Skip to main content

Advertisement

Log in

Komagataella pastoris KM71H Mitigates Depressive-Like Phenotype, Preserving Intestinal Barrier Integrity and Modulating the Gut Microbiota in Mice

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

The role of intestinal microbiota in the genesis of mental health has received considerable attention in recent years, given that probiotics are considered promising therapeutic agents against major depressive disorder. Komagataella pastoris KM71H is a yeast with probiotic properties and antidepressant-like effects in animal models of depression. Hence, we evaluated the antidepressant-like effects of K. pastoris KM71H in a model of antibiotic-induced intestinal dysbiosis in male Swiss mice. The mice received clindamycin (200 μg, intraperitoneal) and, after 24 h, were treated with K. pastoris KM71H at a dose of 8 log CFU/animal by intragastric administration (ig) or PBS (vehicle, ig) for 14 consecutive days. Afterward, the animals were subjected to behavioral tests and biochemical analyses. Our results showed that K. pastoris KM71H administration decreased the immobility time in the tail suspension test and increased grooming activity duration in the splash test in antibiotic-treated mice, thereby characterizing its antidepressant-like effect. We observed that these effects of K. pastoris KM71H were accompanied by the modulation of the intestinal microbiota, preservation of intestinal barrier integrity, and restoration of the mRNA levels of occludin, zonula occludens-1, zonula occludens-2, and toll-like receptor-4 in the small intestine, and interleukin-1β in the hippocampi of mice. Our findings provide solid evidence to support the development of K. pastoris KM71H as a new probiotic with antidepressant-like effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed in the current study are available from the corresponding author upon reasonable request.

Code Availability

Not applicable.

References

  1. Birmann PT, Casaril AM, Pesarico AP, Caballero PS, Smaniotto TA, Rodrigues RR, Moreira AN, Conceicao FR, Sousa FSS, Collares T, Seixas FK, Franca RT, Corcini CD, Savegnago L (2021) Komagataella pastoris KM71H modulates neuroimmune and oxidative stress parameters in animal models of depression: a proposal for a new probiotic with antidepressant-like effect. Pharmacol Res 105740. https://doi.org/10.1016/j.phrs.2021.105740

  2. Franca RC, Conceicao FR, Mendonca M, Haubert L, Sabadin G, de Oliveira PD, Amaral MG, Silva WP, Moreira AN (2015) Pichia pastoris X-33 has probiotic properties with remarkable antibacterial activity against Salmonella Typhimurium. Appl Microbiol Biotechnol 99(19):7953–7961. https://doi.org/10.1007/s00253-015-6696-9

    Article  CAS  PubMed  Google Scholar 

  3. de Los G, Santos D, de Los G, Santos JR, Gil-Turnes C, Gaboardi G, Fernandes Silva L, Franca R, Gevehr Fernandes C, Rochedo Conceicao F (2018) Probiotic effect of Pichia pastoris X-33 produced in parboiled rice effluent and YPD medium on broiler chickens. PLoS One 13(2):e0192904. https://doi.org/10.1371/journal.pone.0192904

    Article  CAS  Google Scholar 

  4. Evrensel A, Tarhan KN (2021) Emerging role of Gut-microbiota-brain axis in depression and therapeutic implication. Prog Neuro-Psychopharmacol Biol Psychiatry 106:110138. https://doi.org/10.1016/j.pnpbp.2020.110138

    Article  CAS  Google Scholar 

  5. Madison A, Kiecolt-Glaser JK (2019) Stress, depression, diet, and the gut microbiota: human-bacteria interactions at the core of psychoneuroimmunology and nutrition. Curr Opin Behav Sci 28:105–110. https://doi.org/10.1016/j.cobeha.2019.01.011

    Article  PubMed  PubMed Central  Google Scholar 

  6. Margolis KG, Cryan JF, Mayer EA (2021) The microbiota-gut-brain axis: from motility to mood. Gastroenterology 160(5):1486–1501. https://doi.org/10.1053/j.gastro.2020.10.066

    Article  PubMed  Google Scholar 

  7. Zheng P, Zeng B, Zhou C, Liu M, Fang Z, Xu X, Zeng L, Chen J, Fan S, Du X, Zhang X (2016) Gut microbiome remodeling induces depressive-like behaviors through a pathway mediated by the host’s metabolism. Mol Psychiatry 21(6):786–796

