Skip to main content

Advertisement

Log in

Oligodendroglia Confer Neuroprotection to NSC-34 Motor Neuronal Cells Against the Toxic Insults of Cerebrospinal Fluid from Sporadic Amyotrophic Lateral Sclerosis Patients

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Amyotrophic lateral sclerosis (ALS) is a complex neurodegenerative disorder with multifactorial pathomechanisms affecting not only motor neurons but also glia. Both astrocytes and microglia get activated and contribute significantly to neurodegeneration. The role of oligodendroglia in such a situation remains obscure, especially in the sporadic form of ALS (SALS), which contributes to 90% of cases. Here, we have investigated the role of oligodendroglia in SALS pathophysiology using a human oligodendroglial cell line, MO3.13, by exposing the cells to cerebrospinal fluid from SALS patients (ALS-CSF; 10% v/v for 48 h). ALS-CSF significantly reduced the viability of MO3.13 cells and down-regulated the expression of oligodendroglia-specific proteins, namely, CNPase and Olig2. Furthermore, to investigate the effect of the observed oligodendroglial changes on motor neurons, NSC-34 motor neuronal cells were co-cultured/supplemented with conditioned/spent medium of MO3.13 cells upon exposure to ALS-CSF. Live cell imaging experiments revealed protection to NSC-34 cells against ALS-CSF toxicity upon co-culture with MO3.13 cells. This was evidenced by the absence of neuronal cytoplasmic vacuolation and beading of neurites, which instead resulted in better neuronal differentiation. Enhanced lactate levels and increased expression of its transporter, MCT-1, with sustained expression of trophic factors, namely, GDNF and BDNF, by MO3.13 cells hint towards metabolic and trophic support provided by the surviving oligodendroglia. Similar metabolic changes were seen in the lumbar spinal cord oligodendroglia of rat neonates intrathecally injected with ALS-CSF. The findings indicate that oligodendroglia are indeed rescuer to the degenerating motor neurons when the astrocytes and microglia turn topsy-turvy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4.
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

All data generated during this study are included in the article. Readers can directly request the corresponding author for any data elucidation.

References

  1. Lee YB, Chen HJ, Peres JN, Gomez-Deza J, Attig J, Štalekar M, Troakes C, Nishimura AL, Scotter EL, Vance C, Adachi Y, Sardone V, Miller JW, Smith BN, Gallo J-M, Ule J, Hirth F, Rogelj B, Houart C, Shaw CE (2013) Hexanucleotide repeats in ALS/FTD form length-dependent RNA foci, sequester RNA binding proteins, and are neurotoxic. Cell Rep 5(5):1178–1186. https://doi.org/10.1016/j.celrep.2013.10.049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Belzil VV, Valdmanis PN, Dion PA, Daoud H, Kabashi E, Noreau A, Gauthier J, Hince P, Desjarlais A, Bouchard JP, Lacomblez L, Salachas F, Pradat PF, Camu W, Meininger V, Dupre N, Rouleau GA (2009) Mutations in FUS cause FALS and SALS in French and French Canadian populations. Neurology 73(15):1176–1179. https://doi.org/10.1212/wnl.0b013e3181bbfeef

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Majounie E, Renton AE, Mok K, Dopper EG, Waite A, Rollinson S, Chiò A, Restagno G, Nicolaou N, Simon-Sanchez J, Van Swieten JC, ITALSGEN Consortium (2012) Frequency of the C9orf72 hexanucleotide repeat expansion in patients with amyotrophic lateral sclerosis and frontotemporal dementia: a cross-sectional study. Lancet Neurol 11(4):323–330. https://doi.org/10.1016/s1474-4422(12)70043-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Münch C, Sedlmeier R, Meyer T, Homberg V, Sperfeld AD, Kurt A, Ludolph AC (2004) Point mutations of the p150 subunit of dynactin (DCTN1) gene in ALS. Neurology 63(4):724–726. https://doi.org/10.1212/01.wnl.0000134608.83927.b1

