Skip to main content

Advertisement

Log in

Tehranolid and Artemisinin Effects on Ameliorating Experimental Autoimmune Encephalomyelitis by Modulating Inflammation and Remyelination

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Multiple sclerosis (MS) is an autoimmune demyelinating disease of the central nervous system. Artemisinin (ART) is a natural sesquiterpene lactone with an endoperoxide bond that is well-known for its anti-inflammatory effects in experimental autoimmune encephalomyelitis (EAE), the most commonly used animal model of MS. Tehranolide (TEH) is a novel compound with structural similarity to ART. In this study, we aimed to investigate the ameliorating effect of TEH on EAE development by targeting proteins and genes involved in this process and compare its effects with ART. Female C57BL/6 mice were immunized with MOG35–55. Twelve days post-immunization, mice were treated with 0.28 mg/kg/day TEH and 2.8 mg/kg/day ART for 18 consecutive days, and the clinical score was measured daily. The levels of pro-inflammatory and anti-inflammatory cytokines were assessed in mice serum and splenocytes by ELISA. We also evaluated the mRNA expression level of cytokines, as well as genes involved in T cell differentiation and myelination in the spinal cord tissue by qRT-PCR. Administration of TEH and ART significantly alleviated EAE signs. A significant reduction in IL-6 and IL-17 secretion and IL-17 and IL-1 gene expression in spinal cord were observed in the TEH-treated group. ART had similar or less significant effects. Moreover, TGF-β, IL-4, and IL-10 genes were stimulated by ART and TEH in the spinal cord, while the treatments did not affect IFN-γ expression. Both treatments dramatically increased the expression of FOXP3, GATA3, MBP, and AXL. Additionally, the T-bet gene was reduced after TEH administration. The compounds made no changes in RORγt, nestin, Gas6, Tyro3, and Mertk mRNA expression levels in the spinal cord. The study revealed that both TEH and ART can effectively modulate the genes responsible for inflammation and myelination that play a crucial role in EAE. Interestingly, TEH demonstrated a greater potency compared to ART and hence may have the potential to be evaluated in interventions for the management of MS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 1

Similar content being viewed by others

Data Availability

The data generated and analyzed during the current study are available from the corresponding author on a reasonable request.

References

  1. Ghasemi N, Razavi S, Nikzad E (2017) Multiple sclerosis: pathogenesis, symptoms, diagnoses and cell-based therapy. Cell J 19(1):1–10

    PubMed  Google Scholar 

  2. Frischer JM et al (2009) The relation between inflammation and neurodegeneration in multiple sclerosis brains. Brain 132(Pt 5):1175–1189

    Article  PubMed  PubMed Central  Google Scholar 

  3. Loma I, Heyman R (2011) Multiple sclerosis: pathogenesis and treatment. Curr Neuropharmacol 9(3):409–416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Nagelkerken L (1998) Role of Th1 and Th2 cells in autoimmune demyelinating disease. Braz J Med Biol Res 31(1):55–60

    Article  CAS  PubMed  Google Scholar 

  5. Raphael I et al (2015) T cell subsets and their signature cytokines in autoimmune and inflammatory diseases. Cytokine 74(1):5–17

    Article  CAS  PubMed  Google Scholar 

  6. Kaskow BJ, Baecher-Allan C (2018) Effector T cells in multiple sclerosis. Cold Spring Harb Perspect Med 8(4):a029025

  7. Das J et al (2009) Transforming growth factor beta is dispensable for the molecular orchestration of Th17 cell differentiation. J Exp Med 206(11):2407–2416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sutton C et al (2006) A crucial role for interleukin (IL)-1 in the induction of IL-17-producing T cells that mediate autoimmune encephalomyelitis. J Exp Med 203(7):1685–1691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Li Z et al (2015) FOXP3+ regulatory T cells and their functional regulation. Cell Mol Immunol 12(5):558–565

