Skip to main content
Log in

Mendelian Randomization Analysis Reveals No Causal Relationship Between Plasma α-Synuclein and Parkinson’s Disease

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

So far, the studies exploring plasma α-synuclein as a biomarker of Parkinson’s disease (PD) have provided contradictory results. Here, we first employed the Mendelian randomization (MR) approach to elucidate their potential causal relationship. Five genetic instrumental variables of plasma α-synuclein were acquired from two publicly available datasets. Three independent genome-wide association studies of PD were used as outcome cohorts (PD cohorts 1, 2, and 3). Two-sample MR analyses were conducted using inverse-variance weighted (IVW), MR-Egger, weighted median, simple mode, and leave-one-out methods. Though the IVW approach demonstrated positive plasma α-synuclein effect on the PD risk in three outcome cohorts (OR = 1.134, 1.164, and 1.189, respectively), the P values were all larger than 0.05. The conclusions were robust under complementary sensitivity analyses. Our results did not support the causal relationship between plasma α-synuclein and PD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

The relevant GWAS summary statistics used in this work were publicly available, and the source was described appropriately in the main text.

References

  1. de Lau LM et al (2004) Incidence of parkinsonism and Parkinson disease in a general population: the Rotterdam Study. Neurology 63(7):1240–1244

    PubMed  Google Scholar 

  2. Surmeier DJ, Obeso JA, Halliday GM (2017) Selective neuronal vulnerability in Parkinson disease. Nat Rev Neurosci 18(2):101–113

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Poewe W et al (2017) Parkinson disease. Nat Rev Dis Primers 3:17013

    PubMed  Google Scholar 

  4. Tarsy D (2012) Treatment of Parkinson disease: a 64-year-old man with motor complications of advanced Parkinson disease. JAMA 307(21):2305–2314

    CAS  PubMed  Google Scholar 

  5. GBD 2016 Parkinson’s Disease Collaborators (2018) Global, regional, and national burden of Parkinson’s disease, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol 17(11):939–953

  6. Obeso JA et al (2017) Past, present, and future of Parkinson’s disease: a special essay on the 200th Anniversary of the Shaking Palsy. Mov Disord 32(9):1264–1310

  7. Armstrong MJ, Okun MS (2020) Diagnosis and treatment of Parkinson disease: a review. JAMA 323(6):548–560

    PubMed  Google Scholar 

  8. Kowal SL et al (2013) The current and projected economic burden of Parkinson’s disease in the United States. Mov Disord 28(3):311–318

    PubMed  Google Scholar 

  9. Ruppert MC et al (2021) The default mode network and cognition in Parkinson’s disease: a multimodal resting-state network approach. Hum Brain Mapp 42(8):2623–2641

    PubMed  PubMed Central  Google Scholar 

  10. Atik A, Stewart T, Zhang J (2016) Alpha-synuclein as a biomarker for Parkinson’s disease. Brain Pathol 26(3):410–418

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Iwai A et al (1995) The precursor protein of non-A beta component of Alzheimer’s disease amyloid is a presynaptic protein of the central nervous system. Neuron 14(2):467–475

    CAS  PubMed  Google Scholar 

  12. Spillantini MG et al (1997) Alpha-synuclein in Lewy bodies. Nature 388(6645):839–840

    CAS  PubMed  Google Scholar 

  13. Fusco G, Chen SW (2017) Structural basis of membrane disruption and cellular toxicity by α-synuclein oligomers. Science 358(6369):1440–1443

  14. Olanow CW, Brundin P (2013) Parkinson’s disease and alpha synuclein: is Parkinson’s disease a prion-like disorder? Mov Disord 28(1):31–40

    CAS  PubMed  Google Scholar 

  15. Polymeropoulos MH et al (1997) Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease. Science 276(5321):2045–2047

    CAS  PubMed  Google Scholar 

  16. Ibáñez P et al (2004) Causal relation between alpha-synuclein gene duplication and familial Parkinson’s disease. Lancet 364(9440):1169–1171