    Article  PubMed  Google Scholar 

  5. Nagaraja TN, Raju TR, Gourie-Devi M, Nalini A (1994) Neurofilament phosphorylation is enhanced in cultured chick spinal cord neurons exposed to cerebrospinal fluid from amyotrophic lateral sclerosis patients. Acta Neuropathol 88(4):349–352. https://doi.org/10.1007/bf00310378

    Article  CAS  PubMed  Google Scholar 

  6. Rao MS, Devi GM, Nalini A, Shahani N, Raju TR (1995) Neurofilament phosphorylation is increased in ventral horn neurons of neonatal rat spinal cord exposed to cerebrospinal fluid from patients with amyotrophic lateral sclerosis. Neurodegeneration 4(4):397–401. https://doi.org/10.1006/neur.1995.0048

    Article  CAS  PubMed  Google Scholar 

  7. KC NKK, Gregory JM, Pal S, Chandran S, Mehta AR (2020) Cerebrospinal fluid cytotoxicity in amyotrophic lateral sclerosis: a systematic review of in vitro studies. Brain Commun 2(2):fcaa121. https://doi.org/10.1093/2Fbraincomms/2Ffcaa121

    Article  Google Scholar 

  8. Mishra PS, Boutej H, Soucy G, Bareil C, Kumar S, Picher-Martel V et al (2020) Transmission of ALS pathogenesis by the cerebrospinal fluid. Acta Neuropathol Commun 8(1):1–21. https://doi.org/10.1186/s40478-020-00943-4

    Article  CAS  Google Scholar 

  9. Tam OH, Rozhkov NV, Shaw R, Kim D, Hubbard I, Fennessey S, Propp N, Phatnani H, Kwan J, Sareen D, Broach JR, Hammell MG (2019) Postmortem cortex samples identify distinct molecular subtypes of ALS: retrotransposon activation, oxidative stress, and activated glia. Cell Rep 29(5):1164–1177. https://doi.org/10.1016/j.celrep.2019.09.066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gunasekaran R, Narayani RS, Vijayalakshmi K, Alladi PA, Shobha K, Nalini A, Sathyaprabha TN, Raju TR (2009) Exposure to cerebrospinal fluid of sporadic amyotrophic lateral sclerosis patients alters Nav1. 6 and Kv1. 6 channel expression in rat spinal motor neurons. Brain Res 1255:170–179. https://doi.org/10.1016/j.brainres.2008.11.099

    Article  CAS  PubMed  Google Scholar 

  11. Ramamohan PY, Gourie-Devi M, Nalini A, Shobha K, Ramamohan Y, Joshi P, Raju TR (2007) Cerebrospinal fluid from amyotrophic lateral sclerosis patients causes fragmentation of the Golgi apparatus in the neonatal rat spinal cord. Amyotroph Lateral Scler 8(2):79–82. https://doi.org/10.1080/08037060601145489

    Article  CAS  PubMed  Google Scholar 

  12. Vijayalakshmi K, Alladi PA, Sathyaprabha TN, Subramaniam JR, Nalini A, Raju TR (2009) Cerebrospinal fluid from sporadic amyotrophic lateral sclerosis patients induces degeneration of a cultured motor neuron cell line. Brain Res 1263:122–133. https://doi.org/10.1016/j.brainres.2009.01.041

    Article  CAS  PubMed  Google Scholar 

  13. Vijayalakshmi K, Alladi PA, Ghosh S, Prasanna VK, Sagar BC, Nalini A, Sathyaprabha TN, Raju TR (2011) Evidence of endoplasmic reticular stress in the spinal motor neurons exposed to CSF from sporadic amyotrophic lateral sclerosis patients. Neurobiol Dis 41(3):695–705. https://doi.org/10.1016/j.nbd.2010.12.005

