Skip to main content

Advertisement

Log in

Catalpol Alleviates Ischemic Stroke Through Promoting Angiogenesis and Facilitating Proliferation and Differentiation of Neural Stem Cells via the VEGF-A/KDR Pathway

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Stroke is one of the leading causes of disability and death globally with a lack of effective therapeutic strategies. Catalpol is a bioactive compound derived from the traditional Chinese medicine Rehmannia glutinosa and it has been shown to be protective against various neurological diseases. The potential roles of catalpol against ischemic stroke are still not completely clear. In this study, we examined the effect and mechanism of catalpol against ischemic stroke using in vivo rat distal middle cerebral artery occlusion (dMCAO) and in vitro oxygen–glucose deprivation (OGD) models. We demonstrated that catalpol indeed attenuated the neurological deficits caused by dMCAO and improved neurological function. Catalpol remarkably promoted angiogenesis, promoted proliferation and differentiation of neural stem cells (NSCs) in the subventricular zone (SVZ), and prevented neuronal loss and astrocyte activation in the ischemic cortex or hippocampal dentate gyrus (DG) in vivo. The vascular endothelial growth factor receptor 2 (KDR, VEGFR-2) inhibitor SU5416 and VEGF-A shRNA were used to investigate the underlying mechanisms. The results showed that SU5416 administration or VEGF-A-shRNA transfection both attenuated the effects of catalpol. We also found that catalpol promoted the proliferation of cultured brain microvascular endothelial cells (BMECs) and the proliferation and differentiation of NSCs subjected to OGD insult in vitro. Interestingly, the impact of catalpol on cultured cells was also inhibited by SU5416. Moreover, catalpol was shown to protect NSCs against OGD indirectly by promoting BMEC proliferation in the co-cultured system. Taken together, catalpol showed therapeutic potential in cerebral ischemia by promoting angiogenesis and NSC proliferation and differentiation. The protective effects of catalpol were mediated through VEGF-A/KDR pathway activation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

All data generated in this study are provided in this manuscript.

References

  1. Stocchetti N, Taccone FS, Citerio G, Pepe PE, Le Roux PD, Oddo M, Polderman KH, Stevens RD et al (2015) Neuroprotection in acute brain injury: an up-to-date review. Crit Care 19:186. https://doi.org/10.1186/s13054-015-0887-8

    Article  PubMed  PubMed Central  Google Scholar 

  2. Kim JS (2019) tPA helpers in the treatment of acute ischemic stroke: are they ready for clinical use? J Stroke 21(2):160–174. https://doi.org/10.5853/jos.2019.00584

    Article  PubMed  PubMed Central  Google Scholar 

  3. Yaghi S, Boehme AK, Dibu J, Leon Guerrero CR, Ali S, Martin-Schild S, Sands KA, Noorian AR et al (2015) Treatment and outcome of thrombolysis-related hemorrhage: a multicenter retrospective study. JAMA Neurol 72(12):1451–1457. https://doi.org/10.1001/jamaneurol.2015.2371

    Article  PubMed  PubMed Central  Google Scholar 

  4. Wang H, Yang H, Shi Y, Xiao Y, Yin Y, Jiang B, Ren H, Chen W et al (2021) Reconstituting neurovascular unit with primary neural stem cells and brain microvascular endothelial cells in three-dimensional matrix. Brain Pathol 31(5):e12940. https://doi.org/10.1111/bpa.12940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Nelson AR, Sweeney MD, Sagare AP (1862) Zlokovic BV (2016) Neurovascular dysfunction and neurodegeneration in dementia and Alzheimer’s disease. Biochim Biophys Acta 5:887–900. https://doi.org/10.1016/j.bbadis.2015.12.016

    Article  CAS  Google Scholar 

  6. Zhu Y, Huang R, Wu Z, Song S, Cheng L, Zhu R (2021) Deep learning-based predictive identification of neural stem cell differentiation. Nat Commun 12(1):2614. https://doi.org/10.1038/s41467-021-22758-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Moskowitz MA, Lo EH, Iadecola C (2010) The science of stroke: mechanisms in search of treatments. Neuron 67(2):181–198. https://doi.org/10.1016/j.neuron.2010.07.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhang Q, Zhang K, Zhang C, Ge H, Yin Y, Feng H, Hu R (2017) MicroRNAs as big regulators of neural stem/progenitor cell proliferation, differentiation and migration: a potential treatment for stroke. Curr Pharm Des 23(15):2252–2257. https://doi.org/10.2174/1381612823666170228124657

