Skip to main content
Log in

Fear Conditioning Leads to Enduring Alterations in RNA Transcripts in Hippocampal Neuropil that are Dependent on EphB2 Forward Signaling

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Alterations in mRNA transcription have been associated with changes in brain functions. We wanted to examine if fear conditioning causes long-term changes in transcriptome profiles in the basolateral amygdala (BLA) and hippocampus using RNA-Seq and laser microdissection microscopy. We further aimed to uncover whether these changes are involved in memory formation by monitoring their levels in EphB2lacZ/lacZ mice, which lack EphB2 forward signaling and can form short-term fear conditioning memory but not long-term fear conditioning memory. We found transcriptome signatures unique to each brain region that are comprise of specific cellular pathways. We also revealed that fear conditioning leads to alterations in mRNAs levels 24 h after training in hippocampal neuropil, but not in hippocampal cell layers or BLA. The two main groups of altered mRNAs encode proteins involved in neuronal transmission, neuronal morphogenesis and neuronal development and the vast majority are known to be enriched in neurons. None of these mRNAs levels were altered by fear conditioning in EphB2lacZ/lacZ mice, which were also impaired in long-term fear memory. We show here that fear conditioning leads to an enduring alteration in mRNAs levels in hippocampal neuropil that is dependent on processes mediated by EphB2 that are needed for long-term memory formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Hebb DO (1949) The organization of behavior: a neuropsychological theory. Wiley, New York

    Google Scholar 

  2. Bliss TV, Collingridge GL (1993) A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361:31–39

    CAS  PubMed  Google Scholar 

  3. Martin SJ, Grimwood PD, Morris RG (2000) Synaptic plasticity and memory: an evaluation of the hypothesis. Annu Rev Neurosci 23:649–711

    CAS  PubMed  Google Scholar 

  4. Tsien JZ (2000) Linking Hebb’s coincidence-detection to memory formation. Curr Opin Neurobiol 10(2):266–273

    CAS  PubMed  Google Scholar 

  5. Kandel ER (2001) The molecular biology of memory storage: a dialogue between genes and synapses. Sci 29:1030–1038

    Google Scholar 

  6. Lamprecht R, LeDoux J (2004) Structural plasticity and memory. Nat Rev Neurosci 5(1):45–54

    CAS  PubMed  Google Scholar 

  7. Bailey CH, Kandel ER, Harris KM (2015) Structural components of synaptic plasticity and memory consolidation. Cold Spring Harb Perspect Biol 7:a021758

    PubMed  PubMed Central  Google Scholar 

  8. Goelet P, Castellucci VF, Schacher S, Kandel ER (1986) The long and the short of long-term memory–a molecular framework. Nature 322(6078):419–422

    CAS  PubMed  Google Scholar 

  9. Stork O, Welzl H (1999) Memory formation and the regulation of gene expression. Cell Mol Life Sci 55:575–592

    CAS  PubMed  Google Scholar 

  10. Rosenblum K, Meiri N, Dudai Y (1993) Taste memory: the role of protein synthesis in gustatory cortex. Behav Neural Biol 59:49–56

    CAS  PubMed  Google Scholar 

  11. Parsons RG, Riedner BA, Gafford GM, Helmstetter FJ (2006) The formation of auditory fear memory requires the synthesis of protein and mRNA in the auditory thalamus. Neurosci 141:1163–1170

    CAS  Google Scholar 

  12. Hashimshony T, Wagner F, Sher N, Yanai I (2012) CEL-Seq: single-cell RNA-Seq by multiplexed linear amplification. Cell Rep 2:666–673

    CAS  PubMed  Google Scholar 

  13. Fanselow MS, LeDoux JE (1999) Why we think plasticity underlying Pavlovian fear conditioning occurs in the basolateral amygdala. Neuron 23:229–232