    Article  CAS  PubMed  Google Scholar 

  8. Chinna Meyyappan A, Forth E, Wallace CJK, Milev R (2020) Effect of fecal microbiota transplant on symptoms of psychiatric disorders: a systematic review. BMC Psychiatry 20(1):299. https://doi.org/10.1186/s12888-020-02654-5

    Article  PubMed  PubMed Central  Google Scholar 

  9. Liu S, Guo R, Liu F, Yuan Q, Yu Y, Ren F (2020) Gut microbiota regulates depression-like behavior in rats through the neuroendocrine-immune-mitochondrial pathway. Neuropsychiatr Dis Treat 16:859–869. https://doi.org/10.2147/NDT.S243551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Guida F, Turco F, Iannotta M, De Gregorio D, Palumbo I, Sarnelli G, Furiano A, Napolitano F, Boccella S, Luongo L, Mazzitelli M, Usiello A, De Filippis F, Iannotti FA, Piscitelli F, Ercolini D, de Novellis V, Di Marzo V, Cuomo R, Maione S (2018) Antibiotic-induced microbiota perturbation causes gut endocannabinoidome changes, hippocampal neuroglial reorganization and depression in mice. Brain Behav Immun 67:230–245. https://doi.org/10.1016/j.bbi.2017.09.001

    Article  CAS  PubMed  Google Scholar 

  11. Kim S, Covington A, Pamer EG (2017) The intestinal microbiota: antibiotics, colonization resistance, and enteric pathogens. Immunol Rev 279(1):90–105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Buffie CG, Jarchum I, Equinda M, Lipuma L, Gobourne A, Viale A, Ubeda C, Xavier J, Pamer EG (2012) Profound alterations of intestinal microbiota following a single dose of clindamycin results in sustained susceptibility to Clostridium difficile-induced colitis. Infect Immun 80(1):62–73. https://doi.org/10.1128/IAI.05496-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lurie I, Yang Y-X, Haynes K, Mamtani R, Boursi B (2015) Antibiotic exposure and the risk for depression, anxiety, or psychosis: a nested case-control study. J Clin Psychiatry 76(11):1552–1528

    Article  Google Scholar 

  14. Köhler-Forsberg O, Petersen L, Gasse C, Mortensen PB, Dalsgaard S, Yolken RH, Mors O, Benros ME (2019) A nationwide study in Denmark of the association between treated infections and the subsequent risk of treated mental disorders in children and adolescents. JAMA psychiatry 76(3):271–279

    Article  PubMed  Google Scholar 

  15. Cryan JF, Boehme M, Dinan TG (2019) Is the fountain of youth in the gut microbiome? J Physiol 597(9):2323–2324. https://doi.org/10.1113/JP277784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Jauregi-Miguel A (2021) The tight junction and the epithelial barrier in coeliac disease. Int Rev Cell Mol Biol 358:105

    Article  PubMed  Google Scholar 

  17. Luo X, Huo X, Zhang Y, Cheng Z, Chen S, Xu X (2021) Increased intestinal permeability with elevated peripheral blood endotoxin and inflammatory indices for e-waste lead exposure in children. Chemosphere 279:130862. https://doi.org/10.1016/j.chemosphere.2021.130862

    Article  CAS  PubMed  Google Scholar 

  18. Aureli P, Capurso L, Castellazzi AM, Clerici M, Giovannini M, Morelli L, Poli A, Pregliasco F, Salvini F, Zuccotti GV (2011) Probiotics and health: an evidence-based review. Pharmacol Res 63(5):366–376. https://doi.org/10.1016/j.phrs.2011.02.006

    Article  CAS  PubMed  Google Scholar 

  19. Blackwood BP, Yuan CY, Wood DR, Nicolas JD, Grothaus JS, Hunter CJ (2017) Probiotic Lactobacillus species strengthen intestinal barrier function and tight junction integrity in experimental necrotizing enterocolitis. J Probiotics Health 5(1). https://doi.org/10.4172/2329-8901.1000159

