Skip to main content

Advertisement

Log in

Targeted Energy Metabolomics Combined with Spatial Metabolomics Study on the Efficacy of Guhong Injection Against Cerebral Ischemia Reperfusion

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Optimizing the metabolic phenotype to improve cerebral function is critical for treatment of cerebral ischemia-reperfusion (I/R) injury. Guhong injection (GHI), which comprised safflower extract and aceglutamide, is widely prescribed in Chinese medicine for the treatment of cerebrovascular diseases. In this study, a combination of LC-QQQ-MS and MALDI–MSI were utilized to explore tissue-specific metabolic alterations in the brain of I/R, as well as to evaluate the therapeutic effect of GHI. Pharmacological evaluation demonstrated that GHI can significantly improve infarction rate, neurological deficit, cerebral blood flow, and neuronal damage in I/R rats. Based on LC-QQQ-MS, 23 energy metabolites were found to be significantly altered in the I/R group compared to the sham group (P < 0.05). After GHI treatment, 12 metabolites, including G6P, TPP, NAD, citrate, succinate, malate, ATP, GTP, GDP, ADP, NADP, and FMN showed a significant tendency of returning to baseline values (P < 0.05). Based on MALDI-MSI, 4 metabolites in glycolysis and TCA, 4 metabolites in nucleic acid metabolism, 4 amino acid metabolites, and 6 metabolites were discovered and compared between the different groups in the four special regions of cortex, hippocampus, hypothalamus, and striatum. Parts of these were found to have significant changes after I/R in the special brain region, and were regulated by GHI. The study provides comprehensive and detailed information for specific metabolic reprogramming of brain tissue in rats with I/R, and the therapeutic effect of GHI.

Graphical Abstract

Schema describing the discovery strategies of integrated LC-MS and MALDI-MSI to identify cerebral ischemia reperfusion metabolic reprogramming and GHI therapeutic effects

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The datasets used and/or analyzed in the current study are available from the corresponding authors on reasonable request.

Abbreviations

ADP:

Adenosine diphosphate

ATP:

Denosine triphosphate

BBB:

Blood brain barrier;

CI:

Cerebral ischemia

GHI:

Guhong injection

GC–MS:

Chromatography-mass spectrometry

GDP:

Guanosine diphosphate

LC-MS/MS:

Liquid chromatography/tandem mass spectrometry

LysoPC:

Lysophosphatidylcholine

MALDI–MSI:

Matrix-assisted laser desorption ionization mass spectrometry imaging

NMR:

Nuclear magnetic resonance

PC:

Phosphatidylcholine

PI:

Phosphatidylinositol

PA:

Phosphatidic acid

tPA:

Tissue plasminogen activator

TPP:

Thiamine pyrophosphate succinate

References

  1. Zhang X, Wei M, Fan J et al (2021) Ischemia-induced upregulation of autophagy preludes dysfunctional lysosomal storage and associated synaptic impairments in neurons. Autophagy 17:1519–1542. https://doi.org/10.1080/15548627.2020.1840796

    Article  CAS  PubMed  Google Scholar 

  2. Zhou Z, Lu J, Liu WW et al (2018) Advances in stroke pharmacology. Pharmacol Ther 191:23–42. https://doi.org/10.1016/j.pharmthera.2018.05.012

    Article  CAS  PubMed  Google Scholar 

  3. Gao X, Yang H, Su J et al (2020) Aescin protects neuron from ischemia-reperfusion injury via regulating the PRAS40/mTOR signaling pathway. Oxid Med Cell Longev 2020:7815325. https://doi.org/10.1155/2020/7815325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Jangholi E, Sharifi ZN, Hoseinian M et al (2020) Verapamil inhibits mitochondria-induced reactive oxygen species and dependent apoptosis pathways in cerebral transient global ischemia/reperfusion. Oxid Med Cell Longev 2020:5872645. https://doi.org/10.1155/2020/5872645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wardlaw JM, Murray V, Berge E, del Zoppo GJ (2014) Thrombolysis for acute ischaemic stroke. The. Cochrane Database Syst Rev 2014:Cd000213. https://doi.org/10.1002/14651858.CD000213.pub3