    PubMed  Google Scholar 

  17. Kalia LV (2019) Diagnostic biomarkers for Parkinson’s disease: focus on α-synuclein in cerebrospinal fluid. Parkinsonism Relat Disord 59:21–25

    PubMed  Google Scholar 

  18. Parnetti L et al (2019) CSF and blood biomarkers for Parkinson’s disease. Lancet Neurol 18(6):573–586

    CAS  PubMed  Google Scholar 

  19. Kang JH et al (2016) CSF biomarkers associated with disease heterogeneity in early Parkinson’s disease: the Parkinson’s Progression Markers Initiative study. Acta Neuropathol 131(6):935–949

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Mollenhauer B et al (2017) Longitudinal CSF biomarkers in patients with early Parkinson disease and healthy controls. Neurology 89(19):1959–1969

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Shahnawaz M et al (2017) Development of a biochemical diagnosis of Parkinson disease by detection of α-synuclein misfolded aggregates in cerebrospinal fluid. JAMA Neurol 74(2):163–172

    PubMed  Google Scholar 

  22. Abd Elhadi S et al (2019) α-Synuclein in blood cells differentiates Parkinson’s disease from healthy controls. Ann Clin Transl Neurol 6(12):2426–2436

  23. Miller DW et al (2004) Alpha-synuclein in blood and brain from familial Parkinson disease with SNCA locus triplication. Neurology 62(10):1835–1838

    CAS  PubMed  Google Scholar 

  24. Lee PH et al (2006) The plasma alpha-synuclein levels in patients with Parkinson’s disease and multiple system atrophy. J Neural Transm (Vienna) 113(10):1435–1439

    CAS  PubMed  Google Scholar 

  25. Duran R et al (2010) Plasma alpha-synuclein in patients with Parkinson’s disease with and without treatment. Mov Disord 25(4):489–493

    PubMed  Google Scholar 

  26. Li QX et al (2007) Plasma alpha-synuclein is decreased in subjects with Parkinson’s disease. Exp Neurol 204(2):583–588

    CAS  PubMed  Google Scholar 

  27. Park MJ et al (2011) Elevated levels of α-synuclein oligomer in the cerebrospinal fluid of drug-naïve patients with Parkinson’s disease. J Clin Neurol 7(4):215–222

    PubMed  PubMed Central  Google Scholar 

  28. Goldman JG et al (2018) Cerebrospinal fluid, plasma, and saliva in the BioFIND study: relationships among biomarkers and Parkinson’s disease Features. Mov Disord 33(2):282–288

    CAS  PubMed  Google Scholar 

  29. Mollenhauer B et al (2011) α-Synuclein and tau concentrations in cerebrospinal fluid of patients presenting with parkinsonism: a cohort study. Lancet Neurol 10(3):230–240

    CAS  PubMed  Google Scholar 

  30. Davey Smith G, Hemani G (2014) Mendelian randomization: genetic anchors for causal inference in epidemiological studies. Hum Mol Genet 23(R1):R89-98

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Yarmolinsky J et al (2018) Causal inference in cancer epidemiology: what is the role of Mendelian randomization? Cancer Epidemiol Biomarkers Prev 27(9):995–1010

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Sekula P et al (2016) Mendelian randomization as an approach to assess causality using observational data. J Am Soc Nephrol 27(11):3253–3265

    PubMed  PubMed Central  Google Scholar 

  33. Ferkingstad E et al (2021) Large-scale integration of the plasma proteome with genetics and disease. Nat Genet 53(12):1712–1721

    CAS  PubMed  Google Scholar 

  34. Sun BB et al (2018) Genomic atlas of the human plasma proteome. Nature 558(7708):73–79

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Hemani G et al (2018) The MR-Base platform supports systematic causal inference across the human phenome. Elife 7:e34408

  36. Fuchs J et al (2007) Phenotypic variation in a large Swedish pedigree due to SNCA duplication and triplication. Neurology 68(12):916–922

    CAS  PubMed  Google Scholar 

  37. Burgess S, Butterworth A, Thompson SG (2013) Mendelian randomization analysis with multiple genetic variants using summarized data. Genet Epidemiol 37(7):658–665