  20. Cheng D, Song J, Xie M, Song D (2019) The bidirectional relationship between host physiology and microbiota and health benefits of probiotics: a review. Trends Food Sci Technol 91:426–435

    Article  CAS  Google Scholar 

  21. Walsh RN, Cummins RA (1976) The open-field test: a critical review. Psychol Bull 83(3):482–504

    Article  CAS  PubMed  Google Scholar 

  22. Steru L, Chermat R, Thierry B, Simon P (1985) The tail suspension test: a new method for screening antidepressants in mice. Psychopharmacology 85(3):367–370. https://doi.org/10.1007/BF00428203

    Article  CAS  PubMed  Google Scholar 

  23. Taksande BG, Faldu DS, Dixit MP, Sakaria JN, Aglawe MM, Umekar MJ, Kotagale NR (2013) Agmatine attenuates chronic unpredictable mild stress induced behavioral alteration in mice. Eur J Pharmacol 720(1-3):115–120. https://doi.org/10.1016/j.ejphar.2013.10.041

    Article  CAS  PubMed  Google Scholar 

  24. Loetchutinat C, Kothan S, Dechsupa S, Meesungnoen J, Jay-Gerin J-P, Mankhetkorn S (2005) Spectrofluorometric determination of intracellular levels of reactive oxygen species in drug-sensitive and drug-resistant cancer cells using the 2′, 7′-dichlorofluorescein diacetate assay. Radiat Phys Chem 72(2-3):323–331

    Article  CAS  Google Scholar 

  25. Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95(2):351–358. https://doi.org/10.1016/0003-2697(79)90738-3

    Article  CAS  PubMed  Google Scholar 

  26. Cani PD, Bibiloni R, Knauf C, Waget A, Neyrinck AM, Delzenne NM, Burcelin R (2008) Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet–induced obesity and diabetes in mice. Diabetes 57(6):1470–1481

    Article  CAS  PubMed  Google Scholar 

  27. Wang Y, Qian PY (2009) Conservative fragments in bacterial 16S rRNA genes and primer design for 16S ribosomal DNA amplicons in metagenomic studies. PLoS One 4(10):e7401. https://doi.org/10.1371/journal.pone.0007401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Huntley J, Fierer N, Owens SM, Betley J, Fraser L, Bauer M, Gormley N, Gilbert JA, Smith G, Knight R (2012) Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J 6(8):1621–1624. https://doi.org/10.1038/ismej.2012.8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Rinninella E, Raoul P, Cintoni M, Franceschi F, Miggiano GAD, Gasbarrini A, Mele MC (2019) What is the healthy gut microbiota composition? A changing ecosystem across age, environment, diet, and diseases. Microorganisms 7(1). https://doi.org/10.3390/microorganisms7010014

  30. Hao WZ, Li XJ, Zhang PW, Chen JX (2020) A review of antibiotics, depression, and the gut microbiome. Psychiatry Res 284:112691. https://doi.org/10.1016/j.psychres.2019.112691

    Article  CAS  PubMed  Google Scholar 

  31. Kelly JR, Minuto C, Cryan JF, Clarke G, Dinan TG (2017) Cross talk: the microbiota and neurodevelopmental disorders. Front Neurosci 11:490. https://doi.org/10.3389/fnins.2017.00490

    Article  PubMed  PubMed Central  Google Scholar 

  32. Martin CR, Osadchiy V, Kalani A, Mayer EA (2018) The brain-gut-microbiome axis. Cell Mol Gastroenterol Hepatol 6(2):133–148. https://doi.org/10.1016/j.jcmgh.2018.04.003

    Article  PubMed  PubMed Central  Google Scholar 

  33. Dinan TG, Cryan JF (2017) Brain-gut-microbiota axis and mental health. Psychosom Med 79(8):920–926. https://doi.org/10.1097/PSY.0000000000000519

    Article  PubMed  Google Scholar 

  34. Song X, Wang W, Ding S, Liu X, Wang Y, Ma H (2021) Puerarin ameliorates depression-like behaviors of with chronic unpredictable mild stress mice by remodeling their gut microbiota. J Affect Disord 290:353–363. https://doi.org/10.1016/j.jad.2021.04.037