    Article  CAS  PubMed  Google Scholar 

  14. Kulshreshtha D, Vijayalakshmi K, Alladi PA, Sathyaprabha TN, Nalini A, Raju TR (2011) Vascular endothelial growth factor attenuates neurodegenerative changes in the NSC-34 motor neuron cell line induced by cerebrospinal fluid of sporadic amyotrophic lateral sclerosis patients. Neurodegener Dis 8(5):322–330. https://doi.org/10.1159/000323718

    Article  CAS  PubMed  Google Scholar 

  15. Mishra PS, Dhull DK, Nalini A, Vijayalakshmi K, Sathyaprabha TN, Alladi PA, Raju TR (2016) Astroglia acquires a toxic neuroinflammatory role in response to the cerebrospinal fluid from amyotrophic lateral sclerosis patients. J Neuroinflammation 13(1):1–14. https://doi.org/10.1186/s12974-016-0698-0

    Article  CAS  Google Scholar 

  16. Mishra PS, Vijayalakshmi K, Nalini A, Sathyaprabha TN, Kramer BW, Alladi PA, Raju TR (2017) Etiogenic factors present in the cerebrospinal fluid from amyotrophic lateral sclerosis patients induce predominantly pro-inflammatory responses in microglia. J. Neuroinflammation 14(1):1–18. https://doi.org/10.1186/s12974-017-1028-x

    Article  CAS  Google Scholar 

  17. Schiffer D, Cordera S, Cavalla P, Migheli A (1996) Reactive astrogliosis of the spinal cord in amyotrophic lateral sclerosis. J Neurol Sci 139:27–33. https://doi.org/10.1016/0022-510x(96)00073-1

    Article  PubMed  Google Scholar 

  18. Shahani N, Nalini A, Gourie-Devi M, Raju TR (1998) Reactive astrogliosis in neonatal rat spinal cord after exposure to cerebrospinal fluid from patients with amyotrophic lateral sclerosis. Exp Neurol 149(1):295–298. https://doi.org/10.1006/exnr.1997.6651

    Article  CAS  PubMed  Google Scholar 

  19. Shobha K, Vijayalakshmi K, Alladi PA, Nalini A, Sathyaprabha TN, Raju TR (2007) Altered in-vitro and in-vivo expression of glial glutamate transporter-1 following exposure to cerebrospinal fluid of amyotrophic lateral sclerosis patients. J Neurol Sci 254(1-2):9–16. https://doi.org/10.1016/j.jns.2006.12.004

    Article  CAS  PubMed  Google Scholar 

  20. Shobha K, Alladi PA, Nalini A, Sathyaprabha TN, Raju TR (2010) Exposure to CSF from sporadic amyotrophic lateral sclerosis patients induces morphological transformation of astroglia and enhances GFAP and S100β expression. Neurosci Lett 473(1):56–61. https://doi.org/10.1016/j.neulet.2010.02.022

    Article  CAS  PubMed  Google Scholar 

  21. Mot AI, Depp C, Nave KA (2022) An emerging role of dysfunctional axon-oligodendrocyte coupling in neurodegenerative diseases. Dialogues Clin Neurosci

  22. Du Y, Dreyfus CF (2002) Oligodendrocytes as providers of growth factors. J Neurosci Res 68(6):647–654. https://doi.org/10.1002/jnr.10245

    Article  CAS  PubMed  Google Scholar 

  23. Pöyhönen S, Er S, Domanskyi A, Airavaara M (2019) Effects of neurotrophic factors in glial cells in the central nervous system: expression and properties in neurodegeneration and injury. Front Physiol 10:486. https://doi.org/10.3389/fphys.2019.00486

    Article  PubMed  PubMed Central  Google Scholar 

  24. Wilkins A, Majed H, Layfield R, Compston A, Chandran S (2003) Oligodendrocytes promote neuronal survival and axonal length by distinct intracellular mechanisms: a novel role for oligodendrocyte-derived glial cell line-derived neurotrophic factor. J Neurosci 23(12):4967–4974. https://doi.org/10.1523/jneurosci.23-12-04967.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Dougherty KD, Dreyfus CF, Black IB (2000) Brain-derived neurotrophic factor in astrocytes, oligodendrocytes, and microglia/macrophages after spinal cord injury. Neurobiol Dis 7(6):574–585. https://doi.org/10.1006/nbdi.2000.0318