    Article  PubMed  PubMed Central  Google Scholar 

  10. Lee PW, Severin ME, Lovett-Racke AE (2017) TGF-β regulation of encephalitogenic and regulatory T cells in multiple sclerosis. Eur J Immunol 47(3):446–453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Verma ND et al (2021) Multiple sclerosis patients have reduced resting and increased activated CD4+CD25+FOXP3+T regulatory cells. Sci Rep 11(1):10476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bettelli E et al (2004) Loss of T-bet, but not STAT1, prevents the development of experimental autoimmune encephalomyelitis. J Exp Med 200(1):79–87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhang DH et al (1997) Transcription factor GATA-3 is differentially expressed in murine Th1 and Th2 cells and controls Th2-specific expression of the interleukin-5 gene. J Biol Chem 272(34):21597–21603

    Article  CAS  PubMed  Google Scholar 

  14. Jenner RG et al (2009) The transcription factors T-bet and GATA-3 control alternative pathways of T-cell differentiation through a shared set of target genes. Proc Natl Acad Sci USA 106(42):17876–17881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Capone A, Volpe E (2020) Transcriptional regulators of T helper 17 cell differentiation in health and autoimmune diseases. Front Immunol 11:348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. McDonald WI, Sears TA (1970) The effects of experimental demyelination on conduction in the central nervous system. Brain 93(3):583–598

    Article  CAS  PubMed  Google Scholar 

  17. Martinsen V, Kursula P (2022) Multiple sclerosis and myelin basic protein: insights into protein disorder and disease. Amino Acids 54(1):99–109

    Article  CAS  PubMed  Google Scholar 

  18. Tondo G, Perani D, Comi C (2019) TAM receptor pathways at the crossroads of neuroinflammation and neurodegeneration. Dis Markers 2019:2387614

    Article  PubMed  PubMed Central  Google Scholar 

  19. Goudarzi S et al (2016) Gas6 promotes oligodendrogenesis and myelination in the adult central nervous system and after lysolecithin-induced demyelination. ASN Neuro 8(5):1–14

  20. Shen S et al (2020) The potential of artemisinins as anti-obesity agents via modulating the immune system. Pharmacol Ther 216:107696

  21. Shi C et al (2015) Anti-inflammatory and immunoregulatory functions of artemisinin and its derivatives. Mediat Inflamm 2015:435713

  22. Liu G et al (2022) Artemisinin derivative TPN10466 suppresses immune cell migration and Th1/Th17 differentiation to ameliorate disease severity in experimental autoimmune encephalomyelitis. Cell Immunol 373:104500

    Article  CAS  PubMed  Google Scholar 

  23. Zhang Y et al (2022) Synthesis and biological evaluation of artemisinin derivatives as potential MS agents. Bioorg Med Chem Lett 64:128682

    Article  CAS  PubMed  Google Scholar 

  24. Noori S et al (2010) Tehranolide molecule modulates the immune response, reduce regulatory T cell and inhibits tumor growth in vivo. Mol Immunol 47(7–8):1579–1584

    Article  CAS  PubMed  Google Scholar 

  25. Gajofatto A, Benedetti MD (2015) Treatment strategies for multiple sclerosis: when to start, when to change, when to stop? World J Clin Cases 3(7):545–555

    Article  PubMed  PubMed Central  Google Scholar 

  26. Mojaverrostami S et al (2018) A review of herbal therapy in multiple sclerosis. Adv Pharm Bull 8(4):575–590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Noori S, Hassan ZM (2012) Tehranolide inhibits proliferation of MCF-7 human breast cancer cells by inducing G0/G1 arrest and apoptosis. Free Radical Biol Med 52(9):1987–1999

    Article  CAS  Google Scholar 

  28. Robinson AP et al (2014) The experimental autoimmune encephalomyelitis (EAE) model of MS: utility for understanding disease pathophysiology and treatment. Handb Clin Neurol 122:173–189

    Article  PubMed  PubMed Central  Google Scholar 

  29. Constantinescu CS et al (2011) Experimental autoimmune encephalomyelitis (EAE) as a model for multiple sclerosis (MS). Br J Pharmacol 164(4):1079–1106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Langroudi L et al (2010) A comparison of low-dose cyclophosphamide treatment with artemisinin treatment in reducing the number of regulatory T cells in murine breast cancer model. Int Immunopharmacol 10(9):1055–1061

