Skip to main content

Advertisement

Log in

Methyl Ferulic Acid Alleviates Neuropathic Pain by Inhibiting Nox4-induced Ferroptosis in Dorsal Root Ganglia Neurons in Rats

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Neuropathic pain is a disease that has become one of the major public health problems and a global burden. Nox4-induced oxidative stress can lead to ferroptosis and neuropathic pain. Methyl ferulic acid (MFA) can inhibit the Nox4-induced oxidative stress. This study aimed to estimate whether methyl ferulic acid alleviates neuropathic pain by inhibiting the expression of Nox4 and its induction of ferroptosis. Adult male Sprague–Dawley rats were subjected to spared nerve injury (SNI) model to induce neuropathic pain. After the establishment of the model, methyl ferulic acid was given 14 days by gavage. Nox4 overexpression was induced by microinjection of the AAV-Nox4 vector. All groups measured paw mechanical withdrawal threshold (PMWT), paw thermal withdrawal latency (PTWL), and paw withdrawal cold duration (PWCD). The expression of Nox4, ACSL4, GPX4, and ROS was investigated by Western blot and immunofluorescence staining. The changes in iron content were detected by a tissue iron kit. The morphological changes in mitochondria were observed by transmission electron microscopy. In the SNI group, the paw mechanical withdrawal threshold, the paw withdrawal cold duration decreased, the paw thermal withdrawal latency did not change, the Nox4, ACSL4, ROS, and iron content increased, the GPX4 decreased, and the number of abnormal mitochondria increased. Methyl ferulic acid can increase PMWT and PWCD but does not affect PTWL. Methyl ferulic acid can inhibit Nox4 protein expression. Meanwhile, ferroptosis-related protein ACSL4 expression was decreased, GPX4 expression was increased, ROS, iron content and abnormal mitochondrial number were decreased. By overexpressing Nox4, the PMWT, PWCD, and ferroptosis of rats were more severe than those of the SNI group, but they could be reversed after treatment with methyl ferulic acid. In conclusion, methyl ferulic acid can alleviate neuropathic pain, which is related to Nox4-induced ferroptosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data of this study are available from the corresponding author upon reasonable request.

References

  1. Treede RD, Jensen TS, Campbell JN, Cruccu G, Dostrovsky JO, Griffin JW, Hansson P, Hughes R et al (2008) Neuropathic pain: redefinition and a grading system for clinical and research purposes. Neurology 70(18):1630–1635. https://doi.org/10.1212/01.wnl.0000282763.29778.59

    Article  CAS  PubMed  Google Scholar 

  2. Bouhassira D (2019) Neuropathic pain: definition, assessment and epidemiology. Rev Neurol (Paris) 175(1–2):16–25. https://doi.org/10.1016/j.neurol.2018.09.016

    Article  CAS  PubMed  Google Scholar 

  3. Cherif F, Zouari HG, Cherif W, Hadded M, Cheour M, Damak R (2020) Depression Prevalence in neuropathic pain and its impact on the quality of life. Pain Res Manag 2020:7408508. https://doi.org/10.1155/2020/7408508

    Article  PubMed  PubMed Central  Google Scholar 

  4. Colloca L, Ludman T, Bouhassira D, Baron R, Dickenson AH, Yarnitsky D, Freeman R, Truini A et al (2017) Neuropathic pain. Nat Rev Dis Primers 3:17002. https://doi.org/10.1038/nrdp.2017.2

    Article  PubMed  PubMed Central  Google Scholar 

  5. Alles SRA, Smith PA (2018) Etiology and pharmacology of neuropathic pain. Pharmacol Rev 70(2):315–347. https://doi.org/10.1124/pr.117.014399

    Article  CAS  PubMed  Google Scholar 

  6. Guo Y, Du J, Xiao C, Xiang P, Deng Y, Hei Z, Li X (2021) Inhibition of ferroptosis-like cell death attenuates neuropathic pain reactions induced by peripheral nerve injury in rats. Eur J Pain 25(6):1227–1240. https://doi.org/10.1002/ejp.1737

