan T, Shoutao Z (2019) Cdc42 regulate the apoptotic cell death required for planarian epidermal regeneration and homeostasis. Int J Biochem Cell Biol 112:107–113

    Article  CAS  PubMed  Google Scholar 

  26. Song Q, Zhen H, Liu H, Yuan Z, Cao Z, Zhao B (2020) A novel RhoA-related gene, DjRhoA, contributes to the regeneration of brain and intestine in planarian Dugesia japonica. Biochem Biophys Res Commun 533(4):1359–1365

    Article  CAS  PubMed  Google Scholar 

  27. Xu Z, Han Y, Li X, Yang R, Song L (2020) Molecular cloning and characterization of DjRac1, a novel small G protein gene from planarian Dugesia japonica. Biochem Biophys Res Commun 526(4):865–870

    Article  CAS  PubMed  Google Scholar 

  28. Kubo T, Yamashita T, Yamaguchi A, Sumimoto H, Hosokawa K, Tohyama M (2002) A Novel FERM Domain Including Guanine Nucleotide Exchange Factor Is Involved in Rac Signaling and Regulates Neurite Remodeling. J Neurosci 22(19):8504–8513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Croisé P, Houy S, Gand M, Lanoix J, Calco V, Tóth P, Brunaud L, Lomazzi S, Paramithiotis E, Chelsky D, Ory S, Gasman S (2016) Cdc42 and Rac1 activity is reduced in human pheochromocytoma and correlates with FARP1 and ARHGEF1 expression. Endocrine-Related Cancer, [online] 23(4), pp.281–293. Available at: https://pubmed.ncbi.nlm.nih.gov/26911374/ [Accessed 27 Aug. 2021]

  30. Croisé P, Brunaud L, Tóth P, Gasman S, Ory S (2016) Inhibition of Cdc42 and Rac1 activities in pheochromocytoma, the adrenal medulla tumor. Small GTPases 8(2):122–127

    Article  PubMed  PubMed Central  Google Scholar 

  31. Cheadle L, Biederer T (2012) The novel synaptogenic protein Farp1 links postsynaptic cytoskeletal dynamics and transsynaptic organization. J Cell Biol, [online] 199(6), pp.985–1001. Available at: https://rupress.org/jcb/article/199/6/985/36986/The-novel-synaptogenic-protein-Farp1-links [Accessed 28 Jan. 2022]

  32. Danelon V, Goldner R, Martinez E, Gokhman I, Wang K, Yaron A, Tran TS (2020) Modular and Distinct Plexin-A4/FARP2/Rac1 Signaling Controls Dendrite Morphogenesis. J Neurosci, [online] 40(28), pp.5413–5430. Available at: https://www.jneurosci.org/content/40/28/5413#sec-29 [Accessed 3 May 2021]

  33. Zhuang B, Su YS, Sockanathan S (2009) FARP1 Promotes the Dendritic Growth of Spinal Motor Neuron Subtypes through Transmembrane Semaphorin6A and PlexinA4 Signaling. Neuron 61(3):359–372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Cheadle L, Biederer T (2014) Activity-Dependent Regulation of Dendritic Complexity by Semaphorin 3A through Farp1. J Neurosci 34(23):7999–8009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Toyofuku T, Yoshida J, Sugimoto T, Zhang H, Kumanogoh A, Hori M, Kikutani H. (2005) FARP2 triggers signals for Sema3A-mediated axonal repulsion. Nat Neurosci, [online] 8(12), pp.1712–1719. Available at: https://www.nature.com/articles/nn1596 [Accessed 15 Mar. 2020]

  36. Pang Q, Gao L, Hu W, An Y, Deng H, Zhang Y, Sun X, Zhu G, Liu B, Zhao B (2016) De Novo Transcriptome Analysis Provides Insights into Immune Related Genes and the RIG-I-Like Receptor Signaling Pathway in the Freshwater Planarian (Dugesia japonica). PLoS ONE 11(3):e0151597

    Article  PubMed  PubMed Central  Google Scholar 

  37. Pearson BJ, Eisenhoffer GT, Gurley KA, Rink JC, Miller DE, Sánchez Alvarado A (2009) Formaldehyde-based whole-mount in situ hybridization method for planarians. Dev Dyn 238(2):443–450

    Article  PubMed  PubMed Central  Google Scholar 

  38. Yu S, Chen X, Yuan Z, Zhou L, Pang Q, Mao B, Zhao B (2015) Planarian myosin essential light chain is involved in the formation of brain lateral branches during regeneration. Mol Genet Genomics 290(4):1277–1285

