Skip to main content

Advertisement

Log in

Interaction Between the Glymphatic System and α-Synuclein in Parkinson’s Disease

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

The glymphatic system contributes to the clearance of amyloid-β from the brain and is disrupted in Alzheimer’s disease. However, whether the system is involved in the removal of α-synuclein (α-syn) and whether it is suppressed in Parkinson’s disease (PD) remain largely unknown. In mice receiving the intranigral injection of recombinant human α-syn, we found that the glymphatic suppression via aquaporin-4 (AQP4) gene deletion or acetazolamide treatment reduced the clearance of injected α-syn from the brain. In mice overexpressing the human A53T-α-syn, we revealed that AQP4 deficiency accelerated the accumulation of α-syn, facilitated the loss of dopaminergic neurons, and accelerated PD-like symptoms. We also found that the overexpression of A53T-α-syn reduced the expression/polarization of AQP4 and suppressed the glymphatic activity of mice. The study demonstrates a close interaction between the AQP4-mediated glymphatic system and parenchymal α-syn, indicating that restoring the glymphatic activity is a potential therapeutic target to delay PD progression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

All data generated or analyzed during the current study are included in this article.

Abbreviations

AQP4:

Aquaporin-4

α-syn:

α-Synuclein

PD:

Parkinson’s disease

AD:

Alzheimer’s disease

SN:

Substantia Nigra

LB:

Lewy body

LN:

Lewy neurite

CSF:

Cerebrospinal fluid

ISF:

Interstitial fluid

Aβ:

Amyloid-β

AAV:

Adeno-associated virus

AZA:

Acetazolamide

CM:

Cistern magna

OA-45:

Alexa 555-conjugated ovalbumin

PBS:

Phosphate-buffered saline

PFA:

Paraformaldehyde

DAPI:

DNase I and 4′,6-diamidine-2′-phenylindole dihydrochloride

NeuN:

Neuronal nuclei

GFAP:

Glial fibrillary acidic protein

Iba1:

Ionized calcium-binding adapter molecule 1

TH:

Tyrosine hydroxylase

TNF-α:

Tumor necrosis factor-α

IL-6:

Interleukin-6

NC:

Un-injected control

References

  1. Maiti P, Manna J, Dunbar GL (2017) Current understanding of the molecular mechanisms in Parkinson’s disease: targets for potential treatments. Transl Neurodegener 6:28

    PubMed  PubMed Central  Google Scholar 

  2. Wakabayashi K et al (2013) The Lewy body in Parkinson’s disease and related neurodegenerative disorders. Mol Neurobiol 47(2):495–508

    CAS  PubMed  Google Scholar 

  3. Spillantini MG et al (1997) Alpha-Synuclein in Lewy bodies. Nature 388(6645):839–840

    CAS  PubMed  Google Scholar 

  4. Singleton AB et al (2003) Alpha-Synuclein locus triplication causes Parkinson’s disease. Science 302(5646):841

    CAS  PubMed  Google Scholar 

  5. Polymeropoulos MH et al (1997) Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease. Science 276(5321):2045–2047

    CAS  PubMed  Google Scholar 

  6. Kruger R et al (1998) Ala30Pro mutation in the gene encoding alpha-synuclein in Parkinson’s disease. Nat Genet 18(2):106–108

    CAS  PubMed  Google Scholar 

  7. Zarranz JJ et al (2004) The new mutation, E46K, of alpha-synuclein causes Parkinson and Lewy body dementia. Ann Neurol 55(2):164–173

    CAS  PubMed  Google Scholar 

  8. Lee HJ, Bae EJ, Lee SJ (2014) Extracellular alpha–synuclein-a novel and crucial factor in Lewy body diseases. Nat Rev Neurol 10(2):92–98

    CAS  PubMed  Google Scholar 

  9. Wang T, Hay JC (2015) Alpha-synuclein toxicity in the early secretory pathway: how it drives neurodegeneration in Parkinsons disease. Front Neurosci 9:433

    PubMed  PubMed Central  Google Scholar 

  10. Villar-Pique A, Lopes da Fonseca T, Outeiro TF (2016) Structure, function and toxicity of alpha-synuclein: the Bermuda triangle in synucleinopathies. J Neurochem 139 Suppl 1:240–255

    PubMed  Google Scholar 

  11. Abeliovich A, Gitler AD (2016) Defects in trafficking bridge Parkinson’s disease pathology and genetics. Nature 539(7628):207–216