    Article  CAS  PubMed  Google Scholar 

  31. Bedoya SK et al (2013) Isolation and th17 differentiation of naïve CD4 T lymphocytes. J Vis Exp 79:e50765

    Google Scholar 

  32. Kallaur AP et al (2013) Cytokine profile in relapsing-remitting multiple sclerosis patients and the association between progression and activity of the disease. Mol Med Rep 7(3):1010–1020

    Article  CAS  PubMed  Google Scholar 

  33. Bai Z et al (2019) Cerebrospinal fluid and blood cytokines as biomarkers for multiple sclerosis: a systematic review and meta-analysis of 226 studies with 13,526 multiple sclerosis patients. Front Neurosci 4(13):1026

  34. Moharami S et al (2022) Investigation of serum levels of orexin-A, transforming growth factor β, and leptin in patients with multiple sclerosis. J Clin Lab Anal 36(1):e24170

    Article  CAS  PubMed  Google Scholar 

  35. Jahan-Abad AJ et al (2020) Serum pro-inflammatory and anti-inflammatory cytokines and the pathogenesis of experimental autoimmune encephalomyelitis. Neuropathology 40(1):84–92

    Article  CAS  PubMed  Google Scholar 

  36. Mohajeri M et al (2015) Polymerized nano-curcumin attenuates neurological symptoms in EAE model of multiple sclerosis through down regulation of inflammatory and oxidative processes and enhancing neuroprotection and myelin repair. Neuropharmacology 99:156–167

    Article  CAS  PubMed  Google Scholar 

  37. Amedei A, Prisco D, D’Elios MM (2012) Multiple sclerosis: the role of cytokines in pathogenesis and in therapies. Int J Mol Sci 13(10):13438–13460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Mathisen PM et al (1997) Treatment of experimental autoimmune encephalomyelitis with genetically modified memory T cells. J Exp Med 186(1):159–164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Mitchell RE et al (2017) IL-4 enhances IL-10 production in Th1 cells: implications for Th1 and Th2 regulation. Sci Rep 7(1):11315

    Article  PubMed  PubMed Central  Google Scholar 

  40. Chaudhry A et al (2011) Interleukin-10 signaling in regulatory T cells is required for suppression of Th17 cell-mediated inflammation. Immunity 34(4):566–578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Khakzad MR et al (2017) Artemisinin therapeutic efficacy in the experimental model of multiple sclerosis. Immunopharmacol Immunotoxicol 39(6):348–353

    Article  CAS  PubMed  Google Scholar 

  42. Thomé R et al (2016) Artesunate ameliorates experimental autoimmune encephalomyelitis by inhibiting leukocyte migration to the central nervous system. CNS Neurosci Ther 22(8):707–714

    Article  PubMed  PubMed Central  Google Scholar 

  43. Lv J et al (2021) 9,10-Anhydrodehydroartemisinin Attenuates experimental autoimmune encephalomyelitis by inhibiting Th1 and Th17 cell differentiation. Inflammation 44(5):1793–1802

    Article  CAS  PubMed  Google Scholar 

  44. Li X et al (2013) Artemisinin analogue SM934 ameliorates murine experimental autoimmune encephalomyelitis through enhancing the expansion and functions of regulatory T cell. PLoS ONE 8(8):e74108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zhao YG et al (2012) Dihydroartemisinin ameliorates inflammatory disease by its reciprocal effects on Th and regulatory T cell function via modulating the mammalian target of rapamycin pathway. J Immunol 189(9):4417–4425