    PubMed  PubMed Central  Google Scholar 

  38. Nalls MA et al (2019) Identification of novel risk loci, causal insights, and heritable risk for Parkinson’s disease: a meta-analysis of genome-wide association studies. Lancet Neurol 18(12):1091–1102

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Simón-Sánchez J et al (2009) Genome-wide association study reveals genetic risk underlying Parkinson’s disease. Nat Genet 41(12):1308–1312

    PubMed  PubMed Central  Google Scholar 

  40. Elsworth B et al (2020) The MRC IEU OpenGWAS data infrastructure. bioRxiv

  41. Burgess S et al (2020) Guidelines for performing Mendelian randomization investigations. Wellcome Open Res 4:186–186

    PubMed  PubMed Central  Google Scholar 

  42. Vázquez-Vélez GE, Zoghbi HY (2021) Parkinson’s disease genetics and pathophysiology. Annu Rev Neurosci 44:87–108

    PubMed  Google Scholar 

  43. Diaz-Ortiz ME, Seo Y (2022) GPNMB confers risk for Parkinson’s disease through interaction with α-synuclein. Science 377(6608):eabk0637

  44. Choi BK et al (2013) Large α-synuclein oligomers inhibit neuronal SNARE-mediated vesicle docking. Proc Natl Acad Sci U S A 110(10):4087–4092

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Colla E et al (2012) Accumulation of toxic α-synuclein oligomer within endoplasmic reticulum occurs in α-synucleinopathy in vivo. J Neurosci 32(10):3301–3305

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Zarranz JJ et al (2004) The new mutation, E46K, of alpha-synuclein causes Parkinson and Lewy body dementia. Ann Neurol 55(2):164–173

    CAS  PubMed  Google Scholar 

  47. Krüger R et al (1998) Ala30Pro mutation in the gene encoding alpha-synuclein in Parkinson’s disease. Nat Genet 18(2):106–108

    PubMed  Google Scholar 

  48. Appel-Cresswell S et al (2013) Alpha-synuclein p.H50Q, a novel pathogenic mutation for Parkinson’s disease. Mov Disord 28(6):811–3

    CAS  PubMed  Google Scholar 

  49. Lesage S et al (2013) G51D α-synuclein mutation causes a novel parkinsonian-pyramidal syndrome. Ann Neurol 73(4):459–471

    CAS  PubMed  Google Scholar 

  50. Pasanen P et al (2014) Novel α-synuclein mutation A53E associated with atypical multiple system atrophy and Parkinson’s disease-type pathology. Neurobiol Aging 35(9):2180.e1–5

    CAS  PubMed  Google Scholar 

  51. Chartier-Harlin MC et al (2004) Alpha-synuclein locus duplication as a cause of familial Parkinson’s disease. Lancet 364(9440):1167–1169

    CAS  PubMed  Google Scholar 

  52. Luk KC et al (2012) Pathological α-synuclein transmission initiates Parkinson-like neurodegeneration in nontransgenic mice. Science 338(6109):949–953

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Stefanis L (2012) α-Synuclein in Parkinson’s disease. Cold Spring Harb Perspect Med 2(2):a009399

    PubMed  PubMed Central  Google Scholar 

  54. Olanow CW, Prusiner SB (2009) Is Parkinson’s disease a prion disorder? Proc Natl Acad Sci U S A 106(31):12571–12572

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Guo JL, Lee VM (2014) Cell-to-cell transmission of pathogenic proteins in neurodegenerative diseases. Nat Med 20(2):130–138

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Angot E, Brundin P (2009) Dissecting the potential molecular mechanisms underlying alpha-synuclein cell-to-cell transfer in Parkinson’s disease. Parkinsonism Relat Disord 15(Suppl 3):S143–S147

    PubMed  Google Scholar 

  57. Borchelt DR et al (1994) Rapid anterograde axonal transport of the cellular prion glycoprotein in the peripheral and central nervous systems. J Biol Chem 269(20):14711–14714