    Article  CAS  PubMed  Google Scholar 

  9. Arvidsson A, Collin T, Kirik D, Kokaia Z, Lindvall O (2002) Neuronal replacement from endogenous precursors in the adult brain after stroke. Nat Med 8(9):963–970. https://doi.org/10.1038/nm747

    Article  CAS  PubMed  Google Scholar 

  10. Yu TS, Washington PM, Kernie SG (2016) Injury-induced neurogenesis: mechanisms and relevance. Neuroscientist 22(1):61–71. https://doi.org/10.1177/1073858414563616

    Article  PubMed  Google Scholar 

  11. Koutsakis C, Kazanis I (2016) How necessary is the vasculature in the life of neural stem and progenitor cells? Evidence from evolution, development and the adult nervous system. Front Cell Neurosci 10:35. https://doi.org/10.3389/fncel.2016.00035

    Article  PubMed  PubMed Central  Google Scholar 

  12. Hsu YC, Chang YC, Lin YC, Sze CI, Huang CC, Ho CJ (2014) Cerebral microvascular damage occurs early after hypoxia-ischemia via nNOS activation in the neonatal brain. J Cereb Blood Flow Metab 34(4):668–676. https://doi.org/10.1038/jcbfm.2013.244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Abbott NJ, Ronnback L, Hansson E (2006) Astrocyte-endothelial interactions at the blood-brain barrier. Nat Rev Neurosci 7(1):41–53. https://doi.org/10.1038/nrn1824

    Article  CAS  PubMed  Google Scholar 

  14. Zlokovic BV (2008) The blood-brain barrier in health and chronic neurodegenerative disorders. Neuron 57(2):178–201. https://doi.org/10.1016/j.neuron.2008.01.003

    Article  CAS  PubMed  Google Scholar 

  15. Liu J, Wang Y, Akamatsu Y, Lee CC, Stetler RA, Lawton MT, Yang GY (2014) Vascular remodeling after ischemic stroke: mechanisms and therapeutic potentials. Prog Neurobiol 115:138–156. https://doi.org/10.1016/j.pneurobio.2013.11.004

    Article  PubMed  Google Scholar 

  16. Apte RS, Chen DS, Ferrara N (2019) VEGF in signaling and disease: beyond discovery and development. Cell 176(6):1248–1264. https://doi.org/10.1016/j.cell.2019.01.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Koch S, Claesson-Welsh L (2012) Signal transduction by vascular endothelial growth factor receptors. Cold Spring Harb Perspect Med 2(7):a006502. https://doi.org/10.1101/cshperspect.a006502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Shibuya M (2013) Vascular endothelial growth factor and its receptor system: physiological functions in angiogenesis and pathological roles in various diseases. J Biochem 153(1):13–19. https://doi.org/10.1093/jb/mvs136

    Article  CAS  PubMed  Google Scholar 

  19. Geiseler SJ, Morland C (2018) The Janus Face of VEGF in Stroke. Int J Mol Sci 19 (5). https://doi.org/10.3390/ijms19051362

  20. Ni H, Li J, Zheng J, Zhou B (2022) Cardamonin attenuates cerebral ischemia/reperfusion injury by activating the HIF-1alpha/VEGFA pathway. Phytother Res 36(4):1736–1747. https://doi.org/10.1002/ptr.7409

    Article  CAS  PubMed  Google Scholar 

  21. Sui S, Sun L, Zhang W, Li J, Han J, Zheng J, Xin H (2021) LncRNA MEG8 attenuates cerebral ischemia after ischemic stroke through targeting miR-130a-5p/VEGFA signaling. Cell Mol Neurobiol 41(6):1311–1324. https://doi.org/10.1007/s10571-020-00904-4

    Article  CAS  PubMed  Google Scholar 

  22. Greenberg DA, Jin K (2013) Vascular endothelial growth factors (VEGFs) and stroke. Cell Mol Life Sci 70(10):1753–1761. https://doi.org/10.1007/s00018-013-1282-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chen H, Ren M, Li H, Xie Q, Ma R, Li Y, Guo X, Wang J et al (2020) Neuroprotection of benzoinum in cerebral ischemia model rats via the ACE-AngI-VEGF pathway. Life Sci 260:118418. https://doi.org/10.1016/j.lfs.2020.118418

    Article  CAS  PubMed  Google Scholar 

  24. Abdel-Latif RG, Rifaai RA, Amin EF (2020) Empagliflozin alleviates neuronal apoptosis induced by cerebral ischemia/reperfusion injury through HIF-1alpha/VEGF signaling pathway. Arch Pharm Res 43(5):514–525. https://doi.org/10.1007/s12272-020-01237-y

