Skip to main content

Advertisement

Log in

Glutamatergic Neurons in the Zona Incerta Modulate Pain and Itch Behaviors in Mice

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Emerging evidence suggest that parvalbumin neurons in zona incerta (ZI) modulate pain and itch behavior in opposite manners. However, the role of ZI glutamatergic neurons, a unique incertal neuronal subpopulation residing in the caudal division, in pain and itch modulation remains unknown. In the present study, by combining chemogenetic manipulation, fiber photometry, and behavioral tests, we proved that incertal glutamatergic neurons served as an endogenous negative diencephalic modulator for both pain and itch processing. We demonstrated that ZI vesicular glutamate transporter 2 (VGluT2) neurons exhibited increased calcium signal upon hindpaw withdrawal in response to experimental mechanical and thermal stimuli. Behavioral tests further showed that pharmacogenetic activation of this specific type of neurons reduced nocifensive withdrawal responses in both naïve and inflammatory pain mice. Similar neural activity and modulatory role of ZI VGluT2 neurons were also observed upon histaminergic and non-histaminergic acute itch stimuli. Together, our study would expedite our understandings of brain mechanisms underlying somatosensory processing and modulation, and supply a novel therapeutic target for the management of chronic pain and itch disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding authors upon reasonable request.

References

  1. Wang X, Chou XL, Zhang LI, Tao HW (2020) Zona Incerta: an integrative node for global behavioral modulation. Trends Neurosci 43(2):82–87. https://doi.org/10.1016/j.tins.2019.11.007

    Article  CAS  PubMed  Google Scholar 

  2. Zhou M, Liu Z, Melin MD, Ng YH, Xu W, Südhof TC (2018) A central amygdala to zona incerta projection is required for acquisition and remote recall of conditioned fear memory. Nat Neurosci 21(11):1515–1519. https://doi.org/10.1038/s41593-018-0248-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Li Z, Rizzi G, Tan KR (2021) Zona incerta subpopulations differentially encode and modulate anxiety. Sci Adv 7(37):eabf6709. https://doi.org/10.1126/sciadv.abf6709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Zhao ZD, Chen Z, Xiang X, Hu M, Xie H, Jia X, Cai F, Cui Y, Chen Z, Qian L, Liu J, Shang C, Yang Y, Ni X, Sun W, Hu J, Cao P, Li H, Shen WL (2019) Zona incerta GABAergic neurons integrate prey-related sensory signals and induce an appetitive drive to promote hunting. Nat Neurosci 22(6):921–932. https://doi.org/10.1038/s41593-019-0404-5

    Article  CAS  PubMed  Google Scholar 

  5. Wang X, Chou X, Peng B, Shen L, Huang JJ, Zhang LI, Tao HW (2019) A cross-modality enhancement of defensive flight via parvalbumin neurons in zona incerta. eLife 8. https://doi.org/10.7554/eLife.42728

  6. Chou XL, Wang X, Zhang ZG, Shen L, Zingg B, Huang J, Zhong W, Mesik L, Zhang LI, Tao HW (2018) Inhibitory gain modulation of defense behaviors by zona incerta. Nat Commun 9(1):1151. https://doi.org/10.1038/s41467-018-03581-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Liu K, Kim J, Kim DW, Zhang YS, Bao H, Denaxa M, Lim SA, Kim E, Liu C, Wickersham IR, Pachnis V, Hattar S, Song J, Brown SP, Blackshaw S (2017) Lhx6-positive GABA-releasing neurons of the zona incerta promote sleep. Nature 548(7669):582–587. https://doi.org/10.1038/nature23663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wang H, Dong P, He C, Feng XY, Huang Y, Yang WW, Gao HJ, Shen XF, Lin S, Cao SX, Lian H, Chen J, Yan M, Li XM (2020) Incerta-thalamic Circuit Controls Nocifensive Behavior via Cannabinoid Type 1 receptors. Neuron 107(3):538–551e537. https://doi.org/10.1016/j.neuron.2020.04.027

    Article  CAS  PubMed  Google Scholar 

  9. Mitrofanis J (2005) Some certainty for the “zone of uncertainty”? Exploring the function of the zona incerta. Neuroscience 130(1):1–15. https://doi.org/10.1016/j.neuroscience.2004.08.017

    Article  CAS  PubMed  Google Scholar 

  10. Li J, Bai Y, Liang Y, Zhang Y, Zhao Q, Ge J, Li D, Zhu Y, Cai G, Tao H, Wu S, Huang J (2022) Parvalbumin neurons in Zona Incerta regulate itch in mice. Front Mol Neurosci 15:843754. https://doi.org/10.3389/fnmol.2022.843754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. McCarson KE, Fehrenbacher JC (2021) Models of inflammation: Carrageenan- or complete Freund’s adjuvant (CFA)-Induced Edema and Hypersensitivity in the rat. Curr protocols 1(7):e202. https://doi.org/10.1002/cpz1.202