    Article  CAS  PubMed  Google Scholar 

  26. Vandoorne T, De Bock K, Van Den Bosch L (2018) Energy metabolism in ALS: an underappreciated opportunity? Acta Neuropathol 135(4):489–509. https://doi.org/10.1007/s00401-018-1835-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Martinez BA (2012) Lactate-starved neurons in ALS. Dis Model Mech 5(6):711. https://doi.org/10.1242/dmm.010892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Fünfschilling U, Supplie LM, Mahad D, Boretius S, Saab AS, Edgar J, Brinkmann BG, Kassmann CM, Tzvetanova ID, Möbius W, Diaz F, Meijer D, Suter U, Hamprecht B, Sereda MW, Moraes CT, Frahm J, Goebbels S, Nave KA (2012) Glycolytic oligodendrocytes maintain myelin and long-term axonal integrity. Nature 485(7399):517–521. https://doi.org/10.1038/nature11007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lee Y, Morrison BM, Li Y, Lengacher S, Farah MH, Hoffman PN, Liu Y, Tsingalia A, Jin L, Zhang P-W, Pellerin L, Magistretti PJ, Rothstein JD (2012) Oligodendroglia metabolically support axons and contribute to neurodegeneration. Nature 487(7408):443–448. https://doi.org/10.1038/nature11314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Philips T, Rothstein JD (2017) Oligodendroglia: metabolic supporters of neurons. J Clin Invest 127(9):3271–3280. https://doi.org/10.1172/jci90610

    Article  PubMed  PubMed Central  Google Scholar 

  31. Boscia F, D'avanzo C, Pannaccione A, Secondo A, Casamassa A, Formisano L, Guida N, Annunziato L (2012) Silencing or knocking out the Na+/Ca2+ exchanger-3 (NCX3) impairs oligodendrocyte differentiation. Cell Death Differ 19(4):562–572. https://doi.org/10.1038/cdd.2011.125

    Article  CAS  PubMed  Google Scholar 

  32. De Kleijn KM, Zuure WA, Peijnenborg J, Heuvelmans JM, Martens GJ (2019) Reappraisal of human HOG and MO3. 13 cell lines as a model to study oligodendrocyte functioning. Cells 8(9):1096. https://doi.org/10.3390/cells8091096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yao SY, Natarajan C, Sriram S (2012) nNOS mediated mitochondrial injury in LPS stimulated oligodendrocytes. Mitochondrion 12(2):336–344. https://doi.org/10.1016/j.mito.2012.01.002

    Article  CAS  PubMed  Google Scholar 

  34. Shin JA, Kim YA, Kim HW, Kim HS, Lee KE, Kang JL, Park EM (2018) Iron released from reactive microglia by noggin improves myelin repair in the ischemic brain. Neuropharmacology 133:202–215. https://doi.org/10.1016/j.neuropharm.2018.01.038

    Article  CAS  PubMed  Google Scholar 

  35. Brooks BR, Miller RG, Swash M, Munsat TL (2000) El Escorial revisited: revised criteria for the diagnosis of amyotrophic lateral sclerosis. Amyotroph Lateral Scler Motor Neuron Dis 1(5):293–299. https://doi.org/10.1080/146608200300079536

    Article  CAS  Google Scholar 

  36. Vijayalakshmi K, Ostwal P, Sumitha R, Shruthi S, Varghese AM, Mishra P, Manohari SG, Sagar BC, Sathyaprabha TN, Nalini A, Raju TR, Alladi PA (2015) Role of VEGF and VEGFR2 receptor in reversal of ALS-CSF induced degeneration of NSC-34 motor neuron cell line. Mol Neurobiol 51(3):995–1007. https://doi.org/10.1007/s12035-014-8757-y