    Article  CAS  PubMed  Google Scholar 

  25. Yang Y, Wei H, Zhou X, Zhang F, Wang C (2017) Hyperbaric oxygen promotes neural stem cell proliferation by activating vascular endothelial growth factor/extracellular signal-regulated kinase signaling after traumatic brain injury. NeuroReport 28(18):1232–1238. https://doi.org/10.1097/WNR.0000000000000901

    Article  CAS  PubMed  Google Scholar 

  26. Wang Y, Jin K, Mao XO, Xie L, Banwait S, Marti HH, Greenberg DA (2007) VEGF-overexpressing transgenic mice show enhanced post-ischemic neurogenesis and neuromigration. J Neurosci Res 85(4):740–747. https://doi.org/10.1002/jnr.21169

    Article  CAS  PubMed  Google Scholar 

  27. Bhattamisra SK, Koh HM, Lim SY, Choudhury H, Pandey M (2021) Molecular and biochemical pathways of catalpol in alleviating diabetes mellitus and its complications. Biomolecules 11 (2). https://doi.org/10.3390/biom11020323

  28. He L, Zhao R, Wang Y, Liu H, Wang X (2021) Research progress on catalpol as treatment for atherosclerosis. Front Pharmacol 12:716125. https://doi.org/10.3389/fphar.2021.716125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhao L, Du W, Zhao D, Ji X, Huang Y, Pang Y, Guo K, Yin X (2021) Catalpol protects against high glucose-induced bone loss by regulating osteoblast function. Front Pharmacol 12:626621. https://doi.org/10.3389/fphar.2021.626621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wang YL, Wu HR, Zhang SS, Xiao HL, Yu J, Ma YY, Zhang YD, Liu Q (2021) Catalpol ameliorates depressive-like behaviors in CUMS mice via oxidative stress-mediated NLRP3 inflammasome and neuroinflammation. Transl Psychiatry 11(1):353. https://doi.org/10.1038/s41398-021-01468-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zhang X, Liu K, Shi M, Xie L, Deng M, Chen H, Li X (2021) Therapeutic potential of catalpol and geniposide in Alzheimer’s and Parkinson’s diseases: a snapshot of their underlying mechanisms. Brain Res Bull 174:281–295. https://doi.org/10.1016/j.brainresbull.2021.06.020

    Article  CAS  PubMed  Google Scholar 

  32. Liu YR, Li PW, Suo JJ, Sun Y, Zhang BA, Lu H, Zhu HC, Zhang GB (2014) Catalpol provides protective effects against cerebral ischaemia/reperfusion injury in gerbils. J Pharm Pharmacol 66(9):1265–1270. https://doi.org/10.1111/jphp.12261

    Article  CAS  PubMed  Google Scholar 

  33. Wang H, Xu X, Yin Y, Yu S, Ren H, Xue Q, Xu X (2020) Catalpol protects vascular structure and promotes angiogenesis in cerebral ischemic rats by targeting HIF-1alpha/VEGF. Phytomedicine 78:153300. https://doi.org/10.1016/j.phymed.2020.153300

    Article  CAS  PubMed  Google Scholar 

  34. Li DQ, Li Y, Liu Y, Bao YM, Hu B, An LJ (2005) Catalpol prevents the loss of CA1 hippocampal neurons and reduces working errors in gerbils after ischemia-reperfusion injury. Toxicon 46(8):845–851. https://doi.org/10.1016/j.toxicon.2004.09.007

    Article  CAS  PubMed  Google Scholar 

  35. Kuraoka M, Furuta T, Matsuwaki T, Omatsu T, Ishii Y, Kyuwa S, Yoshikawa Y (2009) Direct experimental occlusion of the distal middle cerebral artery induces high reproducibility of brain ischemia in mice. Exp Anim 58(1):19–29. https://doi.org/10.1538/expanim.58.19

    Article  CAS  PubMed  Google Scholar 

  36. Guan Y, Wang R, Li X, Zou H, Yu W, Liang Z, Li L, Chen L et al (2021) Astrocytes constitute the major TNF-alpha-producing cell population in the infarct cortex in dMCAO rats receiving intravenous MSC infusion. Biomed Pharmacother 142:111971. https://doi.org/10.1016/j.biopha.2021.111971

    Article  CAS  PubMed  Google Scholar 

  37. Yu J, Moon J, Jang J, Choi JI, Jung J, Hwang S, Kim M (2019) Reliability of behavioral tests in the middle cerebral artery occlusion model of rat. Lab Anim 53(5):478–490. https://doi.org/10.1177/0023677218815210