    CAS  PubMed  Google Scholar 

  14. LeDoux JE (2000) Emotion circuits in the brain. Annu Rev Neurosci 23:155–184

    CAS  PubMed  Google Scholar 

  15. Davis M, Whalen PJ (2001) The amygdala: vigilance and emotion. Mol Psychiatry 6:13–34

    CAS  PubMed  Google Scholar 

  16. Sah P, Faber ES, Lopez De Armentia M, Power J (2003) The amygdaloid complex. Physiol Rev 83:803–834

    CAS  PubMed  Google Scholar 

  17. Maren S (2005) Synaptic mechanisms of associative memory in the amygdala. Neuron 47(6):783–786

    CAS  PubMed  Google Scholar 

  18. Rodrigues SM, Schafe GE, LeDoux JE (2004) Molecular mechanisms underlying emotional learning and memory in the lateral amygdala. Neuron 44(1):75–91

    CAS  PubMed  Google Scholar 

  19. Johansen JP, Cain CK, Ostroff LE, LeDoux JE (2011) Molecular mechanisms of fear learning and memory. Cell 147(3):509–524

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Kim JJ, Fanselow MS (1992) Modality-specific retrograde amnesia of fear. Science (New York NY) 256(5057):675–677

    CAS  Google Scholar 

  21. Phillips RG, LeDoux JE (1992) Differential contribution of amygdala and hippocampus to cued and contextual fear conditioning. Behav Neurosci 106(2):274–285

    CAS  PubMed  Google Scholar 

  22. Klein R (2009) Bidirectional modulation of synaptic functions by Eph/ephrin signaling. Nat Neurosci 12(1):15–20

    CAS  PubMed  Google Scholar 

  23. Sheffler-Collins SI, Dalva MB (2012) EphBs: an integral link between synaptic function and synaptopathies. Trends Neurosci 35(5):293–304

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Takasu MA, Dalva MB, Zigmond RE, Greenberg ME (2002) Modulation of NMDA receptor-dependent calcium influx and gene expression through EphB receptors. Sci (New York NY) 295(5554):491–495

    CAS  Google Scholar 

  25. Alapin JM, Dines M, Vassiliev M, Tamir T, Ram A, Locke C, Yu J, Lamprecht R (2018) Activation of EphB2 forward signaling enhances memory consolidation. Cell Rep 23:2014–2025

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Dines M, Grinberg S, Vassiliev M, Ram A, Tamir T, Lamprecht R (2015) The roles of Eph receptors in contextual fear conditioning memory formation. Neurobiol Learn Mem 124:62–70

    CAS  PubMed  Google Scholar 

  27. Talebian A, Henkemeyer M (2019) EphB2 receptor cell-autonomous forward signaling mediates auditory memory recall and learning-driven spinogenesis. Commun Biol 2:372

    PubMed  PubMed Central  Google Scholar 

  28. Grunwald IC, Korte M, Wolfer D, Wilkinson GA, Unsicker K, Lipp HP, Bonhoeffer T, Klein R (2001) Kinase-independent requirement of EphB2 receptors in hippocampal synaptic plasticity. Neuron 32(6):1027–1040

    CAS  PubMed  Google Scholar 

  29. Henkemeyer M, Orioli D, Henderson JT, Saxton TM, Roder J, Pawson T, Klein R (1996) Nuk controls pathfinding of commissural axons in the mammalian central nervous system. Cell 86:35–46

    CAS  PubMed  Google Scholar 

  30. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M et al (2013) STAR: ultrafast universal RNA-seq aligner. Bioinformatics (Oxford, England) 29(1):15–21

    CAS  PubMed  Google Scholar 

  31. Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15:550

    PubMed  PubMed Central  Google Scholar 

  32. Shumyatsky GP, Malleret G, Shin RM, Takizawa S, Tully K, Tsvetkov E, Zakharenko SS, Joseph J et al (2005) stathmin, a gene enriched in the amygdala, controls both learned and innate fear. Cell 123:697–709

    CAS  PubMed  Google Scholar 

  33. Shumyatsky GP, Tsvetkov E, Malleret G, Vronskaya S, Hatton M, Hampton L, Battey JF, Dulac C et al (2002) Identification of a signaling network in lateral nucleus of amygdala important for inhibiting memory specifically related to learned fear. Cell 111:905–918