    Article  PubMed  PubMed Central  Google Scholar 

  6. Vidale S, Agostoni E (2014) Thrombolysis in acute ischaemic stroke. Brain 137:e281–e281. https://doi.org/10.1093/brain/awu065

    Article  PubMed  Google Scholar 

  7. Liu M, Xu Z, Wang L et al (2020) Cottonseed oil alleviates ischemic stroke injury by inhibiting the inflammatory activation of microglia and astrocyte. J Neuroinflammation 17:270. https://doi.org/10.1186/s12974-020-01946-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Xing C, Arai K, Lo EH, Hommel M (2012) Pathophysiologic cascades in ischemic stroke. Int J Stroke 7:378–385. https://doi.org/10.1111/j.1747-4949.2012.00839.x

    Article  PubMed  PubMed Central  Google Scholar 

  9. Isaev NK, Stelmashook EV, Plotnikov EY et al (2008) Role of acidosis, NMDA receptors, and acid-sensitive ion channel 1a (ASIC1a) in neuronal death induced by ischemia. Biochemistry (Mosc) 73:1171–1175. https://doi.org/10.1134/s0006297908110011

    Article  CAS  PubMed  Google Scholar 

  10. Dong XX, Wang Y, Qin ZH (2009) Molecular mechanisms of excitotoxicity and their relevance to pathogenesis of neurodegenerative diseases. Acta Pharmacol Sin 30:379–387. https://doi.org/10.1038/aps.2009.24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Jiang X, Andjelkovic AV, Zhu L et al (2018) Blood-brain barrier dysfunction and recovery after ischemic stroke. Prog Neurobiol 163–164:144–171. https://doi.org/10.1016/j.pneurobio.2017.10.001

    Article  CAS  PubMed  Google Scholar 

  12. Liu F, Lu J, Manaenko A et al (2018) Mitochondria in ischemic stroke: new insight and implications. Aging Dis 9:924–937. https://doi.org/10.14336/AD.2017.1126

    Article  PubMed  PubMed Central  Google Scholar 

  13. Vidale S, Consoli A, Arnaboldi M, Consoli D (2017) Postischemic inflammation in acute stroke. J Clin Neurol 13:1–9. https://doi.org/10.3988/jcn.2017.13.1.1

    Article  PubMed  Google Scholar 

  14. Huang Q, Yin P, Wang J et al (2011) Method for liver tissue metabolic profiling study and its application in type 2 diabetic rats based on ultra performance liquid chromatography-mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 879:961–967. https://doi.org/10.1016/j.jchromb.2011.03.009

    Article  CAS  PubMed  Google Scholar 

  15. Huang Q, Tan Y, Yin P et al (2013) Metabolic characterization of hepatocellular carcinoma using nontargeted tissue metabolomics. Cancer Res 73:4992–5002. https://doi.org/10.1158/0008-5472.CAN-13-0308

    Article  CAS  PubMed  Google Scholar 

  16. van der Greef J, Leegwater DC (1983) Urine profile analysis by field desorption mass spectrometry, a technique for detecting metabolites of xenobiotics. Application to 3,5-dinitro-2-hydroxytoluene. Biomed Mass Spectrom 10:1–4. https://doi.org/10.1002/bms.1200100102

    Article  PubMed  Google Scholar 

  17. Pérez-Trujillo M, Athersuch TJ (2021) Special Issue: NMR-based metabolomics. Molecules (Basel, Switzerland) 26. https://doi.org/10.3390/molecules26113283

  18. Shariatgorji M, Nilsson A, Fridjonsdottir E et al (2019) Comprehensive mapping of neurotransmitter networks by MALDI-MS imaging. Nat Methods 16:1021–1028. https://doi.org/10.1038/s41592-019-0551-3