    Article  CAS  PubMed  Google Scholar 

  39. Rossman KL, Der CJ, Sondek J (2005) GEF means go: turning on RHO GTPases with guanine nucleotide-exchange factors. Nat Rev Molec Cell Biol, [online] 6(2), pp.167–180. Available at: https://www.nature.com/articles/nrm1587 [Accessed 26 Aug. 2021]

  40. Hayashi T, Shibata N, Okumura R, Kudome T, Nishimura O, Tarui H, Agata K (2010) Single-cell gene profiling of planarian stem cells using fluorescent activated cell sorting and its ‘index sorting’ function for stem cell research. Dev Growth Differ 52(1):131–144

    Article  CAS  PubMed  Google Scholar 

  41. Lu Q, Wu S, Zhen H, Deng H, Song Q, Ma K, Cao Z, Pang Q, Zhao B (2017) 14-3-3 α and 14-3-3 ζ contribute to immune responses in planarian Dugesia japonica. Gene 615:25–34

    Article  CAS  PubMed  Google Scholar 

  42. Molinaro AM, Pearson BJ (2016) In silico lineage tracing through single cell transcriptomics identifies a neural stem cell population in planarians. Genome Biol 17:87

    Article  PubMed  PubMed Central  Google Scholar 

  43. Nishimura K, Kitamura Y, Inoue T, Umesono Y, Sano S, Yoshimoto K, Inden M, Takata K, Taniguchi T, Shimohama S, Agata K (2007) Reconstruction of dopaminergic neural network and locomotion function in planarian regenerates. Dev Neurobiol 67(8):1059–1078

    Article  CAS  PubMed  Google Scholar 

  44. Nishimura K, Kitamura Y, Inoue T, Umesono Y, Yoshimoto K, Takeuchi K, Taniguchi T, Agata K (2007) Identification and distribution of tryptophan hydroxylase (TPH)-positive neurons in the planarian Dugesia japonica. Neurosci Res 59(1):101–106

    Article  CAS  PubMed  Google Scholar 

  45. Nishimura K, Kitamura Y, Umesono Y, Takeuchi K, Takata K, Taniguchi T, Agata K (2008) Identification of glutamic acid decarboxylase gene and distribution of GABAergic nervous system in the planarian Dugesia japonica. Neuroscience 153(4):1103–1114

    Article  CAS  PubMed  Google Scholar 

  46. Nishimura K, Kitamura Y, Taniguchi T, Agata K (2010) Analysis of motor function modulated by cholinergic neurons in planarian dugesia japonica. Neuroscience 168(1):18–30

    Article  CAS  PubMed  Google Scholar 

  47. Kuo YC, He X, Coleman AJ, Chen YJ, Dasari P, Liou J, Biederer T, Zhang X (2018) Structural analyses of FERM domain-mediated membrane localization of FARP1. Sci Rep 8(1):10477

    Article  PubMed  PubMed Central  Google Scholar 

  48. He X, Kuo YC, Rosche TJ, Zhang X (2013) Structural basis for autoinhibition of the guanine nucleotide exchange factor FARP2. Structure 21(3):355–364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wang Q, Gong L, Mao S, Yao C, Liu M, Wang Y, Yang J, Yu B, Chen G, Gu X (2021) Klf2-Vav1-Rac1 axis promotes axon regeneration after peripheral nerve injury. Exp Neurol 343:113788

    Article  CAS  PubMed  Google Scholar 

  50. Matsukawa T, Morita K, Omizu S, Kato S, Koriyama Y (2018) Mechanisms of RhoA inactivation and CDC42 and Rac1 activation during zebrafish optic nerve regeneration. Neurochem Int 112:71–80

    Article  CAS  PubMed  Google Scholar 

  51. Vidaki M, Tivodar S, Doulgeraki K, Tybulewicz V, Kessaris N, Pachnis V, Karagogeos D (2011) Rac1-Dependent Cell Cycle Exit of MGE Precursors and GABAergic Interneuron Migration to the Cortex. Cereb Cortex 22(3):680–692

    Article  PubMed  PubMed Central  Google Scholar 

  52. Vaghi V, Pennucci R, Talpo F, Corbetta S, Montinaro V, Barone C, Croci L, Spaiardi P, Consalez GG, Biella G, de Curtis I (2012) Rac1 and Rac3 GTPases Control Synergistically the Development of Cortical and Hippocampal GABAergic Interneurons. Cereb Cortex 24(5):1247–1258

    Article  PubMed  PubMed Central  Google Scholar 

  53. de Curtis I (2014) Roles of Rac1 and Rac3 GTPases during the development of cortical and hippocampal GABAergic interneurons. Front Cell Neurosci 8:307