    Article  CAS  PubMed  Google Scholar 

  38. Tian Z, Yu W, Liu HB, Zhang N, Li XB, Zhao MG, Liu SB (2012) Neuroprotective effects of curculigoside against NMDA-induced neuronal excitoxicity in vitro. Food Chem Toxicol 50(11):4010–4015. https://doi.org/10.1016/j.fct.2012.08.006

    Article  CAS  PubMed  Google Scholar 

  39. Chen YC, Wu JS, Yang ST, Huang CY, Chang C, Sun GY, Lin TN (2012) Stroke, angiogenesis and phytochemicals. Front Biosci (Schol Ed) 4(2):599–610. https://doi.org/10.2741/s287

    Article  CAS  PubMed  Google Scholar 

  40. Figueiredo CC, Pereira NB, Pereira LX, Oliveira LAM, Campos PP, Andrade SP, Moro L (2019) Double immunofluorescence labeling for CD31 and CD105 as a marker for polyether polyurethane-induced angiogenesis in mice. Histol Histopathol 34(3):257–264. https://doi.org/10.14670/HH-18-038

    Article  CAS  PubMed  Google Scholar 

  41. Marei HE, Hasan A, Rizzi R, Althani A, Afifi N, Cenciarelli C, Caceci T, Shuaib A (2018) Potential of stem cell-based therapy for ischemic stroke. Front Neurol 9:34. https://doi.org/10.3389/fneur.2018.00034

    Article  PubMed  PubMed Central  Google Scholar 

  42. Xiong Y, Mahmood A, Chopp M (2010) Angiogenesis, neurogenesis and brain recovery of function following injury. Curr Opin Investig Drugs 11(3):298–308

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Blurton-Jones M, Kitazawa M, Martinez-Coria H, Castello NA, Muller FJ, Loring JF, Yamasaki TR, Poon WW et al (2009) Neural stem cells improve cognition via BDNF in a transgenic model of Alzheimer disease. Proc Natl Acad Sci U S A 106(32):13594–13599. https://doi.org/10.1073/pnas.0901402106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Cregg JM, DePaul MA, Filous AR, Lang BT, Tran A, Silver J (2014) Functional regeneration beyond the glial scar. Exp Neurol 253:197–207. https://doi.org/10.1016/j.expneurol.2013.12.024

    Article  PubMed  Google Scholar 

  45. Masjkur J, Rueger MA, Bornstein SR, McKay R, Androutsellis-Theotokis A (2012) Neurovascular signals suggest a propagation mechanism for endogenous stem cell activation along blood vessels. CNS Neurol Disord Drug Targets 11(7):805–817. https://doi.org/10.2174/1871527311201070805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ruan L, Wang B, ZhuGe Q, Jin K (2015) Coupling of neurogenesis and angiogenesis after ischemic stroke. Brain Res 1623:166–173. https://doi.org/10.1016/j.brainres.2015.02.042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Du J, Liu J, Huang X, Li Y, Song D, Li Q, Lin J, Li B et al (2022) Catalpol ameliorates neurotoxicity in N2a/APP695swe cells and APP/PS1 transgenic mice. Neurotox Res 40(4):961–972. https://doi.org/10.1007/s12640-022-00524-4

    Article  CAS  PubMed  Google Scholar 

  48. Wang LY, Yu X, Li XX, Zhao YN, Wang CY, Wang ZY, He ZY (2019) Catalpol exerts a neuroprotective effect in the MPTP mouse model of Parkinson’s disease. Front Aging Neurosci 11:316. https://doi.org/10.3389/fnagi.2019.00316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wang J, Chen R, Liu C, Wu X, Zhang Y (2021) Antidepressant mechanism of catalpol: Involvement of the PI3K/Akt/Nrf2/HO-1 signaling pathway in rat hippocampus. Eur J Pharmacol 909:174396. https://doi.org/10.1016/j.ejphar.2021.174396

    Article  CAS  PubMed  Google Scholar 

  50. Sun L, Zhang W, Ye R, Liu L, Jiang L, Xi C (2021) Catalpol enhanced physical exercise-mediated brain functional improvement in post-traumatic stress disorder model via promoting adult hippocampal neurogenesis. Aging (Albany NY) 13(14):18689–18700. https://doi.org/10.18632/aging.203313

    Article  CAS  PubMed  Google Scholar 

  51. Zheng XW, Yang WT, Chen S, Xu QQ, Shan CS, Zheng GQ, Ruan JC (2017) Neuroprotection of catalpol for experimental acute focal ischemic stroke: preclinical evidence and possible mechanisms of antioxidation, anti-inflammation, and antiapoptosis. Oxid Med Cell Longev 2017:5058609. https://doi.org/10.1155/2017/5058609

