Skip to main content

Advertisement

Log in

Genomic Variation Affecting MPV and PLT Count in Association with Development of Ischemic Stroke and Its Subtypes

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Platelets play a significant role in the pathophysiology of ischemic stroke since they are involved in the formation of intravascular thrombus after erosion or rupture of the atherosclerotic plaques. Platelet (PLT) count and mean platelet volume (MPV) are the two significant parameters that affect the functions of platelets. In the current study, MPV and PLT count was evaluated using flow cytometry and a cell counter. SonoClot analysis was carried out to evaluate activated clot timing (ACT), clot rate (CR), and platelet function (PF). Genotyping was carried out using GSA and Sanger sequencing, and expression analysis was performed using RT-PCR. In silico analysis was carried out using the GROMACS tool and UNAFold. The interaction of significant proteins with other proteins was predicted using the STRING database. Ninety-six genes were analyzed, and a significant association of THPO (rs6141) and ARHGEF3 (rs1354034) was observed with the disease and its subtypes. Altered genotypes were associated significantly with increased MPV, decreased PLT count, and CR. Expression analysis revealed a higher expression in patients bearing the variant genotypes of both genes. In silico analysis revealed that mutation in the THPO gene leads to the reduced compactness of protein structure. mRNA encoded by mutated ARHGEF3 gene increases the half-life of mRNA. The two significant proteins interact with many other proteins, especially the ones involved in platelet activation, aggregation, erythropoiesis, megakaryocyte maturation, and cytoskeleton rearrangements, suggesting that they could be important players in the determination of MPV values. In conclusion, the current study demonstrated the role of higher MPV affected by genetic variation in the development of IS and its subtypes. The results of the current study also indicate that higher MPV can be used as a biomarker for the disease and altered genotypes, and higher MPV can be targeted for better therapeutic outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

The data generated or analysed during this study has been included in this article. The data relating to MPV, PLT count, and demographic profile of the study participants have already been published.

References

  1. Feigin VL et al (2022) World Stroke Organization (WSO): global stroke fact sheet 2022. Int J Stroke 17(1):18–29

    Article  PubMed  Google Scholar 

  2. Amarenco P et al (2009) Classification of stroke subtypes. Cerebrovasc Dis 27(5):493–501

    Article  CAS  PubMed  Google Scholar 

  3. Virani SS et al (2021) Heart disease and stroke statistics—2021 update: a report from the American Heart Association. Circulation 143(8):e254–e743

    Article  PubMed  Google Scholar 

  4. Orellana-Urzúa S et al (2020) Pathophysiology of ischemic stroke: role of oxidative stress. Curr Pharm Des 26(34):4246–4260

    Article  PubMed  Google Scholar 

  5. Munshi A et al (2009) Phosphodiesterase 4D (PDE4D) gene variants and the risk of ischemic stroke in a South Indian population. J Neurol Sci 285(1-2):142-145

  6. Munshi A et al (2012) Association of LPL gene variant and LDL, HDL, VLDL cholesterol and triglyceride levels with ischemic stroke and its subtypes. J Neurol Sci 318(1-2):51–54

    Article  CAS  PubMed  Google Scholar 

  7. Traylor M et al (2021) Genetic basis of lacunar stroke: a pooled analysis of individual patient data and genome-wide association studies. The Lancet Neurology 20(5):351–361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Boehme AK, Esenwa C, Elkind MS (2017) Stroke risk factors, genetics, and prevention. Circ Res 120(3):472–495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ludhiadch A, Vasudeva K, Munshi A (2020) Establishing molecular signatures of stroke focusing on omic approaches: a narrative review. Int J Neurosci 130(12):1250–1266

    Article  PubMed  Google Scholar 

  10. Vasudeva K, Munshi A (2019) Genetics of platelet traits in ischaemic stroke: focus on mean platelet volume and platelet count. Int J Neurosci 129(5):511–522

    Article  CAS  PubMed  Google Scholar 

  11. Greisenegger S et al (2004) Is elevated mean platelet volume associated with a worse outcome in patients with acute ischemic cerebrovascular events? Stroke 35(7):1688–1691