    Article  PubMed  PubMed Central  Google Scholar 

  54. Čajánek L, Ganji RS, Henriques-Oliveira C, Theofilopoulos S, Koník P, Bryja V, Arenas E (2013) Tiam1 Regulates the Wnt/Dvl/Rac1 Signaling Pathway and the Differentiation of Midbrain Dopaminergic Neurons. Mol Cell Biol 33(1):59–70

    Article  PubMed  PubMed Central  Google Scholar 

  55. Gahankari A, Dong C, Bartoletti G, Galazo M, He F (2021) Deregulated Rac1 activity in neural crest controls cell proliferation, migration and differentiation during midbrain development. Front Cell Dev Biol 9:704769

    Article  PubMed  PubMed Central  Google Scholar 

  56. Leone DP, Srinivasan K, Brakebusch C, McConnell SK (2010) The Rho GTPase Rac1 is required for proliferation and survival of progenitors in the developing forebrain. Dev Neurobiol 70(9):659–678

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Cebrià F, Adell T, Saló E (2018) Rebuilding a planarian: from early signaling to final shape. Int J Dev Biol 62(6-7–8):537–550

    Article  PubMed  Google Scholar 

  58. Meller N (2005) CZH proteins: a new family of Rho-GEFs. J Cell Sci 118(21):4937–4946

    Article  CAS  PubMed  Google Scholar 

  59. Boureux A, Vignal E, Faure S, Fort P (2006) Evolution of the Rho Family of Ras-Like GTPases in Eukaryotes. Mol Biol Evol 24(1):203–216

    Article  PubMed  Google Scholar 

  60. Koyano Y, Kawamoto T, Kikuchi A, Shen M, Kuruta Y, Tsutsumi S, Fujimoto K, Noshiro M, Fujii K, Kato§ Y (2001) Chondrocyte-derived ezrin-like domain containing protein (CDEP), a rho guanine nucleotide exchange factor, is inducible in chondrocytes by parathyroid hormone and cyclic AMP and has transforming activity in NIH3T3 Cells. Osteoarthritis and Cartilage 9:S64–S68

    Article  PubMed  Google Scholar 

  61. Amado-Azevedo J, Reinhard NR, van Bezu J, de Menezes RX, van Beusechem VW, van Nieuw Amerongen GP, van Hinsbergh VWM, Hordijk PL (2017) A CDC42-centered signaling unit is a dominant positive regulator of endothelial integrity. Sci Rep 7(1):10132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Hirano T, Shinsato Y, Tanabe K, Higa N, Kamil M, Kawahara K, Yamamoto M, Minami K, Shimokawa M, Arigami T, Yanagita S, Matushita D, Uenosono Y, Ishigami S, Kijima Y, Maemura K, Kitazono I, Tanimoto A, Furukawa T, Natsugoe S (2020) FARP1 boosts CDC42 activity from integrin αvβ5 signaling and correlates with poor prognosis of advanced gastric cancer. Oncogenesis 9(2):13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Elbediwy A, Zhang Y, Cobbaut M, Riou P, Tan RS, Roberts SK, Tynan C, George R, Kjaer S, Martin-Fernandez ML, Thompson BJ, McDonald NQ, Parker PJ (2019) The Rho-family GEF FARP2 is activated by aPKCι to control polarity and tight junction formation. J Cell Sci 132(8):jcs223743

Download references

Acknowledgements

We thank LetPub (www.letpub.com) for its linguistic assistance during the preparation of this manuscript.

Funding

This work was supported by the National Natural Science Foundation of China (grant number 31970430, 32070459).

Author information

Authors and Affiliations

Authors

Contributions

Bosheng Zhao designed this work; Bosheng Zhao and Qian Song wrote the paper; Qian Song performed the experiments; Huazhi Geng, Hui Zhen, Hongjin Liu, Hongkuan Deng, Zuoqing Yuan, Jianyong Zhang, Zhonghong Cao, Qiuxiang Pang analyzed the data. All authors have approved the present version of the manuscript and have agreed to be accountable for all aspects of the work regarding questions related to the accuracy or integrity of any part of the work.

Corresponding author

Correspondence to Bosheng Zhao.

Ethics declarations

Ethics Approval

All animal experiments complied with the ARRIVE guidelines and were carried out in accordance with the National Research Council’s Guide for the Care and Use of Laboratory Animals. The study protocol was approved by the Ethics Committee of Shandong University of Technology.

Consent to Participate

No applicable.

Consent for Publication

No applicable.

Competing interests

All authors claim that there are no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, Q., Geng, H., Zhen, H. et al. DjFARP Contributes to the Regeneration and Maintenance of the Brain through Activation of DjRac1 in Dugesia japonica. Mol Neurobiol 60, 6294–6306 (2023). https://doi.org/10.1007/s12035-023-03478-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-023-03478-6

Keywords

Navigation