    Article  CAS  PubMed  Google Scholar 

  37. Varghese AM, Sharma A, Mishra P, Vijayalakshmi K, Harsha HC, Sathyaprabha TN, Raju TR (2013) Chitotriosidase-a putative biomarker for sporadic amyotrophic lateral sclerosis. Clin Proteom 10(1):1–9. http://www.clinicalproteomicsjournal.com/content/10/1/19

    Article  Google Scholar 

  38. Giacci MK, Bartlett CA, Smith NM, Iyer KS, Toomey LM, Jiang H, Guagliardo P, Kilburn MR, Fitzgerald M (2018) Oligodendroglia are particularly vulnerable to oxidative damage after neurotrauma in vivo. J Neurosci 38(29):6491–6504. https://doi.org/10.1523/JNEUROSCI.1898-17.2018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kang SH, Li Y, Fukaya M, Lorenzini I, Cleveland DW, Ostrow LW, Bergles DE (2013) Degeneration and impaired regeneration of gray matter oligodendrocytes in amyotrophic lateral sclerosis. Nat Neurosci 16(5):571–579. http://www.nature.com/doifinder/10.1038/nn.3357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lorente Pons A, Higginbottom A, Cooper-Knock J, Alrafiah A, Alofi E, Kirby J, Highley JR (2020) Oligodendrocyte pathology exceeds axonal pathology in white matter in human amyotrophic lateral sclerosis. J Pathol 251(3):262–271. https://doi.org/10.1002/path.5455

    Article  CAS  PubMed  Google Scholar 

  41. Matute C, Alberdi E, Domercq M, Sánchez-Gómez MV, Pérez-Samartín A, Rodríguez-Antigüedad A, Pérez-Cerdá F (2007) Excitotoxic damage to white matter. J Anat 210(6):693–702. https://doi.org/10.1111/j.1469-7580.2007.00733.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Trapp BD, Stys PK (2009) Virtual hypoxia and chronic necrosis of demyelinated axons in multiple sclerosis. Lancet Neurol 8(3):280–291. https://doi.org/10.1016/s1474-4422(09)70043-2

    Article  CAS  PubMed  Google Scholar 

  43. Campbell CT, Kolesar JE, Kaufman BA (2012) Mitochondrial transcription factor A regulates mitochondrial transcription initiation, DNA packaging, and genome copy number. Biochim Biophys Acta Gene Regul Mech 1819(9-10):921–929. https://doi.org/10.1016/j.bbagrm.2012.03.002

    Article  CAS  Google Scholar 

  44. Varghese AM, Ghosh M, Bhagat SK, Vijayalakshmi K, Preethish-Kumar V, Vengalil S, Raju TR (2020) Chitotriosidase, a biomarker of amyotrophic lateral sclerosis, accentuates neurodegeneration in spinal motor neurons through neuroinflammation. J Neuroinflammation 17(1):1–15. https://doi.org/10.1186/s12974-020-01909-y

    Article  CAS  Google Scholar 

  45. Ligon KL, Alberta JA, Kho AT, Weiss J, Kwaan MR, Nutt CL, Louis DN, Stiles CD, Rowitch DH (2004) The oligodendroglial lineage marker OLIG2 is universally expressed in diffuse gliomas. J Neuropathol Exp Neurol 63(5):499–509. https://doi.org/10.1093/jnen/63.5.499

    Article  CAS  PubMed  Google Scholar 

  46. Cai Z, Xiao M (2016) Oligodendrocytes and Alzheimer’s disease. Int J Neurosci 126(2):97–104. https://doi.org/10.3109/00207454.2015.1025778