    Article  CAS  PubMed  Google Scholar 

  35. Antonopoulos DA, Huse SM, Morrison HG, Schmidt TM, Sogin ML, Young VB (2009) Reproducible community dynamics of the gastrointestinal microbiota following antibiotic perturbation. Infect Immun 77(6):2367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wang S, Qu Y, Chang L, Pu Y, Zhang K, Hashimoto K (2020) Antibiotic-induced microbiome depletion is associated with resilience in mice after chronic social defeat stress. J Affect Disord 260:448–457. https://doi.org/10.1016/j.jad.2019.09.064

    Article  CAS  PubMed  Google Scholar 

  37. Zarrinpar A, Chaix A, Xu ZZ, Chang MW, Marotz CA, Saghatelian A, Knight R, Panda S (2018) Antibiotic-induced microbiome depletion alters metabolic homeostasis by affecting gut signaling and colonic metabolism. Nat Commun 9(1):1–13

    Article  CAS  Google Scholar 

  38. Langdon A, Crook N, Dantas G (2016) The effects of antibiotics on the microbiome throughout development and alternative approaches for therapeutic modulation. Genome Med 8(1):39. https://doi.org/10.1186/s13073-016-0294-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Modi SR, Collins JJ, Relman DA (2014) Antibiotics and the gut microbiota. J Clin Invest 124(10):4212–4218. https://doi.org/10.1172/JCI72333

    Article  PubMed  PubMed Central  Google Scholar 

  40. Jernberg C, Lofmark S, Edlund C, Jansson JK (2007) Long-term ecological impacts of antibiotic administration on the human intestinal microbiota. ISME J 1(1):56–66. https://doi.org/10.1038/ismej.2007.3

    Article  CAS  PubMed  Google Scholar 

  41. Jernberg C, Sullivan A, Edlund C, Jansson JK (2005) Monitoring of antibiotic-induced alterations in the human intestinal microflora and detection of probiotic strains by use of terminal restriction fragment length polymorphism. Appl Environ Microbiol 71(1):501–506. https://doi.org/10.1128/AEM.71.1.501-506.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Cejas D, Magarinos F, Elena A, Ferrara M, Ormazabal C, Yernazian MV, Gutkind G, Radice M (2022) Emergence and clonal expansion of Klebsiella pneumoniae ST307, simultaneously producing KPC-3 and NDM-1. Rev Argent Microbiol. https://doi.org/10.1016/j.ram.2022.04.002

  43. Ozogul F, Yazgan H, Ozogul Y (2022) Lactic acid bacteria. Lactobacillus acidophilus

    Google Scholar 

  44. He T, Zhu YH, Yu J, Xia B, Liu X, Yang GY, Su JH, Guo L, Wang ML, Wang JF (2019) Lactobacillus johnsonii L531 reduces pathogen load and helps maintain short-chain fatty acid levels in the intestines of pigs challenged with Salmonella enterica Infantis. Vet Microbiol 230:187–194. https://doi.org/10.1016/j.vetmic.2019.02.003

    Article  CAS  PubMed  Google Scholar 

  45. Zheng D, Wang Z, Sui L, Xu Y, Wang L, Qiao X, Cui W, Jiang Y, Zhou H, Tang L, Li Y (2021) Lactobacillus johnsonii activates porcine monocyte derived dendritic cells maturation to modulate Th cellular immune response. Cytokine 144:155581. https://doi.org/10.1016/j.cyto.2021.155581

    Article  CAS  PubMed  Google Scholar 

  46. Yanagibashi T, Hosono A, Oyama A, Tsuda M, Suzuki A, Hachimura S, Takahashi Y, Momose Y, Itoh K, Hirayama K, Takahashi K, Kaminogawa S (2013) IgA production in the large intestine is modulated by a different mechanism than in the small intestine: Bacteroides acidifaciens promotes IgA production in the large intestine by inducing germinal center formation and increasing the number of IgA+ B cells. Immunobiology 218(4):645–651. https://doi.org/10.1016/j.imbio.2012.07.033