    Article  CAS  PubMed  Google Scholar 

  46. Fenimore J, Young HA (2016) Regulation of IFN-γ expression. Adv Exp Med Biol 941:1–19

  47. Huan J et al (2005) Decreased FOXP3 levels in multiple sclerosis patients. J Neurosci Res 81(1):45–52

    Article  CAS  PubMed  Google Scholar 

  48. Kim HP, Leonard WJ (2007) CREB/ATF-dependent T cell receptor-induced FoxP3 gene expression: a role for DNA methylation. J Exp Med 204(7):1543–1551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Cheng YH et al (2017) Immunomodulatory effects of Taiwanese Neolitsea species on Th1 and Th2 functionality. J Immunol Res 2017:3529859

    Article  PubMed  PubMed Central  Google Scholar 

  50. Weng WT et al (2021) 4-Ethylguaiacol modulates neuroinflammation and Th1/Th17 differentiation to ameliorate disease severity in experimental autoimmune encephalomyelitis. J Neuroinflammation 18(1):110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Johnson SK et al (2006) The effect of Ginkgo biloba on functional measures in multiple sclerosis: a pilot randomized controlled trial. Explore (NY) 2(1):19–24

    Article  PubMed  Google Scholar 

  52. Sedighi B et al (2014) Effect of Boswellia papyrifera on cognitive impairment in multiple sclerosis. Iran J Neurol 13(3):149–153

    PubMed  PubMed Central  Google Scholar 

  53. Brady CM et al (2004) An open-label pilot study of cannabis-based extracts for bladder dysfunction in advanced multiple sclerosis. Mult Scler 10(4):425–433

    Article  CAS  PubMed  Google Scholar 

  54. Kmietowicz Z (2010) Cannabis based drug is licensed for spasticity in patients with MS. BMJ 340:c3363

    Article  PubMed  Google Scholar 

  55. Chen S et al (2021) Artemisinin facilitates motor function recovery by enhancing motoneuronal survival and axonal remyelination in rats following brachial plexus root avulsion. ACS Chem Neurosci 12(17):3148–3156

    Article  CAS  PubMed  Google Scholar 

  56. Ran Q et al (2020) Dihydroartemisinin ameliorates murine experimental autoimmune encephalomyelitis through enhancing co-inhibitory signals. Mater Express 10(11):1824–1830

    Article  CAS  Google Scholar 

  57. Huang HT et al (2021) Hericium erinaceus mycelium and its small bioactive compounds promote oligodendrocyte maturation with an increase in myelin basic protein. Sci Rep 11(1):6551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Yu H et al (2005) Effect of angelica on proliferation of neural stem cells from rats’ embryos in hypoxia model. Chin J Modern Med 15(21):3226–3228

    Google Scholar 

  59. Binder MD et al (2011) Gas6 increases myelination by oligodendrocytes and its deficiency delays recovery following cuprizone-induced demyelination. PLoS ONE 6(3):e17727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Carrera Silva EA et al (2013) T cell-derived protein S engages TAM receptor signaling in dendritic cells to control the magnitude of the immune response. Immunity 39(1):160–170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr. Farshid Noorbakhsh, Professor of immunology, Tehran University of Medical Sciences, for his helpful comments and suggestions. This study was financially supported by Shahid Beheshti University of Medical Sciences; grant number 43002915.

Author information

Authors and Affiliations

Authors

Contributions

N.S. performed the experimental work and wrote the manuscript; M.N. critically revised the manuscript; S.N. conceived the study, supervised the research, and analyzed the data. H.R contributed in the conduction of the research and data analysis. A.Z. supervised the manuscript for important intellectual content. All authors read and approved the final version of the manuscript.

Corresponding author

Correspondence to Shokoofe Noori.

Ethics declarations

Ethics Approval

All animals were treated according to the guidelines for the Care and Use of Laboratory Animals and the experimental procedures were approved by the Animal Use Ethics Committee of Shahid Beheshti University of Medical Science.

Consent to Participate and Publish

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salehi, N., Nourbakhsh, M., Noori, S. et al. Tehranolid and Artemisinin Effects on Ameliorating Experimental Autoimmune Encephalomyelitis by Modulating Inflammation and Remyelination. Mol Neurobiol 60, 5975–5986 (2023). https://doi.org/10.1007/s12035-023-03449-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-023-03449-x

Keywords

Navigation