    PubMed  Google Scholar 

  12. Tambasco N et al (2016) A53T in a parkinsonian family: a clinical update of the SNCA phenotypes. J Neural Transm (Vienna) 123(11):1301–1307

    CAS  PubMed  Google Scholar 

  13. Lehtonen S et al (2019) Dysfunction of cellular proteostasis in Parkinson’s disease. Front Neurosci 13:457

    PubMed  PubMed Central  Google Scholar 

  14. Webb JL et al (2003) Alpha-synuclein is degraded by both autophagy and the proteasome. J Biol Chem 278(27):25009–25013

    CAS  PubMed  Google Scholar 

  15. Ebrahimi-Fakhari D et al (2011) Distinct roles in vivo for the ubiquitin-proteasome system and the autophagy-lysosomal pathway in the degradation of alpha-synuclein. J Neurosci 31(41):14508–14520

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Zou W et al (2019) Blocking meningeal lymphatic drainage aggravates Parkinson’s disease-like pathology in mice overexpressing mutated alpha-synuclein. Transl Neurodegener 8:7

    PubMed  PubMed Central  Google Scholar 

  17. Cui H et al (2021) Decreased AQP4 expression aggravates a-synuclein pathology in Parkinson’s disease mice, possibly via impaired glymphatic clearance. J Mol Neurosci 71(12):2500–2513

    CAS  PubMed  Google Scholar 

  18. Iliff JJ et al (2012) A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid beta. Sci Transl Med 4(147):147ra111

    PubMed  PubMed Central  Google Scholar 

  19. Benveniste H, Lee H, Volkow ND (2017) The glymphatic pathway: waste removal from the CNS via cerebrospinal fluid transport. Neuroscientist 23(5):454–465

    PubMed  PubMed Central  Google Scholar 

  20. Iliff JJ et al (2014) Impairment of glymphatic pathway function promotes tau pathology after traumatic brain injury. J Neurosci 34(49):16180–16193

    PubMed  PubMed Central  Google Scholar 

  21. Harrison IF et al (2020) Impaired glymphatic function and clearance of tau in an Alzheimer’s disease model. Brain 143(8):2576–2593

    PubMed  PubMed Central  Google Scholar 

  22. Aspelund A et al (2015) A dural lymphatic vascular system that drains brain interstitial fluid and macromolecules. J Exp Med 212(7):991–999

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Sun BL et al (2018) Lymphatic drainage system of the brain: a novel target for intervention of neurological diseases. Prog Neurobiol 163–164:118–143

    PubMed  Google Scholar 

  24. Nagelhus EA, Ottersen OP (2013) Physiological roles of aquaporin-4 in brain. Physiol Rev 93(4):1543–1562

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Mestre H, Hablitz LM, Xavier AL, Feng W, Zou W, Pu T, Monai H, Murlidharan G, Castellanos Rivera RM, Simon MJ, Pike MM, Plá V, Du T, Kress BT, Wang X, Plog BA, Thrane AS, Lundgaard I, Abe Y, Yasui M, Thomas JH, Xiao M, Hirase H, Asokan A, Iliff JJ, Nedergaard M (2018) Aquaporin-4-dependent glymphatic solute transport in the rodent brain. Elife 7:e40070. https://doi.org/10.7554/eLife.40070

  26. Xu Z et al (2015) Deletion of aquaporin-4 in APP/PS1 mice exacerbates brain Abeta accumulation and memory deficits. Mol Neurodegener 10:58

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Kress BT et al (2014) Impairment of paravascular clearance pathways in the aging brain. Ann Neurol 76(6):845–861

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Hadjihambi A et al (2019) Impaired brain glymphatic flow in experimental hepatic encephalopathy. J Hepatol 70(1):40–49

    CAS  PubMed  Google Scholar 

  29. Zeppenfeld DM et al (2017) Association of perivascular localization of Aquaporin-4 with cognition and Alzheimer disease in aging brains. JAMA Neurol 74(1):91–99

    PubMed  Google Scholar 

  30. Peng W et al (2016) Suppression of glymphatic fluid transport in a mouse model of Alzheimer’s disease. Neurobiol Dis 93:215–225

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Thenral ST, Vanisree AJ (2012) Peripheral assessment of the genes AQP4, PBP and TH in patients with Parkinson’s disease. Neurochem Res 37(3):512–515

    PubMed  Google Scholar 

  32. Hoshi A et al (2017) Expression of Aquaporin 1 and Aquaporin 4 in the temporal neocortex of patients with Parkinson’s disease. Brain Pathol 27(2):160–168