    Article  CAS  PubMed  Google Scholar 

  12. Miller MM, Henninger N, Słowik A (2020) Mean platelet volume and its genetic variants relate to stroke severity and 1-year mortality. Neurology 95(9):e1153–e1162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Del Zoppo GJ (1998) The role of platelets in ischemic stroke. Neurology 51(3 Suppl 3):S9–S14

    Article  PubMed  Google Scholar 

  14. Ludhiadch A, Yadav P, Singh SK, Sulena, Munshi A (2022) Evaluation of mean platelet volume and platelet count in ischemic stroke and its subtypes: focus on degree of disability and thrombus formation. Int J Neurosci 30:1–8

  15. Mayda-Domaç F, Mısırlı H, Yılmaz M (2010) Prognostic role of mean platelet volume and platelet count in ischemic and hemorrhagic stroke. J Stroke Cerebrovasc Dis 19(1):66–72

    Article  PubMed  Google Scholar 

  16. Zarmehri B et al (2020) Association of platelet count and mean platelet volume (MPV) index with types of stroke. Caspian J Intern Med 11(4):398

    PubMed  PubMed Central  Google Scholar 

  17. Sotero FD et al (2021) Mean platelet volume is a prognostic marker in acute ischemic stroke patients treated with intravenous thrombolysis. J Stroke Cerebrovasc Dis 30(6):105718

    Article  Google Scholar 

  18. Cho SY et al (2013) Mean platelet volume/platelet count ratio in hepatocellular carcinoma. Platelets 24(5):375–377

    Article  CAS  PubMed  Google Scholar 

  19. Meisinger C et al (2009) A genome-wide association study identifies three loci associated with mean platelet volume. Am J Hum Genet 84(1):66–71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Eicher JD et al (2016) Platelet-related variants identified by exome chip meta-analysis in 157,293 individuals. Am J Hum Genet 99(1):40–55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Schick UM et al (2016) Genome-wide association study of platelet count identifies ancestry-specific loci in Hispanic/Latino Americans. Am J Hum Genet 98(2):229–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Eicher JD, Lettre G, Johnson AD (2018) The genetics of platelet count and volume in humans. Platelets 29(2):125–130

    Article  CAS  PubMed  Google Scholar 

  23. Kunicki TJ, Williams SA, Nugent DJ (2012) Genetic variants that affect platelet function. Curr Opin Hematol 19(5):371–379

    Article  CAS  PubMed  Google Scholar 

  24. Adams HP Jr et al (1993) Classification of subtype of acute ischemic stroke. Definitions for use in a multicenter clinical trial. TOAST. Trial of Org 10172 in Acute Stroke Treatment. Stroke 24(1):35–41

    Article  PubMed  Google Scholar 

  25. UniProt Consortium (2021) UniProt: the universal protein knowledgebase in 2021. Nucleic Acids Res 49(D1):D480–D489

  26. Varadi M et al (2022) AlphaFold protein structure database: massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Res 50(D1):D439–D444

    Article  CAS  PubMed  Google Scholar 

  27. Nicholas R, Zuker M (2008) UNAFold: software for nucleic acid folding and hybridization. Bioinformatics 453:3–31

    Article  Google Scholar 

  28. Szklarczyk D et al (2021) The STRING database in 2021: customizable protein–protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res 49(D1):D605–D612

    Article  CAS  PubMed  Google Scholar 

  29. Du J et al (2016) Association of mean platelet volume and platelet count with the development and prognosis of ischemic and hemorrhagic stroke. Int J Lab Hematol 38(3):233–239

    Article  CAS  PubMed  Google Scholar 

  30. Sadeghi F et al (2020) Platelet count and mean volume in acute stroke: a systematic review and meta-analysis. Platelets 31(6):731–739

    Article  CAS  PubMed  Google Scholar 

  31. Bath P et al (2004) Association of mean platelet volume with risk of stroke among 3134 individuals with history of cerebrovascular disease. Stroke 35(3):622–626

    Article  PubMed  Google Scholar 

  32. Hitchcock IS, Kaushansky K (2014) Thrombopoietin from beginning to end. Br J Haematol 165(2):259–268

    Article  CAS  PubMed  Google Scholar 

  33. Garner C et al (2006) Two candidate genes for low platelet count identified in an Asian Indian kindred by genome-wide linkage analysis: glycoprotein IX and thrombopoietin. Eur J Hum Genet 14(1):101–108