    Article  CAS  PubMed  Google Scholar 

  47. Hacohen Y, Absoud M, Deiva K, Hemingway C, Nytrova P, Woodhall M, Palace J, Wassmer E, Tardieu M, Vincent A, Lim M, Waters P (2015) Myelin oligodendrocyte glycoprotein antibodies are associated with a non-MS course in children. Neurol Neuroimmunol Neuroinflamm 2(2) https://doi.org/10.1212/NXI.0000000000000081

  48. Satoh JI, Asahina N, Kitano S, Kino Y (2015) A comprehensive profile of ChIP-Seq-based Olig2 target genes in motor neuron progenitor cells suggests the possible involvement of Olig2 in the pathogenesis of amyotrophic lateral sclerosis. J Cent Nerv Syst Dis 7:JCNSD-S23210. https://doi.org/10.4137/JCNSD.S23210

    Article  Google Scholar 

  49. Verrier JD, Jackson TC, Gillespie DG, Janesko-Feldman K, Bansal R, Goebbels S, Jackson EK (2013) Role of CNPase in the oligodendrocytic extracellular 2′, 3′-cAMP-adenosine pathway. Glia 61(10):1595–1606. https://doi.org/10.1002/glia.22523

    Article  PubMed  PubMed Central  Google Scholar 

  50. Miron VE, Boyd A, Zhao JW, Yuen TJ, Ruckh JM, Shadrach JL, van Wijngaarden P, Wagers AJ, Williams A, Franklin RJM, Ffrench-Constant C (2013) M2 microglia and macrophages drive oligodendrocyte differentiation during CNS remyelination. Nat Neurosci 16(9):1211–1218. https://doi.org/10.1038/2Fnn.3469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Nicholas RS, Stevens S, Wing MG, Compston DA (2002) Microglia-derived IGF-2 prevents TNFα induced death of mature oligodendrocytes in vitro. J Neuroimmunol 124(1-2):36–44. https://doi.org/10.1016/S0165-5728(02)00011-5

    Article  CAS  PubMed  Google Scholar 

  52. Pang Y, Fan LW, Tien LT, Dai X, Zheng B, Cai Z, Lin RC, Bhatt A (2013) Differential roles of astrocyte and microglia in supporting oligodendrocyte development and myelination in vitro. Brain Behav 3(5):503–514. https://doi.org/10.1002/brb3.152

    Article  PubMed  PubMed Central  Google Scholar 

  53. Lombardi M, Parolisi R, Scaroni F, Bonfanti E, Gualerzi A, Gabrielli M, de Rosbo NK, Uccelli A, Giussani P, Viani P, Garlanda C, Abbracchio MP, Chaabane L, Buffo A, Fumagalli M, Verderio C (2019) Detrimental and protective action of microglial extracellular vesicles on myelin lesions: astrocyte involvement in remyelination failure. Acta Neuropathol 138:987–1012. https://doi.org/10.1007/s00401-019-02049-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Bankston AN, Mandler MD, Feng Y (2013) Oligodendroglia and neurotrophic factors in neurodegeneration. Neurosci Bull 29(2):216–228. http://www.neurosci.cn/

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Zhang YW, Denham J, Thies RS (2006) Oligodendrocyte progenitor cells derived from human embryonic stem cells express neurotrophic factors. Stem Cells Dev 15(6):943–952. https://doi.org/10.1089/scd.2006.15.943

    Article  CAS  PubMed  Google Scholar 

  56. Deepa P, Shahani N, Alladi PA, Vijayalakshmi K, Sathyaprabha TN, Nalini A, Raju TR (2011) Down regulation of trophic factors in neonatal rat spinal cord after administration of cerebrospinal fluid from sporadic amyotrophic lateral sclerosis patients. J Neural Transm 118(4):531–538. https://doi.org/10.1007/s00702-010-0520-6

    Article  CAS  PubMed  Google Scholar 

  57. Shruthi S, Sumitha R, Varghese AM, Ashok S, Sagar BC, Sathyaprabha TN, Nalini A, Kramer BW, Raju TR, Vijayalakshmi K, Alladi PA (2017) Brain-derived neurotrophic factor facilitates functional recovery from ALS-cerebral spinal fluid-induced neurodegenerative changes in the NSC-34 motor neuron cell line. J Neurodegener Dis 17(1):44–58. https://doi.org/10.1159/000447559