    Article  CAS  PubMed  Google Scholar 

  47. Yang JY, Lee YS, Kim Y, Lee SH, Ryu S, Fukuda S, Hase K, Yang CS, Lim HS, Kim MS, Kim HM, Ahn SH, Kwon BE, Ko HJ, Kweon MN (2017) Gut commensal Bacteroides acidifaciens prevents obesity and improves insulin sensitivity in mice. Mucosal Immunol 10(1):104–116. https://doi.org/10.1038/mi.2016.42

    Article  CAS  PubMed  Google Scholar 

  48. Marco ML, Heeney D, Binda S, Cifelli CJ, Cotter PD, Foligne B, Ganzle M, Kort R, Pasin G, Pihlanto A, Smid EJ, Hutkins R (2017) Health benefits of fermented foods: microbiota and beyond. Curr Opin Biotechnol 44:94–102. https://doi.org/10.1016/j.copbio.2016.11.010

    Article  CAS  PubMed  Google Scholar 

  49. Rudzki L, Ostrowska L, Pawlak D, Malus A, Pawlak K, Waszkiewicz N, Szulc A (2019) Probiotic Lactobacillus Plantarum 299v decreases kynurenine concentration and improves cognitive functions in patients with major depression: a double-blind, randomized, placebo controlled study. Psychoneuroendocrinology 100:213–222. https://doi.org/10.1016/j.psyneuen.2018.10.010

    Article  CAS  PubMed  Google Scholar 

  50. Slykerman RF, Hood F, Wickens K, JMD T, Barthow C, Murphy R, Kang J, Rowden J, Stone P, Crane J, Stanley T, Abels P, Purdie G, Maude R, Mitchell EA, Probiotic in Pregnancy Study G (2017) Effect of Lactobacillus rhamnosus HN001 in pregnancy on postpartum symptoms of depression and anxiety: a randomised double-blind placebo-controlled trial. EBioMedicine 24:159–165. https://doi.org/10.1016/j.ebiom.2017.09.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Strati F, Pujolassos M, Burrello C, Giuffre MR, Lattanzi G, Caprioli F, Troisi J, Facciotti F (2021) Antibiotic-associated dysbiosis affects the ability of the gut microbiota to control intestinal inflammation upon fecal microbiota transplantation in experimental colitis models. Microbiome 9(1):39. https://doi.org/10.1186/s40168-020-00991-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Campbell EL, Colgan SP (2019) Control and dysregulation of redox signalling in the gastrointestinal tract. Nat Rev Gastroenterol Hepatol 16(2):106–120

    Article  PubMed  PubMed Central  Google Scholar 

  53. Wu S, Bekhit AE-DA, Wu Q, Chen M, Liao X, Wang J, Ding Y (2020) Bioactive peptides and gut microbiota: candidates for a novel strategy for reduction and control of neurodegenerative diseases. Trends Food Sci Technol 108:164–176

    Article  Google Scholar 

  54. Yardeni T, Tanes CE, Bittinger K, Mattei LM, Schaefer PM, Singh LN, Wu GD, Murdock DG, Wallace DC (2019) Host mitochondria influence gut microbiome diversity: a role for ROS. Sci Signal 12(588)

  55. Wu Y, Mitra R (2020) Prefrontal-hippocampus plasticity reinstated by an enriched environment during stress. Neurosci Res 170:360–363

    Article  PubMed  Google Scholar 

  56. Liu P, Wang Y, Yang G, Zhang Q, Meng L, Xin Y, Jiang X (2021) The role of short-chain fatty acids in intestinal barrier function, inflammation, oxidative stress, and colonic carcinogenesis. Pharmacol Res 165:105420. https://doi.org/10.1016/j.phrs.2021.105420

    Article  CAS  PubMed  Google Scholar 

  57. Camilleri M (2019) Leaky gut: mechanisms, measurement and clinical implications in humans. Gut 68(8):1516–1526

    Article  CAS  PubMed  Google Scholar 

  58. Ishioh M, Nozu T, Igarashi S, Tanabe H, Kumei S, Ohhira M, Takakusaki K, Okumura T (2021) Activation of central adenosine A2B receptors mediate brain ghrelin-induced improvement of intestinal barrier function through the vagus nerve in rats. Exp Neurol 341:113708. https://doi.org/10.1016/j.expneurol.2021.113708