    Article  CAS  PubMed  Google Scholar 

  7. Jia S, Chen G, Liang Y, Liang X, Meng C (2021) GCH1-regulated miRNAs are potential targets for microglial activation in neuropathic pain. Biosci Rep 41(9). 10.1042/bsr20210051

  8. Tang Y, Liu C, Zhu T, Chen H, Sun Y, Zhang X, Zhao Q, Wu J et al (2022) Transcriptome profiles of IncRNA and mRNA highlight the role of ferroptosis in chronic neuropathic pain with memory impairment. Front Cell Dev Biol 10:843297. https://doi.org/10.3389/fcell.2022.843297

    Article  PubMed  PubMed Central  Google Scholar 

  9. Zhang X, Song T, Zhao M, Tao X, Zhang B, Sun C, Wang P, Wang K et al (2022) Sirtuin 2 alleviates chronic neuropathic pain by suppressing ferroptosis in rats. Front Pharmacol 13:827016. https://doi.org/10.3389/fphar.2022.827016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, Patel DN, Bauer AJ et al (2012) Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 149(5):1060–1072. https://doi.org/10.1016/j.cell.2012.03.042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chen GH, Song CC, Pantopoulos K, Wei XL, Zheng H, Luo Z (2022) Mitochondrial oxidative stress mediated Fe-induced ferroptosis via the NRF2-ARE pathway. Free Radic Biol Med 180:95–107. https://doi.org/10.1016/j.freeradbiomed.2022.01.012

    Article  CAS  PubMed  Google Scholar 

  12. Yang WS, SriRamaratnam R, Welsch ME, Shimada K, Skouta R, Viswanathan VS, Cheah JH, Clemons PA et al (2014) Regulation of ferroptotic cancer cell death by GPX4. Cell 156(1–2):317–331. https://doi.org/10.1016/j.cell.2013.12.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Doll S, Proneth B, Tyurina YY, Panzilius E, Kobayashi S, Ingold I, Irmler M, Beckers J et al (2017) ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition. Nat Chem Biol 13(1):91–98. https://doi.org/10.1038/nchembio.2239

    Article  CAS  PubMed  Google Scholar 

  14. Wang H, Huo X, Han C, Ning J, Chen H, Li B, Liu J, Ma W et al (2021) Ferroptosis is involved in the development of neuropathic pain and allodynia. Mol Cell Biochem 476(8):3149–3161. https://doi.org/10.1007/s11010-021-04138-w

    Article  CAS  PubMed  Google Scholar 

  15. Bedard K, Krause KH (2007) The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev 87(1):245–313. https://doi.org/10.1152/physrev.00044.2005

    Article  CAS  PubMed  Google Scholar 

  16. Serrander L, Cartier L, Bedard K, Banfi B, Lardy B, Plastre O, Sienkiewicz A, Fórró L et al (2007) NOX4 activity is determined by mRNA levels and reveals a unique pattern of ROS generation. Biochem J 406(1):105–114. https://doi.org/10.1042/bj20061903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Park MW, Cha HW, Kim J, Kim JH, Yang H, Yoon S, Boonpraman N, Yi SS et al (2021) NOX4 promotes ferroptosis of astrocytes by oxidative stress-induced lipid peroxidation via the impairment of mitochondrial metabolism in Alzheimer’s diseases. Redox Biol 41:101947. https://doi.org/10.1016/j.redox.2021.101947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yang WH, Ding CC, Sun T, Rupprecht G, Lin CC, Hsu D, Chi JT (2019) The hippo pathway effector TAZ regulates ferroptosis in renal cell carcinoma. Cell Rep 28(10):2501-2508.e2504. https://doi.org/10.1016/j.celrep.2019.07.107

    Article  CAS  PubMed  Google Scholar 

  19. Miao F, Wang R, Cui G, Li X, Wang T, Li X (2019) Engagement of microRNA-155 in exaggerated oxidative stress signal and TRPA1 in the dorsal horn of the spinal cord and neuropathic pain during chemotherapeutic oxaliplatin. Neurotox Res 36(4):712–723. https://doi.org/10.1007/s12640-019-00039-5