    CAS  PubMed  Google Scholar 

  58. El-Agnaf OM et al (2006) Detection of oligomeric forms of alpha-synuclein protein in human plasma as a potential biomarker for Parkinson’s disease. Faseb J 20(3):419–425

    CAS  PubMed  Google Scholar 

  59. Hong Z et al (2010) DJ-1 and alpha-synuclein in human cerebrospinal fluid as biomarkers of Parkinson’s disease. Brain 133(Pt 3):713–726

    PubMed  PubMed Central  Google Scholar 

  60. Tokuda T et al (2010) Detection of elevated levels of α-synuclein oligomers in CSF from patients with Parkinson disease. Neurology 75(20):1766–1772

    CAS  PubMed  Google Scholar 

  61. Hansson O et al (2014) Levels of cerebrospinal fluid α-synuclein oligomers are increased in Parkinson’s disease with dementia and dementia with Lewy bodies compared to Alzheimer’s disease. Alzheimers Res Ther 6(3):25

    PubMed  PubMed Central  Google Scholar 

  62. Maass F et al (2019) Cerebrospinal fluid biomarker for Parkinson’s disease: an overview. Mol Cell Neurosci 97:60–66

    CAS  PubMed  Google Scholar 

  63. Wang Y et al (2012) Phosphorylated α-synuclein in Parkinson’s disease. Sci Transl Med 4(121):121ra20

  64. Kang JH et al (2013) Association of cerebrospinal fluid β-amyloid 1–42, T-tau, P-tau181, and α-synuclein levels with clinical features of drug-naive patients with early Parkinson disease. JAMA Neurol 70(10):1277–1287

    PubMed  PubMed Central  Google Scholar 

  65. Tokuda T et al (2006) Decreased alpha-synuclein in cerebrospinal fluid of aged individuals and subjects with Parkinson’s disease. Biochem Biophys Res Commun 349(1):162–166

    CAS  PubMed  Google Scholar 

  66. Lin CH et al (2017) Plasma α-synuclein predicts cognitive decline in Parkinson’s disease. J Neurol Neurosurg Psychiatry 88(10):818–824

    PubMed  Google Scholar 

  67. Ibanez L et al (2017) Parkinson disease polygenic risk score is associated with Parkinson disease status and age at onset but not with alpha-synuclein cerebrospinal fluid levels. BMC Neurol 17(1):198

  68. Ibanez L et al (2020) Functional genomic analyses uncover APOE-mediated regulation of brain and cerebrospinal fluid beta-amyloid levels in Parkinson disease. Acta Neuropathol Commun 8(1):196

  69. Escott-Price V et al (2015) Polygenic risk of Parkinson disease is correlated with disease age at onset. Ann Neurol 77(4):582–591

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We sincerely thank the researchers who performed the relevant GWAS and made the summary statistics publicly available. Their contributions were cited appropriately in the main text.

Author information

Authors and Affiliations

Authors

Contributions

Junhong Jiang: conceptualization, methodology, and writing; Qi Zhang and Zenan Lin: methodology, investigation, analysis of data, and writing; Yan He: analysis of data; Di Hu: supervision, conceptualization, and writing. The authors approved the final version of the submitted manuscript.

Corresponding authors

Correspondence to Junhong Jiang or Di Hu.

Ethics declarations

Ethics Approval

All relevant ethics approvals are from original genome-wide association studies.

Consent to Participate

This study only used publicly available summary statistics from published genome-wide association studies. No individual-level data were involved, and no additional informed consent is needed in this study.

Consent for Publication

No individual-level data were involved, and no consent for publication is needed for this study.

Conflict of Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (JPG 1483 KB)

Supplementary file2 (XLSX 26 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Q., Lin, Z., He, Y. et al. Mendelian Randomization Analysis Reveals No Causal Relationship Between Plasma α-Synuclein and Parkinson’s Disease. Mol Neurobiol 60, 2268–2276 (2023). https://doi.org/10.1007/s12035-023-03206-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-023-03206-0

Keywords

Navigation