    Article  CAS  PubMed  Google Scholar 

  34. Dasouki M et al (2014) Confirmation and further delineation of the 3q26. 33–3q27. 2 microdeletion syndrome. Eur J Med Genet 57(2-3):76–80

    Article  PubMed  Google Scholar 

  35. Mandrile G et al (2013) 3q26. 33–3q27. 2 microdeletion: a new microdeletion syndrome? Eur J Med Genet 56(4):216–221

    Article  PubMed  Google Scholar 

  36. Ghilardi N et al (1999) Hereditary thrombocythaemia in a Japanese family is caused by a novel point mutation in the thrombopoietin gene. Br J Haematol 107(2):310–316

    Article  CAS  PubMed  Google Scholar 

  37. Wiestner A et al (1998) An activating splice donor mutation in the thrombopoietin gene causes hereditary thrombocythaemia. Nat Genet 18(1):49–52

    Article  CAS  PubMed  Google Scholar 

  38. Dasouki MJ et al (2013) Exome sequencing reveals a thrombopoietin ligand mutation in a Micronesian family with autosomal recessive aplastic anaemia. Blood, J Am Soc Hematol 122(20):3440–3449

    CAS  Google Scholar 

  39. Pecci A et al (2018) Thrombopoietin mutation in congenital amegakaryocytic thrombocytopenia treatable with romiplostim. EMBO Mol Med 10(1):63–75

    Article  CAS  PubMed  Google Scholar 

  40. Seo A et al (2017) Bone marrow failure unresponsive to bone marrow transplant is caused by mutations in thrombopoietin. Blood, J Am Soc Hematol 130(7):875–880

    CAS  Google Scholar 

  41. Kondo T et al (1998) Familial essential thrombocythemia associated with one-base deletion in the 5′-untranslated region of the thrombopoietin gene. Blood, J Am Soc Hematol 92(4):1091–1096

    CAS  Google Scholar 

  42. Shameer K et al (2014) A genome-and phenome-wide association study to identify genetic variants influencing platelet count and volume and their pleiotropic effects. Hum Genet 133(1):95–109

    Article  PubMed  Google Scholar 

  43. Kamatani Y et al (2010) Genome-wide association study of hematological and biochemical traits in a Japanese population. Nat Genet 42(3):210–215

    Article  CAS  PubMed  Google Scholar 

  44. Balcik ÖS et al (2013) Thrombopoietin and mean platelet volume in patients with ischemic stroke. Clin Appl Thromb Hemost 19(1):92–95

    Article  CAS  PubMed  Google Scholar 

  45. Varol E (2013) Increased thrombopoietin and mean platelet volume in patients with ischemic stroke. SAGE Publications Sage CA, Los Angeles, CA, pp. 342–343

    Google Scholar 

  46. Sedky HAA et al (2015) Value of thrombopoietin level and platelet size in patients with ischemic stroke. The Egyptian Journal of Haematology 40(1):24

    Article  Google Scholar 

  47. Şenaran H et al (2001) Thrombopoietin and mean platelet volume in coronary artery disease. Clin Cardiol 24(5):405–408

    Article  PubMed  Google Scholar 

  48. Yang M et al (2008) Thrombopoietin levels increased in patients with severe acute respiratory syndrome. Thromb Res 122(4):473–477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Manne BK et al (2020) Platelet gene expression and function in patients with COVID-19. Blood 136(11):1317–1329

    Article  CAS  PubMed  Google Scholar 

  50. Gieger C et al (2011) New gene functions in megakaryopoiesis and platelet formation. Nature 480(7376):201–208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Sinzinger H, Virgolini I, Fitscha P (1990) Platelet kinetics in patients with atherosclerosis. Thromb Res 57(4):507–516

    Article  CAS  PubMed  Google Scholar 

  52. Kaushansky K et al (1994) Promotion of megakaryocyte progenitor expansion and differentiation by the c-Mpl ligand thrombopoietin. Nature 369(6481):568–571

    Article  CAS  PubMed  Google Scholar 

  53. Lok S et al (1994) Cloning and expression of murine thrombopoietin cDNA and stimulation of platelet production in vivo. Nature 369(6481):565–568