    Article  CAS  PubMed  Google Scholar 

  20. Cheng Q, Li C, Yang CF, Zhong YJ, Wu D, Shi L, Chen L, Li YW et al (2019) Methyl ferulic acid attenuates liver fibrosis and hepatic stellate cell activation through the TGF-β1/Smad and NOX4/ROS pathways. Chem Biol Interact 299:131–139. https://doi.org/10.1016/j.cbi.2018.12.006

    Article  CAS  PubMed  Google Scholar 

  21. Cheng Q, Li YW, Yang CF, Zhong YJ, He H, Zhu FC, Li L (2018) Methyl ferulic acid attenuates ethanol-induced hepatic steatosis by regulating AMPK and FoxO1 pathways in rats and L-02 cells. Chem Biol Interact 291:180–189. https://doi.org/10.1016/j.cbi.2018.06.028

    Article  CAS  PubMed  Google Scholar 

  22. Li C, Li L, Yang CF, Zhong YJ, Wu D, Shi L, Chen L, Li YW (2017) Hepatoprotective effects of Methyl ferulic acid on alcohol-induced liver oxidative injury in mice by inhibiting the NOX4/ROS-MAPK pathway. Biochem Biophys Res Commun 493(1):277–285. https://doi.org/10.1016/j.bbrc.2017.09.030

    Article  CAS  PubMed  Google Scholar 

  23. Li L, Zhong Y, Ma Z, Yang C, Wei H, Chen L, Li C, Wu D et al (2018) Methyl ferulic acid exerts anti-apoptotic effects on L-02 cells via the ROS-mediated signaling pathway. Int J Oncol 53(1):225–236. https://doi.org/10.3892/ijo.2018.4379

    Article  CAS  PubMed  Google Scholar 

  24. Xu ZZ, Chen QY, Deng SY, Zhang M, Tan CY, Yang W, Ma KT, Li L et al (2019) 17β-estradiol attenuates neuropathic pain caused by spared nerve injury by upregulating CIC-3 in the dorsal root ganglion of ovariectomized rats. Front Neurosci 13:1205. https://doi.org/10.3389/fnins.2019.01205

    Article  PubMed  PubMed Central  Google Scholar 

  25. Chaplan SR, Bach FW, Pogrel JW, Chung JM, Yaksh TL (1994) Quantitative assessment of tactile allodynia in the rat paw. J Neurosci Methods 53(1):55–63. https://doi.org/10.1016/0165-0270(94)90144-9

    Article  CAS  PubMed  Google Scholar 

  26. Xu X, Fu S, Shi X, Liu R (2019) Microglial BDNF, PI3K, and p-ERK in the spinal cord are suppressed by pulsed radiofrequency on dorsal root ganglion to ease SNI-induced neuropathic pain in rats. Pain Res Manag 2019:5948686. https://doi.org/10.1155/2019/5948686

    Article  PubMed  PubMed Central  Google Scholar 

  27. Brenner DS, Golden JP, Vogt SK, Gereau RWt (2015) A simple and inexpensive method for determining cold sensitivity and adaptation in mice. J Vis Exp(97). https://doi.org/10.3791/52640

  28. Xiang H, Liu Z, Wang F, Xu H, Roberts C, Fischer G, Stucky C, Caron D et al (2017) Primary sensory neuron-specific interference of TRPV1 signaling by AAV-encoded TRPV1 peptide aptamer attenuates neuropathic pain. Mol Pain 13:1744806917717040. https://doi.org/10.1177/1744806917717040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Shinu P, Morsy MA, Nair AB, Mouslem AKA, Venugopala KN, Goyal M, Bansal M, Jacob S et al. (2022) Novel Therapies for the treatment of neuropathic pain: potential and pitfalls. J Clin Med 11(11). https://doi.org/10.3390/jcm11113002

  30. Roch G, Batallé G, Bai X, Pouso-Vázquez E, Rodríguez L, Pol O (2022) The beneficial effects of heme oxygenase 1 and hydrogen sulfide activation in the management of neuropathic pain, anxiety- and depressive-like effects of paclitaxel in mice. Antioxidants (Basel) 11(1). https://doi.org/10.3390/antiox11010122