    Article  CAS  Google Scholar 

  58. Ekestern E (2004) Neurotrophic factors and amyotrophic lateral sclerosis. Neurodegener Dis 1(2-3):88–100. https://doi.org/10.1159/000080049

    Article  CAS  PubMed  Google Scholar 

  59. Ikeda K, Klinkosz B, Greene T, Cedarbaum JM, Wong V, Lindsay RM, Mitsumoto H (1995) Effects of brain-derived neurotrophic factor on motor dysfunction in wobbler mouse motor neuron disease. Ann Neurol: Official Journal of the American Neurological Association and the Child Neurology Society 37(4):505–511. https://doi.org/10.1002/ana.410370413

    Article  CAS  Google Scholar 

  60. Grundström E, Lindholm D, Johansson A, Blennow K, Askmark H (2000) GDNF but not BDNF is increased in cerebrospinal fluid in amyotrophic lateral sclerosis. Neuroreport 11(8):1781–1783. https://doi.org/10.1097/00001756-200006050-00037

    Article  PubMed  Google Scholar 

  61. Allen SJ, Watson JJ, Shoemark DK, Barua NU, Patel NK (2013) GDNF, NGF and BDNF as therapeutic options for neurodegeneration. Pharmacol Ther 138(2):155–175. https://doi.org/10.1016/j.pharmthera.2013.01.004

    Article  CAS  PubMed  Google Scholar 

  62. Shanmukha S, Narayanappa G, Nalini A, Alladi PA, Raju TR (2018) Sporadic amyotrophic lateral sclerosis (SALS)–skeletal muscle response to cerebrospinal fluid from SALS patients in a rat model. Dis Model Mech 11(4):dmm031997. https://doi.org/10.1242/dmm.031997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Reyes ET, Perurena OH, Festoff BW, Jorgensen R, Moore WV (1984) Insulin resistance in amyotrophic lateral sclerosis. J Neurol Sci 63(3):317–324. https://doi.org/10.1016/0022-510X(84)90154-0

    Article  CAS  PubMed  Google Scholar 

  64. Vallée A, Lecarpentier Y, Guillevin R, Vallée JN (2018) Aerobic glycolysis in amyotrophic lateral sclerosis and Huntington’s disease. Rev Neurosci 29(5):547–555. https://doi.org/10.1515/revneuro-2017-0075

    Article  CAS  PubMed  Google Scholar 

  65. Zhou P, Guan T, Jiang Z, Namaka M, Huang QJ, Kong JM (2018) Monocarboxylate transporter 1 and the vulnerability of oligodendrocyte lineage cells to metabolic stresses. CNS Neurosci Ther 24(2):126–134. https://doi.org/10.1111/cns.12782

    Article  CAS  PubMed  Google Scholar 

  66. Rinholm JE, Hamilton NB, Kessaris N, Richardson WD, Bergersen LH, Attwell D (2011) Regulation of oligodendrocyte development and myelination by glucose and lactate. J Neurosci Res 31(2):538–548. https://doi.org/10.1523/JNEUROSCI.3516-10.2011