    CAS  PubMed  Google Scholar 

  34. Cembrowski MS, Wang L, Sugino K, Shields BC, Spruston N (2016) Hipposeq: a comprehensive RNA-seq database of gene expression in hippocampal principal neurons. ELife 5:e14997

    PubMed  PubMed Central  Google Scholar 

  35. Alon S, Goodwin DR, Sinha A, Wassie AT, Chen F, Daugharthy ER, Bando Y, Kajita A, Xue AG, Marrett K, Prior R, Cui Y, Payne AC, Yao CC, Suk HJ, Wang R, Yu CJ, Tillberg P, Reginato P, Pak N, Liu S, Punthambaker S, Iyer EPR, Kohman RE, Miller JA, Lein ES, Lako A, Cullen N, Rodig S, Helvie K, Abravanel DL, Wagle N, Johnson BE, Klughammer J, Slyper M, Waldman J, Jané-Valbuena J, Rozenblatt-Rosen O, Regev A, Consortium IMAXT, Church GM, Marblestone AH, Boyden ES (2021) Expansion sequencing: spatially precise in situ transcriptomics in intact biological systems. Sci. 371:aax2656

    Google Scholar 

  36. Cajigas IJ, Tushev G, Will TJ, tom Dieck S, Fuerst N, Schuman EM (2012) The local transcriptome in the synaptic neuropil revealed by deep sequencing and high-resolution imaging. Neuron 74:453–66

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Glock C, Biever A, Tushev G, Nassim-Assir B, Kao A, Bartnik I, Tom Dieck S, Schuman EM (2021) The translatome of neuronal cell bodies dendrites, and axons. Proc Natl Acad Sci U S A. 118(43):e2113929118

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Kuleshov MV, Jones MR, Rouillard AD, Fernandez NF, Duan Q, Wang Z, Koplev S, Jenkins SL et al (2016) Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res 44(W1):W90–W97

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Morgan JI, Curran T (1989) Stimulus-transcription coupling in neurons: role of cellular immediate-early genes. Trends Neurosci 12(11):459–462

    CAS  PubMed  Google Scholar 

  40. Loebrich S, Nedivi E (2009) The function of activity-regulated genes in the nervous system. Physiol Rev 89(4):1079–1103

    CAS  PubMed  Google Scholar 

  41. Filip M, Bader M (2009) Overview on 5-HT receptors and their role in physiology and pathology of the central nervous system. Pharmacol reports : PR 61(5):761–777

    CAS  Google Scholar 

  42. Giulietti M, Vivenzio V, Piva F, Principato G, Bellantuono C, Nardi B (2014) How much do we know about the coupling of G-proteins to serotonin receptors? Mol Brain 7:49

    PubMed  PubMed Central  Google Scholar 

  43. Butkerait P, Zheng Y, Hallak H, Graham TE, Miller HA, Burris KD, Molinoff PB, Manning DR (1995) Expression of the human 5-hydroxytryptamine1A receptor in Sf9 cells, Reconstitution of a coupled phenotype by co-expression of mammalian G protein subunits. J Biol Chem 270(31):18691–18699

    CAS  PubMed  Google Scholar 

  44. Clawges HM, Depree KM, Parker EM, Graber SG (1997) Human 5-HT1 receptor subtypes exhibit distinct G protein coupling behaviors in membranes from Sf9 cells. Biochem 36(42):12930–12938

    CAS  Google Scholar 

  45. Lin SH, Lee LT, Yang YK (2014) Serotonin and mental disorders: a concise review on molecular neuroimaging evidence. Clin Psychopharmacol Neurosci 12(3):196–202

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Michels G, Moss SJ (2007) GABAA receptors: properties and trafficking. Crit Rev Biochem Mol Biol 42(1):3–14

    CAS  PubMed  Google Scholar 

  47. Kumar J, Mayer ML (2013) Functional insights from glutamate receptor ion channel structures. Annu Rev Physiol 75:313–337

    CAS  PubMed  Google Scholar 

  48. Park YK, Goda Y (2016) Integrins in synapse regulation. Nat Rev Neurosci 17(12):745–756

    CAS  PubMed  Google Scholar 

  49. Danen EHJ. Integrins: an overview of structural and functional aspects. In: Madame Curie Bioscience Database [Internet]. Austin (TX): Landes Bioscience; 2000–2013.