    Article  CAS  PubMed  Google Scholar 

  59. Keita ÅV, Söderholm JD (2018) Mucosal permeability and mast cells as targets for functional gastrointestinal disorders. Curr Opin Pharmacol 43:66–71

    Article  CAS  PubMed  Google Scholar 

  60. Kiecolt-Glaser JK, Wilson SJ, Bailey ML, Andridge R, Peng J, Jaremka LM, Fagundes CP, Malarkey WB, Laskowski B, Belury MA (2018) Marital distress, depression, and a leaky gut: translocation of bacterial endotoxin as a pathway to inflammation. Psychoneuroendocrinology 98:52–60. https://doi.org/10.1016/j.psyneuen.2018.08.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Al-Sadi R, Nighot P, Nighot M, Haque M, Rawat M, Ma TY (2021) Lactobacillus acidophilus induces a strain-specific and toll-like receptor 2-dependent enhancement of intestinal epithelial tight junction barrier and protection against intestinal inflammation. Am J Pathol 191(5):872–884. https://doi.org/10.1016/j.ajpath.2021.02.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Bhat MI, Kapila S, Kapila R (2020) Lactobacillus fermentum (MTCC-5898) supplementation renders prophylactic action against Escherichia coli impaired intestinal barrier function through tight junction modulation. LWT 123:109118

    Article  CAS  Google Scholar 

  63. Putaala H, Salusjarvi T, Nordstrom M, Saarinen M, Ouwehand AC, Bech Hansen E, Rautonen N (2008) Effect of four probiotic strains and Escherichia coli O157:H7 on tight junction integrity and cyclo-oxygenase expression. Res Microbiol 159(9-10):692–698. https://doi.org/10.1016/j.resmic.2008.08.002

    Article  CAS  PubMed  Google Scholar 

  64. Bhatt S, Nagappa AN, Patil CR (2020) Role of oxidative stress in depression. Drug Discov Today 25(7):1270–1276

    Article  CAS  PubMed  Google Scholar 

  65. Daneman R, Rescigno M (2009) The gut immune barrier and the blood-brain barrier: are they so different? Immunity 31(5):722–735

    Article  CAS  PubMed  Google Scholar 

  66. Li C, Cai Y-Y, Yan Z-X (2018) Brain-derived neurotrophic factor preserves intestinal mucosal barrier function and alters gut microbiota in mice. Kaohsiung J Med Sci 34(3):134–141

    Article  CAS  PubMed  Google Scholar 

  67. Rahman MT, Ghosh C, Hossain M, Linfield D, Rezaee F, Janigro D, Marchi N, van Boxel-Dezaire AHH (2018) IFN-gamma, IL-17A, or zonulin rapidly increase the permeability of the blood-brain and small intestinal epithelial barriers: relevance for neuro-inflammatory diseases. Biochem Biophys Res Commun 507(1-4):274–279. https://doi.org/10.1016/j.bbrc.2018.11.021

    Article  CAS  PubMed  Google Scholar 

  68. Wen J, Qian S, Yang Q, Deng L, Mo Y, Yu Y (2014) Overexpression of netrin-1 increases the expression of tight junction-associated proteins, claudin-5, occludin, and ZO-1, following traumatic brain injury in rats. Exp Ther Med 8(3):881–886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Dantzer R, O'Connor JC, Freund GG, Johnson RW, Kelley KW (2008) From inflammation to sickness and depression: when the immune system subjugates the brain. Nat Rev Neurosci 9(1):46–56. https://doi.org/10.1038/nrn2297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Murray E, Sharma R, Smith KB, Mar KD, Barve R, Lukasik M, Pirwani AF, Malette-Guyon E, Lamba S, Thomas B (2019) Probiotic consumption during puberty mitigates LPS-induced immune responses and protects against stress-induced depression-and anxiety-like behaviors in adulthood in a sex-specific manner. Brain Behav Immun 81:198–212

    Article  CAS  PubMed  Google Scholar 

  71. Cryan JF, O'Riordan KJ, Cowan CS, Sandhu KV, Bastiaanssen TF, Boehme M, Codagnone MG, Cussotto S, Fulling C, Golubeva AV, Guzzetta KE (2019) The microbiota-gut-brain axis. Physiol Rev