    CAS  PubMed  Google Scholar 

  33. Gu XL et al (2010) Astrocytic expression of Parkinson’s disease-related A53T alpha-synuclein causes neurodegeneration in mice. Mol Brain 3:12

    PubMed  PubMed Central  Google Scholar 

  34. Fan Z et al (2016) MicroRNA-7 enhances subventricular zone neurogenesis by inhibiting NLRP3/Caspase-1 axis in adult neural stem cells. Mol Neurobiol 53(10):7057–7069

    CAS  PubMed  Google Scholar 

  35. Lundgaard I et al (2017) Glymphatic clearance controls state-dependent changes in brain lactate concentration. J Cereb Blood Flow Metab 37(6):2112–2124

    CAS  PubMed  Google Scholar 

  36. Tanimura Y, Hiroaki Y, Fujiyoshi Y (2009) Acetazolamide reversibly inhibits water conduction by aquaporin-4. J Struct Biol 166(1):16–21

    CAS  PubMed  Google Scholar 

  37. Kamegawa A et al (2016) Two-dimensional crystal structure of aquaporin-4 bound to the inhibitor acetazolamide. Microscopy (Oxf) 65(2):177–184

    CAS  PubMed  Google Scholar 

  38. Zhang C et al (2018) Characterizing the glymphatic influx by utilizing intracisternal infusion of fluorescently conjugated cadaverine. Life Sci 201:150–160

    CAS  PubMed  Google Scholar 

  39. Shiotsuki H et al (2010) A rotarod test for evaluation of motor skill learning. J Neurosci Methods 189(2):180–185

    PubMed  Google Scholar 

  40. Witt RM, Galligan MM, Despinoy JR, Segal R (2009) Olfactory behavioral testing in the adult mouse. J Vis Exp (23):949. https://doi.org/10.3791/949

  41. He X-Z, Li X, Li Z-H, Meng J-C, Mao R-T, Zhang X-K, Zhang R-T, Huang H-L, Gui Q, Xu G-Y, Wang L-H (2022) High-resolution 3D demonstration of regional heterogeneity in the glymphatic system. J Cereb Blood Flow Metab 42(11):2017–2031. https://doi.org/10.1177/0271678X221109997

  42. Battistella R, Kritsilis M, Matuskova H, Haswell D, Cheng AX, Meissner A, Nedergaard M, Lundgaard I (2021) Not all lectins are equally suitable for labeling rodent vasculature. Int J Mol Sci 22(21):11554. https://doi.org/10.3390/ijms222111554

  43. Zhang Y et al (2020) Quantitative determination of glymphatic flow using spectrophotofluorometry. Neurosci Bull 36(12):1524–1537

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Wei F et al (2019) Chronic stress impairs the aquaporin-4-mediated glymphatic transport through glucocorticoid signaling. Psychopharmacology 236(4):1367–1384

    CAS  PubMed  Google Scholar 

  45. Camassa LMA et al (2015) Mechanisms underlying AQP4 accumulation in astrocyte endfeet. Glia 63(11):2073–2091

    PubMed  Google Scholar 

  46. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25(4):402–408

    CAS  PubMed  Google Scholar 

  47. Anderson JP et al (2006) Phosphorylation of Ser-129 is the dominant pathological modification of alpha-synuclein in familial and sporadic Lewy body disease. J Biol Chem 281(40):29739–29752

    CAS  PubMed  Google Scholar 

  48. Maroteaux L, Campanelli JT, Scheller RH (1988) Synuclein: a neuron-specific protein localized to the nucleus and presynaptic nerve terminal. J Neurosci 8(8):2804–2815

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Grozdanov V, Danzer KM (2018) Release and uptake of pathologic alpha-synuclein. Cell Tissue Res 373(1):175–182

    CAS  PubMed  Google Scholar 

  50. Rodriguez L, Marano MM, Tandon A (2018) Import and export of misfolded alpha-Synuclein. Front Neurosci 12:344

    PubMed  PubMed Central  Google Scholar 

  51. Oueslati A, Ximerakis M, Vekrellis K (2014) Protein transmission, seeding and degradation: key steps for alpha-Synuclein prion-like propagation. Exp Neurobiol 23(4):324–336