  50. Sharova LV, Sharov AA, Nedorezov T, Piao Y, Shaik N, Ko MS (2009) Database for mRNA half-life of 19 977 genes obtained by DNA microarray analysis of pluripotent and differentiating mouse embryonic stem cells. DNA Res 16(1):45–58

    CAS  PubMed  Google Scholar 

  51. Thiele A (2013) Muscarinic signaling in the brain. Annu Rev Neurosci 36:271–294

    CAS  PubMed  Google Scholar 

  52. Callender JA, Newton AC (2017) Conventional protein kinase C in the brain: 40 years later. Neuronal signaling 1(2):NS20160005

    PubMed  PubMed Central  Google Scholar 

  53. Chen MW, Zhu H, Xiong CH, Li JB, Zhao LX, Chen HZ, Qiu Y (2020) PKC and Ras are Involved in M1 muscarinic receptor-mediated modulation of AMPA receptor GluA1 subunit. Cell Mol Neurobiol 40(4):547–554

    CAS  PubMed  Google Scholar 

  54. Zhao LX, Ge YH, Xiong CH, Tang L, Yan YH, Law PY, Qiu Y, Chen HZ (2018) M1 muscarinic receptor facilitates cognitive function by interplay with AMPA receptor GluA1 subunit. FASEB J 32(8):4247–4257

    CAS  PubMed  Google Scholar 

  55. Zhao Z, Zhang K, Liu X, Yan H, Ma X, Zhang S, Zheng J, Wang L et al (2016) Involvement of HCN channel in muscarinic inhibitory action on tonic firing of dorsolateral striatal cholinergic interneurons. Front Cell Neurosci 10:71

    PubMed  PubMed Central  Google Scholar 

  56. Wilson MA, Fadel JR (2017) Cholinergic regulation of fear learning and extinction. J Neurosci Res 95(3):836–852

    CAS  PubMed  Google Scholar 

  57. Jensen NH, Cremers TI, Sotty F (2010) Therapeutic potential of 5-HT2C receptor ligands. Sci World J 10:1870–1885

    CAS  Google Scholar 

  58. Samochocki M, Strosznajder J (1995) The negative coupling between serotonin and muscarinic receptor(s) for arachidonic acid and inositol phosphates release in brain cortex synaptoneurosomes. Effect Aging Neurochem Int 26(6):571–578

    CAS  PubMed  Google Scholar 

  59. Chevaleyre V, Takahashi KA, Castillo PE (2006) Endocannabinoid-mediated synaptic plasticity in the CNS. Annu Rev Neurosci 29:37–76

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Israel Science Foundation for their support of this study.

Funding

This work was supported by the Israel Science Foundation grant to RL.

Author information

Authors and Affiliations

Authors

Contributions

Experiments were performed by Subhajit Jana with the help of Monica Dines. Behavioral data was analyzed by Subhajit Jana and Raphael Lamprecht. Gene expression data were analyzed by Maya Lalzar. The first draft of the manuscript was written by Raphael Lamprecht. All authors contributed in editing the manuscript and read and approved the manuscript.

Corresponding author

Correspondence to Raphael Lamprecht.

Ethics declarations

Ethics Approval

Behavioral experiments were approved by the University of Haifa Institutional Committee for animal experiments in accordance with National Institutes of Health guidelines.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jana, S., Dines, M., Lalzar, M. et al. Fear Conditioning Leads to Enduring Alterations in RNA Transcripts in Hippocampal Neuropil that are Dependent on EphB2 Forward Signaling. Mol Neurobiol 60, 2320–2329 (2023). https://doi.org/10.1007/s12035-022-03191-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-022-03191-w

Keywords

Navigation