  72. Cunningham AL, Stephens JW, Harris DA (2021) A review on gut microbiota: a central factor in the pathophysiology of obesity. Lipids Health Dis 20(1):65. https://doi.org/10.1186/s12944-021-01491-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Wang H, Lee IS, Braun C, Enck P (2016) Effect of probiotics on central nervous system functions in animals and humans: a systematic review. J Neurogastroenterol Motil 22(4):589–605. https://doi.org/10.5056/jnm16018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Bajpai A, Verma AK, Srivastava M, Srivastava R (2014) Oxidative stress and major depression. J Clin Diagn Res 8(12):CC04–CC07. https://doi.org/10.7860/JCDR/2014/10258.5292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Barbosa ML, de Meneses AA, de Aguiar RP, e Sousa JM, Cavalcante AA, Maluf SW (2020) Oxidative stress, antioxidant defense and depressive disorders: a systematic review of biochemical and molecular markers. Neurol Psychiatry Brain Res 36:65–72

    Article  Google Scholar 

  76. Black CN, Bot M, Scheffer PG, Cuijpers P, Penninx BW (2015) Is depression associated with increased oxidative stress? A systematic review and meta-analysis. Psychoneuroendocrinology 51:164–175. https://doi.org/10.1016/j.psyneuen.2014.09.025

    Article  CAS  PubMed  Google Scholar 

  77. Anderson G, Berk M, Dean O, Moylan S, Maes M (2014) Role of immune-inflammatory and oxidative and nitrosative stress pathways in the etiology of depression: therapeutic implications. CNS Drugs 28(1):1–10. https://doi.org/10.1007/s40263-013-0119-1

    Article  CAS  PubMed  Google Scholar 

  78. Bay-Richter C, Linderholm KR, Lim CK, Samuelsson M, Traskman-Bendz L, Guillemin GJ, Erhardt S, Brundin L (2015) A role for inflammatory metabolites as modulators of the glutamate N-methyl-D-aspartate receptor in depression and suicidality. Brain Behav Immun 43:110–117. https://doi.org/10.1016/j.bbi.2014.07.012

    Article  CAS  PubMed  Google Scholar 

  79. Bhatt S, Nagappa AN, Patil CR (2020) Role of oxidative stress in depression. Drug Discov Today 25(7):1270–1276. https://doi.org/10.1016/j.drudis.2020.05.001

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would also like to thank Atlas Assessoria Linguística for language editing.

Funding

The authors received support from UFPel, especially Biotechnology Graduate Program (UFPel) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), and Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul (FAPERGS) (PRONEM 16/2551-0000240-1, PqG 17/2551-00011046-9). L. S., T. C., F. K. S., and F. R. C. are recipients of CNPq fellowships. This study was partly financed by the CAPES - Finance Code 001.

Author information

Authors and Affiliations

Authors

Contributions

P.T. Birmann performed the experimental design, behavioral tests, biochemical assessments, and data analysis and wrote the manuscript. L. Savegnago performed the experimental design, data analysis, writing, reviewing, and editing of the manuscript, supervised the experiments, acquired funding, and is the corresponding author*. A.M. Casaril and A. Pesarico performed the behavioral tests and the biochemical assessments and wrote the manuscript. F.S.S. Sousa, F.K. Seixas, and T. Collares performed the qRT-PCR analyses. Rochedo and R.R. Rodrigues performed the cultivation and preparation of K. pastoris. L. Savegnago and F.C. Rochedo were responsible for funding acquisition and reviewing and editing the manuscript.

Corresponding author

Correspondence to Lucielli Savegnago.

Ethics declarations

Ethics Approval

The experiments with animals were carried out in accordance with the Institutional Animal Care and Use Committee of the Federal University of Pelotas (approval number of the ethics committee: 11133-20), affiliated with the National Council for Animal Experimentation Control (CONCEA).

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Birmann, P.T., Casaril, A.M., Pesarico, A.P. et al. Komagataella pastoris KM71H Mitigates Depressive-Like Phenotype, Preserving Intestinal Barrier Integrity and Modulating the Gut Microbiota in Mice. Mol Neurobiol 60, 4017–4029 (2023). https://doi.org/10.1007/s12035-023-03326-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-023-03326-7

Keywords

Navigation