  31. Zhao X, Liu L, Wang Y, Wang G, Zhao Y, Zhang Y (2019) Electroacupuncture enhances antioxidative signal pathway and attenuates neuropathic pain induced by chemotherapeutic paclitaxel. Physiol Res 68(3):501–510. https://doi.org/10.33549/physiolres.934084

    Article  CAS  PubMed  Google Scholar 

  32. Yang C, Li L, Ma Z, Zhong Y, Pang W, Xiong M, Fang S, Li Y (2018) Hepatoprotective effect of methyl ferulic acid against carbon tetrachloride-induced acute liver injury in rats. Exp Ther Med 15(3):2228–2238. https://doi.org/10.3892/etm.2017.5678

    Article  CAS  PubMed  Google Scholar 

  33. Decosterd I, Woolf CJ (2000) Spared nerve injury: an animal model of persistent peripheral neuropathic pain. Pain 87(2):149–158. https://doi.org/10.1016/s0304-3959(00)00276-1

    Article  PubMed  Google Scholar 

  34. Xu Z, Xie W, Feng Y, Wang Y, Li X, Liu J, Xiong Y, He Y et al (2022) Positive interaction between GPER and β-alanine in the dorsal root ganglion uncovers potential mechanisms: mediating continuous neuronal sensitization and neuroinflammation responses in neuropathic pain. J Neuroinflammation 19(1):164. https://doi.org/10.1186/s12974-022-02524-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Fu CN, Wei H, Gao WS, Song SS, Yue SW, Qu YJ (2021) Obesity increases neuropathic pain via the AMPK-ERK-NOX4 pathway in rats. Aging (Albany NY) 13(14):18606–18619. https://doi.org/10.18632/aging.203305

    Article  CAS  PubMed  Google Scholar 

  36. Li D, Song C, Zhang J, Zhao X (2022) ROS and iron homeostasis dependent ferroptosis play a vital role in 5-Fluorouracil induced cardiotoxicity in vitro and in vivo. Toxicology 468:153113. https://doi.org/10.1016/j.tox.2022.153113

    Article  CAS  PubMed  Google Scholar 

  37. Liu Y, Li L, Yang Z, Wen D, Hu Z (2022) Circular RNA circACAP2 suppresses ferroptosis of cervical cancer during malignant progression by miR-193a-5p/GPX4. J Oncol 2022:5228874. https://doi.org/10.1155/2022/5228874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Poursaitidis I, Wang X, Crighton T, Labuschagne C, Mason D, Cramer SL, Triplett K, Roy R et al (2017) Oncogene-selective sensitivity to synchronous cell death following modulation of the amino acid nutrient cystine. Cell Rep 18(11):2547–2556. https://doi.org/10.1016/j.celrep.2017.02.054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Dong G, Huang X, Chen R, Wu L, Jiang S, Chen S (2022) Increased PD-L1 restricts liver injury in nonalcoholic fatty liver disease. Oxid Med Cell Longev 2022:5954437. https://doi.org/10.1155/2022/5954437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank American Journal Experts (www.aje.com) for its linguistic assistance during the preparation of this manuscript.

Funding

This study was supported by the National Natural Science Foundation of China (No. 82160235) and the Scientific Research Project of Shihezi University (No. ZZZC202068A).

Author information

Authors and Affiliations

Authors

Contributions

J-W Y, R-X W, and Z-G D contributed to the study design and revised the manuscript. T-L L, W-Q Q, and L J conducted the experiment and collected and analyzed the data. K-T M, J-Q S, J-T Y, and Y-J Z provided assistance in performing the experiments. T-L L and R-X W wrote the manuscript. All authors gave final approval of the manuscript.

Corresponding author

Correspondence to Jiangwen Yin.

Ethics declarations

Ethics approval

All protocols complied with the Animal Research Committee by Shihezi University (Protocol A2021-074–01).

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, T., Wang, R., Qi, W. et al. Methyl Ferulic Acid Alleviates Neuropathic Pain by Inhibiting Nox4-induced Ferroptosis in Dorsal Root Ganglia Neurons in Rats. Mol Neurobiol 60, 3175–3189 (2023). https://doi.org/10.1007/s12035-023-03270-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-023-03270-6

Keywords

Navigation