    Article  CAS  PubMed  Google Scholar 

  19. Sun C, Li T, Song X et al (2019) Spatially resolved metabolomics to discover tumor-associated metabolic alterations. Proc Natl Acad Sci U S A 116:52–57. https://doi.org/10.1073/pnas.1808950116

    Article  CAS  PubMed  Google Scholar 

  20. He J, Sun C, Li T et al (2018) A sensitive and wide coverage ambient mass spectrometry imaging method for functional metabolites based molecular histology. Adv Sci (Weinh) 5:1800250. https://doi.org/10.1002/advs.201800250

    Article  CAS  PubMed  Google Scholar 

  21. Eveque-Mourroux MR, Emans PJ, Zautsen RRM et al (2019) Spatially resolved endogenous improved metabolite detection in human osteoarthritis cartilage by matrix assisted laser desorption ionization mass spectrometry imaging. Analyst 144:5953–5958. https://doi.org/10.1039/c9an00944b

    Article  CAS  PubMed  Google Scholar 

  22. Liu X, Flinders C, Mumenthaler SM, Hummon AB (2018) MALDI mass spectrometry imaging for evaluation of therapeutics in colorectal tumor organoids. J Am Soc Mass Spectrom 29:516–526. https://doi.org/10.1007/s13361-017-1851-4

    Article  CAS  PubMed  Google Scholar 

  23. Liu X, Hummon AB (2016) Chemical imaging of platinum-based drugs and their metabolites. Sci Rep 6:38507. https://doi.org/10.1038/srep38507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Dudley E (2019) MALDI Profiling and applications in medicine. Adv Exp Med Biol 1140:27–43. https://doi.org/10.1007/978-3-030-15950-4_2

    Article  CAS  PubMed  Google Scholar 

  25. Chaurand P, Norris JL, Cornett DS et al (2006) New developments in profiling and imaging of proteins from tissue sections by MALDI mass spectrometry. J Proteome Res 5:2889–2900. https://doi.org/10.1021/pr060346u

    Article  CAS  PubMed  Google Scholar 

  26. Ahmed M, Broeckx G, Baggerman G et al (2020) Next-generation protein analysis in the pathology department. J Clin Pathol 73:1–6. https://doi.org/10.1136/jclinpath-2019-205864

    Article  CAS  PubMed  Google Scholar 

  27. Andrews WT, Skube SB, Hummon AB (2017) Magnetic bead-based peptide extraction methodology for tissue imaging. Analyst 143:133–140. https://doi.org/10.1039/c7an00757d

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Clemis EJ, Smith DS, Camenzind AG et al (2012) Quantitation of spatially-localized proteins in tissue samples using MALDI-MRM imaging. Anal Chem 84:3514–3522. https://doi.org/10.1021/ac202875d

    Article  CAS  PubMed  Google Scholar 

  29. Tobias F, Olson MT, Cologna SM (2018) Mass spectrometry imaging of lipids: untargeted consensus spectra reveal spatial distributions in Niemann-Pick disease type C1. J Lipid Res 59:2446–2455. https://doi.org/10.1194/jlr.D086090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Nielsen MM, Lambertsen KL, Clausen BH et al (2016) Mass spectrometry imaging of biomarker lipids for phagocytosis and signalling during focal cerebral ischaemia. Sci Rep 6:39571. https://doi.org/10.1038/srep39571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Mallah K, Quanico J, Raffo-Romero A et al (2019) Matrix-assisted laser desorption/ionization-mass spectrometry imaging of lipids in experimental model of traumatic brain injury detecting acylcarnitines as injury related markers. Anal Chem 91:11879–11887. https://doi.org/10.1021/acs.analchem.9b02633

    Article  CAS  PubMed  Google Scholar 

  32. Oppenheimer SR, Wehr AY (2015) Imaging mass spectrometry in drug discovery and development. Bioanalysis 7:2609–2610. https://doi.org/10.4155/bio.15.202