    PubMed  PubMed Central  Google Scholar 

  52. Ma J et al (2019) Prion-like mechanisms in Parkinson’s disease. Front Neurosci 13:552

    PubMed  PubMed Central  Google Scholar 

  53. Lopes DM, Llewellyn SK, Harrison IF (2022) Propagation of tau and alpha-synuclein in the brain: therapeutic potential of the glymphatic system. Transl Neurodegener 11(1):19

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Xue X et al (2019) Aquaporin-4 deficiency reduces TGF-beta1 in mouse midbrains and exacerbates pathology in experimental Parkinson’s disease. J Cell Mol Med 23(4):2568–2582

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Nakamura K et al (2016) Accumulation of phosphorylated alpha-synuclein in subpial and periventricular astrocytes in multiple system atrophy of long duration. Neuropathology 36(2):157–167

    CAS  PubMed  Google Scholar 

  56. Hoddevik EH et al (2017) Factors determining the density of AQP4 water channel molecules at the brain-blood interface. Brain Struct Funct 222(4):1753–1766

    CAS  PubMed  Google Scholar 

  57. Nicchia GP et al (2008) Dystrophin-dependent and -independent AQP4 pools are expressed in the mouse brain. Glia 56(8):869–876

    PubMed  Google Scholar 

  58. Noell S et al (2011) Evidence for a role of dystroglycan regulating the membrane architecture of astroglial endfeet. Eur J Neurosci 33(12):2179–2186

    PubMed  PubMed Central  Google Scholar 

  59. Zhou Y et al (2020) Impairment of the glymphatic pathway and putative meningeal lymphatic vessels in the aging human. Ann Neurol 87(3):357–369

    CAS  PubMed  Google Scholar 

  60. Mestre H et al (2018) Flow of cerebrospinal fluid is driven by arterial pulsations and is reduced in hypertension. Nat Commun 9(1):4878

    PubMed  PubMed Central  Google Scholar 

  61. Mortensen KN et al (2019) Impaired glymphatic transport in spontaneously hypertensive rats. J Neurosci 39(32):6365–6377

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Xia M et al (2017) Mechanism of depression as a risk factor in the development of Alzheimer’s disease: the function of AQP4 and the glymphatic system. Psychopharmacology 234(3):365–379

    CAS  PubMed  Google Scholar 

  63. Rainey-Smith SR et al (2018) Genetic variation in Aquaporin-4 moderates the relationship between sleep and brain Abeta-amyloid burden. Transl Psychiatry 8(1):47

    PubMed  PubMed Central  Google Scholar 

  64. Lee H et al (2015) The effect of body posture on brain glymphatic transport. J Neurosci 35(31):11034–11044

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Lundgaard I et al (2018) Beneficial effects of low alcohol exposure, but adverse effects of high alcohol intake on glymphatic function. Sci Rep 8(1):2246

    PubMed  PubMed Central  Google Scholar 

  66. He XF et al (2017) Voluntary exercise promotes glymphatic clearance of amyloid beta and reduces the activation of astrocytes and microglia in aged mice. Front Mol Neurosci 10:144

    PubMed  PubMed Central  Google Scholar 

  67. Ren H et al (2017) Omega-3 polyunsaturated fatty acids promote amyloid-beta clearance from the brain through mediating the function of the glymphatic system. FASEB J 31(1):282–293

    CAS  PubMed  Google Scholar 

  68. Zhang J et al (2017) Intermittent fasting protects against Alzheimer’s disease possible through restoring Aquaporin-4 polarity. Front Mol Neurosci 10:395

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to Prof. Guang-Yin Xu for helpful discussion and technical support.

Funding

This work was supported by the National Natural Science Foundation of China (31871167), Shanghai Key Laboratory of Psychotic Disorders Open Grant (13dz2260500), Suzhou Science and Technology Research Project (SKJY2021121), and Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Contributions

YZ, CZ, XZH, ZHL, JCM, RTM, and RX performed experiments, YZ and CZ analyzed data and made figures, XL drew the schematic diagrams, QG and GXZ edited the paper, and LHW designed research and wrote the paper. All authors have read and approved the final manuscript.

Corresponding author

Correspondence to Lin-Hui Wang.

Ethics declarations

Ethics Approval

All procedures were approved by the Committee on Animal Resources of Soochow University. All efforts were made to reduce the number and suffering of animals to a minimum.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Zhang, C., He, XZ. et al. Interaction Between the Glymphatic System and α-Synuclein in Parkinson’s Disease. Mol Neurobiol 60, 2209–2222 (2023). https://doi.org/10.1007/s12035-023-03212-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-023-03212-2

Keywords

Navigation