    Article  CAS  Google Scholar 

  12. Muley MM, Krustev E, McDougall JJ (2016) Preclinical Assessment of Inflammatory Pain. CNS Neurosci Ther 22(2):88–101. https://doi.org/10.1111/cns.12486

    Article  PubMed  Google Scholar 

  13. Zhu X, He X, Liu Y, Wen P, Wang L, Zhang Z, Xu F (2018) A convenient semi-automatic method for analyzing brain sections: Registration, Segmentation and Cell counting. Chin J Magn Reson 35(2):133–140. https://doi.org/10.11938/cjmr20172608

    Article  CAS  Google Scholar 

  14. Li LX, Li YL, Wu JT, Song JZ, Li XM (2022) Glutamatergic neurons in the Caudal Zona Incerta regulate Parkinsonian Motor symptoms in mice. Neurosci Bull 38(1):1–15. https://doi.org/10.1007/s12264-021-00775-9

    Article  CAS  PubMed  Google Scholar 

  15. Ma Q (2010) Labeled lines meet and talk: population coding of somatic sensations. J Clin Investig 120(11):3773–3778. https://doi.org/10.1172/jci43426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. LaMotte RH, Dong X, Ringkamp M (2014) Sensory neurons and circuits mediating itch. Nat Rev Neurosci 15(1):19–31. https://doi.org/10.1038/nrn3641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Davidson S, Giesler GJ (2010) The multiple pathways for itch and their interactions with pain. Trends Neurosci 33(12):550–558. https://doi.org/10.1016/j.tins.2010.09.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Samineni VK, Grajales-Reyes JG, Copits BA, O’Brien DE, Trigg SL, Gomez AM, Bruchas MR, Gereau RWt (2017) Divergent modulation of nociception by glutamatergic and GABAergic neuronal subpopulations in the Periaqueductal Gray. eNeuro 4(2). https://doi.org/10.1523/eneuro.0129-16.2017

  19. Samineni VK, Grajales-Reyes JG, Sundaram SS, Yoo JJ, Gereau RWt (2019) Cell type-specific modulation of sensory and affective components of itch in the periaqueductal gray. Nat Commun 10(1):4356. https://doi.org/10.1038/s41467-019-12316-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Liu Y, Latremoliere A, Li X, Zhang Z, Chen M, Wang X, Fang C, Zhu J, Alexandre C, Gao Z, Chen B, Ding X, Zhou JY, Zhang Y, Chen C, Wang KH, Woolf CJ, He Z (2018) Touch and tactile neuropathic pain sensitivity are set by corticospinal projections. Nature 561(7724):547–550. https://doi.org/10.1038/s41586-018-0515-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wu ZH, Shao HY, Fu YY, Wu XB, Cao DL, Yan SX, Sha WL, Gao YJ, Zhang ZJ (2021) Descending modulation of spinal itch transmission by primary somatosensory cortex. Neurosci Bull 37(9):1345–1350. https://doi.org/10.1007/s12264-021-00713-9

    Article  PubMed  PubMed Central  Google Scholar 

  22. Nguyen E, Smith KM, Cramer N, Holland RA, Bleimeister IH, Flores-Felix K, Silberberg H, Keller A, Le Pichon CE, Ross SE (2022) Medullary kappa-opioid receptor neurons inhibit pain and itch through a descending circuit. Brain 145(7):2586–2601. https://doi.org/10.1093/brain/awac189

    Article  PubMed  PubMed Central  Google Scholar 

  23. Li JN, Ren JH, He CB, Zhao WJ, Li H, Dong YL, Li YQ (2021) Projections from the lateral parabrachial nucleus to the lateral and ventral lateral periaqueductal gray subregions mediate the itching sensation. Pain 162(6):1848–1863. https://doi.org/10.1097/j.pain.0000000000002193

    Article  CAS  PubMed  Google Scholar 

  24. Liu PF, Wang Y, Xu L, Xiang AF, Liu MZ, Zhu YB, Jia X, Zhang R, Li JB, Zhang L, Mu D (2022) Modulation of itch and pain signals processing in ventrobasal thalamus by thalamic reticular nucleus. iScience 25(1):103625. https://doi.org/10.1016/j.isci.2021.103625

    Article  CAS  PubMed  Google Scholar 

  25. Yang Y, Jiang T, Jia X, Yuan J, Li X, Gong H (2022) Whole-brain connectome of GABAergic neurons in the mouse Zona Incerta. Neurosci Bull. https://doi.org/10.1007/s12264-022-00930-w

    Article  PubMed  PubMed Central  Google Scholar 

  26. Casas-Torremocha D, Rubio-Teves M, Hoerder-Suabedissen A, Hayashi S, Prensa L, Molnár Z, Porrero C, Clasca F (2022) A combinatorial input landscape in the “higher-order relay” posterior thalamic nucleus. J neuroscience: official J Soc Neurosci 42(41):7757–7781. https://doi.org/10.1523/jneurosci.0698-22.2022

    Article  CAS  Google Scholar 

  27. Beitz AJ (1989) Possible origin of glutamatergic projections to the midbrain periaqueductal gray and deep layer of the superior colliculus of the rat. Brain Res Bull 23(1–2):25–35. https://doi.org/10.1016/0361-9230(89)90159-7