    Article  CAS  Google Scholar 

  67. Ferraiuolo L, Meyer K, Sherwood TW, Vick J, Likhite S, Frakes A et al (2016) Oligodendrocytes contribute to motor neuron death in ALS via SOD1-dependent mechanism. Proc Natl Acad Sci 113(42):E6496–E6505. https://doi.org/10.1073/pnas.1607496113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Raffaele S, Boccazzi M, Fumagalli M (2021) Oligodendrocyte dysfunction in amyotrophic lateral sclerosis: mechanisms and therapeutic perspectives. Cells 10(3):565. https://doi.org/10.3390/cells10030565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the National Institute of Mental Health and Neurosciences, Bengaluru, for providing M.Phil. Fellowship to Ramya V. and Nisha Sarkar. Anu Mary Varghese and Savita Bhagat were Fellows in the ICMR-CAR funded project (Indian Council for Medical Research – Centre for Advanced Research, Govt. of India). Raj Kumar Pradhan was a JRF in a DBT-BioCARe funded project (Department of Biotechnology, Govt. of India). We acknowledge Sandeep Rajkumar, JRF in the SERB-ECR funded project (Science and Engineering Research Board, Govt. of India) for his contribution in designing the co-culture experiments with appropriate live cell imaging dyes.

Funding

This work was funded by the SERB-EEQ project (Science and Engineering Research Board, Department of Science and Technology, Govt. of India; Project Sanction No. EEQ/2020/000625) to Dr. Vijayalakshmi K. and ICMR A.S. Paintal Distinguished Scientist Chair Grant (Indian Council for Medical Research, Govt. of India) to Dr. T. R. Raju.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by V. Ramya, Nisha Sarkar, Savita Bhagat, Raj Kumar Pradhan, Anu Mary Varghese, and K. Vijayalakshmi. Patients were recruited for the study by Dr. Atchayaram Nalini. The first draft of the manuscript was written by V. Ramya, Nisha Sarkar, T.R. Raju, and K. Vijayalakshmi, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to K. Vijayalakshmi.

Ethics declarations

Ethics Approval and Consent to Participate

CSF samples were collected after approval of the human ethics committee, and informed consent was taken prior to CSF collection (No. NIMHANS/91st IEC/ 2014/ (Item no. III, SI no. 3.01, Basic Sciences). All animal experiments were approved by the Institutional Animal Ethics Committee (IAEC), NIMHANS, Bangalore (IAEC Approval No. AEC/67/423/N.P).

Consent for Publication

Not applicable, as no individual participant’s data is presented.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

Online Resource 1a and b: Live cell imaging videos of NSC-34 cells grown under normal conditions and exposed to ALS-CSF a, NSC-34 cells under normal conditions appeared well differentiated with pleomorphic morphology bearing processes. By 48hrs, most of the cells remained differentiated except a few which were undifferentiated with round morphology appeared to be clumped. b, Exposure to ALS-CSF caused dedifferentiation of most of the NSC-34 cells with retraction of processes and attaining rounded morphology with marked clumping and formation of apoptotic bodies in a few cells. Toxicity of ALS-CSF resulted in degeneration of NSC-34 cells similar to our findings (Vijayalakshmi et al., 2009). (ZIP 8481 kb)

ESM 2

Online Resource 2a, b, c and d, e, f: Live cell imaging videos of co-culture of MO3.13 cells (Red) with NSC-34 cells (Green) grown under normal conditions and exposed to NALS-CSF and ALS-CSF Live cell imaging of NSC-34 motor neuronal cells (CMFDA; Green) and MO3.13 oligodendroglial cells (CM-DiI; Red) in co-culture from 0-24hrs (a - NC, b - NALS, c - ALS) and 24-48hrs (d - NC, e – NALS, f - ALS). NSC-34 cells differentiated well with long processes and appeared similar to the cells grown under normal conditions (Compare c Video clip with a, b and f with d, e). There was no characteristic features of degeneration or dedifferentiation of NSC-34 cells even in the presence of ALS-CSF upon co-culture with MO3.13 cells indicating neuroprotection conferred by the oligodendroglial cells. (ZIP 165953 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramya, V., Sarkar, N., Bhagat, S. et al. Oligodendroglia Confer Neuroprotection to NSC-34 Motor Neuronal Cells Against the Toxic Insults of Cerebrospinal Fluid from Sporadic Amyotrophic Lateral Sclerosis Patients. Mol Neurobiol 60, 4855–4871 (2023). https://doi.org/10.1007/s12035-023-03375-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-023-03375-y

Keywords

Navigation