    Article  CAS  PubMed  Google Scholar 

  33. Ai J, Wan H, Shu M et al (2017) Guhong injection protects against focal cerebral ischemia-reperfusion injury via anti-inflammatory effects in rats. Arch Pharm Res 40:610–622. https://doi.org/10.1007/s12272-016-0835-4

    Article  CAS  PubMed  Google Scholar 

  34. Zhang J, Zhou R, Xiang C et al (2020) Enhanced thioredoxin, glutathione and Nrf2 antioxidant systems by safflower extract and aceglutamide attenuate cerebral ischaemia/reperfusion injury. J Cell Mol Med 24:4967–4980. https://doi.org/10.1111/jcmm.15099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Fan F, Chen S, Yang H et al (2018) The investigation of molecular mechanism of Guhong injection against cerebral ischemia-reperfusion injury in a network pharmacology approach[J]. Complex Systems and Complexity Science. https://doi.org/10.13306/j.1672-3813.2018.01.002

  36. Longa EZ, Weinstein PR, Carlson S, Cummins R (1989) Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke 20:84–91. https://doi.org/10.1161/01.str.20.1.84

    Article  CAS  PubMed  Google Scholar 

  37. Zhao J, Ouyang Y, Wang H et al (2022) An energy metabolism study on the efficacy of naoxintong capsules against myocardial infarction in a rat model. Oxid Med Cell Longev 2022:3712500. https://doi.org/10.1155/2022/3712500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wahul AB, Joshi PC, Kumar A, Chakravarty S (2018) Transient global cerebral ischemia differentially affects cortex, striatum and hippocampus in Bilateral Common Carotid Arterial occlusion (BCCAo) mouse model. J Chem Neuroanat 92:1–15. https://doi.org/10.1016/j.jchemneu.2018.04.006

    Article  CAS  PubMed  Google Scholar 

  39. Frenguelli BG, Dale N (2020) Purines: from diagnostic biomarkers to therapeutic agents in brain injury. Neurosci Bull 36:1315–1326. https://doi.org/10.1007/s12264-020-00529-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Irie M, Fujimura Y, Yamato M et al (2014) Integrated MALDI-MS imaging and LC-MS techniques for visualizing spatiotemporal metabolomic dynamics in a rat stroke model. Metabolomics 10:473–483. https://doi.org/10.1007/s11306-013-0588-8

    Article  CAS  PubMed  Google Scholar 

  41. Yousuf S, Atif F, Ahmad M et al (2009) Resveratrol exerts its neuroprotective effect by modulating mitochondrial dysfunctions and associated cell death during cerebral ischemia. Brain Res 1250:242–253. https://doi.org/10.1016/j.brainres.2008.10.068

    Article  CAS  PubMed  Google Scholar 

  42. Sarkar S, Das N (2006) Mannosylated liposomal flavonoid in combating age-related ischemia-reperfusion induced oxidative damage in rat brain. Mech Ageing Dev 127:391–397. https://doi.org/10.1016/j.mad.2005.12.010

    Article  CAS  PubMed  Google Scholar 

  43. Hertz L, Chen Y (2017) Integration between glycolysis and glutamate-glutamine cycle flux may explain preferential glycolytic increase during brain activation, Requiring Glutamate. Front Integr Neurosci 11:18. https://doi.org/10.3389/fnint.2017.00018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kim AY, Jeong KH, Lee JH et al (2017) Glutamate dehydrogenase as a neuroprotective target against brain ischemia and reperfusion. Neuroscience 340:487–500. https://doi.org/10.1016/j.neuroscience.2016.11.007

    Article  CAS  PubMed  Google Scholar 

  45. Ferrari F, Gorini A, Hoyer S, Villa RF (2018) Glutamate metabolism in cerebral mitochondria after ischemia and post-ischemic recovery during aging: relationships with brain energy metabolism. J Neurochem 146:416–428. https://doi.org/10.1111/jnc.14464