    Article  CAS  PubMed  Google Scholar 

  28. Ziegler DR, Edwards MR, Ulrich-Lai YM, Herman JP, Cullinan WE (2012) Brainstem origins of glutamatergic innervation of the rat hypothalamic paraventricular nucleus. J Comp Neurol 520(11):2369–2394. https://doi.org/10.1002/cne.23043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Luan Y, Tang D, Wu H, Gu W, Wu Y, Cao JL, Xiao C, Zhou C (2020) Reversal of hyperactive subthalamic circuits differentially mitigates pain hypersensitivity phenotypes in parkinsonian mice. Proc Natl Acad Sci USA 117(18):10045–10054. https://doi.org/10.1073/pnas.1916263117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Velasco FC, Molina-Negro P, Bertrand C, Hardy J (1972) Further definition of the subthalamic target for arrest of tremor. J Neurosurg 36(2):184–191. https://doi.org/10.3171/jns.1972.36.2.0184

    Article  CAS  PubMed  Google Scholar 

  31. Shanker V (2019) Essential tremor: diagnosis and management. BMJ (Clinical research ed) 366:l4485. https://doi.org/10.1136/bmj.l4485

    Article  PubMed  Google Scholar 

  32. Mostofi A, Evans JM, Partington-Smith L, Yu K, Chen C, Silverdale MA (2019) Outcomes from deep brain stimulation targeting subthalamic nucleus and caudal zona incerta for Parkinson’s disease. NPJ Parkinson’s disease 5:17. https://doi.org/10.1038/s41531-019-0089-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ossowska K (2020) Zona incerta as a therapeutic target in Parkinson’s disease. J Neurol 267(3):591–606. https://doi.org/10.1007/s00415-019-09486-8

    Article  PubMed  Google Scholar 

  34. Plaha P, Ben-Shlomo Y, Patel NK, Gill SS (2006) Stimulation of the caudal zona incerta is superior to stimulation of the subthalamic nucleus in improving contralateral parkinsonism. Brain 129(Pt 7):1732–1747. https://doi.org/10.1093/brain/awl127

    Article  PubMed  Google Scholar 

  35. Plaha P, Khan S, Gill SS (2008) Bilateral stimulation of the caudal zona incerta nucleus for tremor control. J Neurol Neurosurg Psychiatry 79(5):504–513. https://doi.org/10.1136/jnnp.2006.112334

    Article  CAS  PubMed  Google Scholar 

  36. Lu CW, Harper DE, Askari A, Willsey MS, Vu PP, Schrepf AD, Harte SE, Patil PG (2021) Stimulation of zona incerta selectively modulates pain in humans. Sci Rep 11(1):8924. https://doi.org/10.1038/s41598-021-87873-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. de Groot A, van den Boom BJ, van Genderen RM, Coppens J, van Veldhuijzen J, Bos J, Hoedemaker H, Negrello M, Willuhn I, De Zeeuw CI, Hoogland TM (2020) NINscope, a versatile miniscope for multi-region circuit investigations. eLife 9. https://doi.org/10.7554/eLife.49987

  38. Zhang C, Zhu H, Ni Z, Xin Q, Zhou T, Wu R, Gao G, Gao Z, Ma H, Li H, He M, Zhang J, Cheng H, Hu H (2021) Dynamics of a disinhibitory prefrontal microcircuit in controlling social competition. Neuron. https://doi.org/10.1016/j.neuron.2021.10.034

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the members of our lab for their support and help.

Funding

This work was supported by grants from the National Natural Science Foundation of China (82271243, 82071235 and 82101318), Outstanding Youth Fund of Shaanxi Province (2021JC-32), Youth development programme funding (21QNPY065), support funding from the Fourth Military Medical University (2020AXJHHJ) and Sanming Project of Medicine in Shenzhen (SZSM201911011).

Author information

Authors and Affiliations

Authors

Contributions

JH and S-XW conceived and designed the experiments. J-QL, YB, S-HP performed experiments, analyzed data and wrote the manuscript. S-HP, Y-WZ, S-SG and Y-YZhu assisted J-QL with animal studies and histology. J-QL, J-YG and S-HP interpreted the data and statistical analyses. S-XW and JH conceived this study, analyzed the data and revised the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Yang Bai, Shengxi Wu or Jing Huang.

Ethics declarations

Ethics Approval

This study was approved by the Institutional Animal Care and Use Committee of the Fourth Military Medical University and conformed to the Guide for the Care and Use of Laboratory Animals published by the National Institutes of Health.

Consent to Participate

Not applicable.

Consent for publication

Not applicable.

Competing Interests

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Peng, S., Zhang, Y. et al. Glutamatergic Neurons in the Zona Incerta Modulate Pain and Itch Behaviors in Mice. Mol Neurobiol 60, 5866–5877 (2023). https://doi.org/10.1007/s12035-023-03431-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-023-03431-7

Keywords

Navigation