    Article  CAS  PubMed  Google Scholar 

  54. Yan X-Q et al (1995) Chronic exposure to retroviral vector encoded MGDF (mpl-ligand) induces lineage-specific growth and differentiation of megakaryocytes in mice. Blood 86(11):4025–4033

  55. Zhou W et al (1997) Transgenic mice overexpressing human c-mpl ligand exhibit chronic thrombocytosis and display enhanced recovery from 5-fluorouracil or antiplatelet serum treatment. Blood, J Am Soc Hematol 89(5):1551–1559

    CAS  Google Scholar 

  56. Jorgensen M et al (1998) Familial thrombocytosis is associated with the overproduction of thrombopoietin due to a novel splice donor site mutation. in Blood. WB SAUNDERS, Co Independence Square West Curtis Center, Ste 300, Philadelphia

    Google Scholar 

  57. Cazzola M, Skoda RC (2000) Translational pathophysiology: a novel molecular mechanism of human disease. Blood, J Am Soc Hematol 95(11):3280–3288

    CAS  Google Scholar 

  58. Stenberg P, Levin J (1989) Mechanisms of platelet production. Blood Cells 15(1):23–47

    CAS  PubMed  Google Scholar 

  59. Italiano JE Jr et al (1999) Blood platelets are assembled principally at the ends of proplatelet processes produced by differentiated megakaryocytes. J Cell Biol 147(6):1299–1312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Levin J (2019) The evolution of mammalian platelets. In Platelets. Academic Press, pp. 1–23

  61. Geddis AE, Kaushansky K (2004) Inherited thrombocytopenias: toward a molecular understanding of disorders of platelet production. Curr Opin Pediatr 16(1):15–22

    Article  PubMed  Google Scholar 

  62. Thiesen S et al (2000) Isolation of two novel human RhoGEFs, ARHGEF3 and ARHGEF4, in 3p13-21 and 2q22. Biochem Biophys Res Commun 273(1):364–369

    Article  CAS  PubMed  Google Scholar 

  63. Arthur WT et al (2002) XPLN, a guanine nucleotide exchange factor for RhoA and RhoB, but not RhoC. J Biol Chem 277(45):42964–42972

    Article  CAS  PubMed  Google Scholar 

  64. Rossman KL, Der CJ, Sondek J (2005) GEF means go: turning on RHO GTPases with guanine nucleotide-exchange factors. Nat Rev Mol Cell Biol 6(2):167–180

    Article  CAS  PubMed  Google Scholar 

  65. Snyder JT et al (2002) Structural basis for the selective activation of Rho GTPases by Dbl exchange factors. Nat Struct Biol 9(6):468–475

    Article  CAS  PubMed  Google Scholar 

  66. Zou S et al (2017) SNP in human ARHGEF3 promoter is associated with DNase hypersensitivity, transcript level and platelet function, and Arhgef3 KO mice have increased mean platelet volume. PloS One 12(5):e0178095

    Article  PubMed  PubMed Central  Google Scholar 

  67. Tirozzi A et al (2021) Genomic overlap between platelet parameters variability and age at onset of Parkinson disease. Appl Sci 11(15):6927

    Article  CAS  Google Scholar 

  68. Zhang X et al (2014) Genetic associations with expression for genes implicated in GWAS studies for atherosclerotic cardiovascular disease and blood phenotypes. Hum Mol Genet 23(3):782–795

    Article  CAS  PubMed  Google Scholar 

  69. Simon LM et al (2014) Human platelet microRNA-mRNA networks associated with age and gender revealed by integrated platelet omics. Blood, J Am Soc Hematol 123(16):e37–e45

    CAS  Google Scholar 

  70. Khaliq SA, Umair Z, Yoon M-S (2021) Role of ARHGEF3 as a GEF and mTORC2 regulator. Front Cell Dev Biol 9:806258–806258

    Article  PubMed  Google Scholar 

  71. Kim YB, Jin J, Dangelma C (1999) The P2Y1 receptor is essential for ADP-induced shape change and aggregation in mouse platelets. Platelets 10(6):399–406