    Article  PubMed  PubMed Central  Google Scholar 

  52. Wang J, Wan D, Wan G, Wang J, Zhang J, Zhu H (2019) Catalpol induces cell activity to promote axonal regeneration via the PI3K/AKT/mTOR pathway in vivo and in vitro stroke model. Ann Transl Med 7(23):756. https://doi.org/10.21037/atm.2019.11.101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Urban N, Blomfield IM, Guillemot F (2019) Quiescence of adult mammalian neural stem cells: a highly regulated rest. Neuron 104(5):834–848. https://doi.org/10.1016/j.neuron.2019.09.026

    Article  CAS  PubMed  Google Scholar 

  54. Ladran I, Tran N, Topol A, Brennand KJ (2013) Neural stem and progenitor cells in health and disease. Wiley Interdiscip Rev Syst Biol Med 5(6):701–715. https://doi.org/10.1002/wsbm.1239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Dai J, Li SQ, Qiu YM, Xiong WH, Yin YH, Jia F, Jiang JY (2013) Migration of neural stem cells to ischemic brain regions in ischemic stroke in rats. Neurosci Lett 552:124–128. https://doi.org/10.1016/j.neulet.2013.07.044

    Article  CAS  PubMed  Google Scholar 

  56. Liu K, Tedeschi A, Park KK, He Z (2011) Neuronal intrinsic mechanisms of axon regeneration. Annu Rev Neurosci 34:131–152. https://doi.org/10.1146/annurev-neuro-061010-113723

    Article  CAS  PubMed  Google Scholar 

  57. Grande A, Sumiyoshi K, Lopez-Juarez A, Howard J, Sakthivel B, Aronow B, Campbell K, Nakafuku M (2013) Environmental impact on direct neuronal reprogramming in vivo in the adult brain. Nat Commun 4:2373. https://doi.org/10.1038/ncomms3373

    Article  PubMed  Google Scholar 

  58. Suzuki A, Stern SA, Bozdagi O, Huntley GW, Walker RH, Magistretti PJ, Alberini CM (2011) Astrocyte-neuron lactate transport is required for long-term memory formation. Cell 144(5):810–823. https://doi.org/10.1016/j.cell.2011.02.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Sims NR, Yew WP (2017) Reactive astrogliosis in stroke: Contributions of astrocytes to recovery of neurological function. Neurochem Int 107:88–103. https://doi.org/10.1016/j.neuint.2016.12.016

    Article  CAS  PubMed  Google Scholar 

  60. Linnerbauer M, Rothhammer V (2020) Protective functions of reactive astrocytes following central nervous system insult. Front Immunol 11:573256. https://doi.org/10.3389/fimmu.2020.573256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Silver J, Miller JH (2004) Regeneration beyond the glial scar. Nat Rev Neurosci 5(2):146–156. https://doi.org/10.1038/nrn1326

    Article  CAS  PubMed  Google Scholar 

  62. Jing J, Jiang H, Zhang L (2022) Endothelial progenitor cells promote neural stem cell proliferation in hypoxic conditions through VEGF via the PI3K/AKT pathway. J Recept Signal Transduct Res:1–7. https://doi.org/10.1080/10799893.2021.2019275

Download references

Funding

This study is supported by the National Natural Science Foundation of China (No.81873034, 81801329), a grant from Rehabilitation Medicine of Southwest University, Key Disciplines of Traditional Chinese Medicine of Chongqing City (2021–4322190044), Chongqing Natural Science Foundation (No.cstc2021jcyj-msxmX0610), Fundamental Research Funds for the Central Universities (No. SWU-KQ22018), Science and technology research project of Chongqing Education Commission (No. KJQN202100213).

Author information

Authors and Affiliations

Authors

Contributions

HFZ designed the study; SX, YTX, NXY, and MFZ conducted the experiments; ZT and HFZ provided guidance for the experiments; SX, ZT, and HFZ wrote the original draft; JHW and DW made the figures and searched the literature. All authors have read, edited, and approved the submitted version.

Corresponding authors

Correspondence to Zhen Tian or Huifeng Zhu.

Ethics declarations

Ethics Approval

The animal procedures in this study were approved by the Animal Care and Use Committee of Southwest University.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, S., Xu, Y., Yu, N. et al. Catalpol Alleviates Ischemic Stroke Through Promoting Angiogenesis and Facilitating Proliferation and Differentiation of Neural Stem Cells via the VEGF-A/KDR Pathway. Mol Neurobiol 60, 6227–6247 (2023). https://doi.org/10.1007/s12035-023-03459-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-023-03459-9

Keywords

Navigation