    Article  CAS  PubMed  Google Scholar 

  46. Zhang LN, Hao L, Guo YS et al (2019) Are glutamate transporters neuroprotective or neurodegenerative during cerebral ischemia? J Mol Med (Berl) 97:281–289. https://doi.org/10.1007/s00109-019-01745-5

    Article  CAS  PubMed  Google Scholar 

  47. Mayor D, Tymianski M (2018) Neurotransmitters in the mediation of cerebral ischemic injury. Neuropharmacology 134:178–188. https://doi.org/10.1016/j.neuropharm.2017.11.050

    Article  CAS  PubMed  Google Scholar 

  48. Lin S, Zhou G, Shao W, Fu Z (2017) Impact of dexmedetomidine on amino acid contents and the cerebral ultrastructure of rats with cerebral ischemia-reperfusion injury. Acta Cir Bras 32:459–466. https://doi.org/10.1590/s0102-865020170060000006

    Article  PubMed  Google Scholar 

  49. Simao F, Matte A, Breier AC et al (2013) Resveratrol prevents global cerebral ischemia-induced decrease in lipid content. Neurol Res 35:59–64. https://doi.org/10.1179/1743132812Y.0000000116

    Article  CAS  PubMed  Google Scholar 

  50. Liu M, Tang L, Liu X et al (2016) An evidence-based review of related metabolites and metabolic network research on cerebral ischemia. Oxid Med Cell Longev 2016:9162074. https://doi.org/10.1155/2016/9162074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lipton P (1999) Ischemic cell death in brain neurons. Physiol Rev 79:1431–1568. https://doi.org/10.1152/physrev.1999.79.4.1431

    Article  CAS  PubMed  Google Scholar 

  52. Shanta SR, Choi CS, Lee JH et al (2012) Global changes in phospholipids identified by MALDI MS in rats with focal cerebral ischemia. J Lipid Res 53:1823–1831. https://doi.org/10.1194/jlr.M022558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kubota M, Nakane M, Nakagomi T et al (2001) Regional distribution of ethanolamine plasmalogen in the hippocampal CA1 and CA3 regions and cerebral cortex of the gerbil. Neurosci Lett 301:175–178. https://doi.org/10.1016/s0304-3940(01)01631-7

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We want to thank the participants for taking part in the study.

Funding

The research was supported by the National Key R&D Program of China (2019YFC1708900), National Natural Science Foundation of China (Nos. 81974550, 81973711), Scientific and Technological Innovation project of China Academy of Chinese Medical Science (CI2021A04612, CI2021A05208, CI2021B017), and The Fundamental Research Funds for the Central Public Welfare Research Institutes (JBGS2021003, ZZ13-YQ-080).

Author information

Authors and Affiliations

Authors

Contributions

Jingjing Zhang, Hongwei Wu, and Hongjun Yang conceived and designed the experiments; Huanhuan Wang, Guangzhao Cao, Rui Zhou, and Zhenkun Li performed the experiments; Caifeng Li, Liying Tang, and Xianyu Li analyzed the data; Huanhuan Wang and Hongwei Wu wrote the paper. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Liying Tang, Jingjing Zhang or Hongwei Wu.

Ethics declarations

Ethics Approval and Consent to Participate

All experimental animal procedures were approved by the China Academy of Chinese Medical Sciences’ Administrative Panel on Laboratory Animal Care and performed in accordance with institutional guidelines and ethics of the committee as part of the China Academy of Chinese Medical Sciences (code, ERCCACMS21-2106-17).

Consent for Publication

Not applicable.

Research Involving Human Participants and/or Animals

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Li, Z., Cao, G. et al. Targeted Energy Metabolomics Combined with Spatial Metabolomics Study on the Efficacy of Guhong Injection Against Cerebral Ischemia Reperfusion. Mol Neurobiol 60, 5533–5547 (2023). https://doi.org/10.1007/s12035-023-03403-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-023-03403-x

Keywords

Navigation