    Article  CAS  PubMed  Google Scholar 

  72. Klages B et al (1999) Activation of G12/G13 results in shape change and Rho/Rho-kinase–mediated myosin light chain phosphorylation in mouse platelets. J Cell Biol 144(4):745–754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Drachman JG, Griffin JD, Kaushansky K (1995) The c-Mpl ligand (Thrombopoietin) stimulates tyrosine phosphorylation of Jak2, Shc, and c-Mpl (∗). J Biol Chem 270(10):4979–4982

    Article  CAS  PubMed  Google Scholar 

  74. Hoffmann O et al (2011) Thrombopoietin contributes to neuronal damage in experimental bacterial meningitis. Infect Immun 79(2):928–936

    Article  CAS  PubMed  Google Scholar 

  75. Baker JE et al (2008) Human thrombopoietin reduces myocardial infarct size, apoptosis, and stunning following ischaemia/reperfusion in rats. Cardiovasc Res 77(1):44–53

    Article  CAS  PubMed  Google Scholar 

  76. Saintillan D (2020) Physical mechanisms of platelet formation. Proc Natl Acad Sci 117(36):21841–21843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Mbiandjeu S, Balduini A, Malara A (2021) Megakaryocyte cytoskeletal proteins in platelet biogenesis and diseases. Thromb Haemost 122(05):666–678

  78. Thon JN, Italiano JE (2010, July) Platelet formation. In Seminars in hematology (Vol. 47, No. 3, pp. 220–226). WB Saunders

  79. Machlus KR, Italiano JE Jr (2013) The incredible journey: From megakaryocyte development to platelet formation. J Cell Biol 201(6):785–796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Goggs R et al (2015) Platelet Rho GTPases–a focus on novel players, roles and relationships. Biochem J 466(3):431–442

    Article  CAS  PubMed  Google Scholar 

  81. Ulu A, Frost JA (2016) Regulation of RhoA activation and cytoskeletal organization by acetylation. Small GTPases 7(2):76–81

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Hotta K et al (1996) Interaction of the Rho family small G proteins with kinectin, an anchoring protein of kinesin motor. Biochem Biophys Res Commun 225(1):69–74

    Article  CAS  PubMed  Google Scholar 

  83. Hensler M et al (1992) Platelet morphologic changes and fibrinogen receptor localization. Initial responses in ADP-activated human platelets. Am J Pathol 141(3):707

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Maxwell MJ et al (2006) Shear induces a unique series of morphological changes in translocating platelets: effects of morphology on translocation dynamics. Arterioscler Thromb Vasc Biol 26(3):663–669

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Financial assistance from the Council for Scientific and Industrial Research (CSIR), India, and DST-FIST is highly acknowledged.

Funding

Financial assistance from DST-FIST (SR/FST/LS-I/2017/49) is acknowledged with thanks. Financial support to Mr. Abhilash Ludhiadch (Award No-09/ 1051(0029)/2 019-EMR-1) from the Council for Scientific and Industrial Research (CSIR) India is highly acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

Anjana Munshi (AM) and Abhilash Ludhiadch (AL) conceived and planned the experiments. Sandeep Singh (SS) helped in mRNA expression analysis. AL carried out the experiments. Sudip Chakraborty (SC), and Mahesh Kulharia (MK) planned and carried out the protein and mRNA simulations. Sulena (S) and Paramdeep Singh (PS) helped in the sample collection and identification of patients. Dixit Sharma (DS) helped in protein-protein interaction studies. AM, AL, and SS contributed to the interpretation of the results. AL and AM took the lead in writing the manuscript. Overall the manuscript was shaped with invaluable and critical feedback from all the authors.

Corresponding author

Correspondence to Anjana Munshi.

Ethics declarations

Ethics Approval

The study was approved by the Institutional ethics committee of the University (CUPB/CC/RO/18/2316) as well as the study hospital (GGS/IEC/56).

Consent to Participate

Consent from each participant was taken prior to the sample collection.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ludhiadch, A., Sulena, Singh, S. et al. Genomic Variation Affecting MPV and PLT Count in Association with Development of Ischemic Stroke and Its Subtypes. Mol Neurobiol 60, 6424–6440 (2023). https://doi.org/10.1007/s12035-023-03460-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-023-03460-2

Keywords

Navigation