Skip to main content
Log in

Spinal MCP-1 Contributes to Central Post-stroke Pain by Inducing Central Sensitization in Rats

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Central post-stroke pain (CPSP) is a highly refractory form of central neuropathic pain that has been poorly studied mechanistically. Recent observations have emphasized the critical role of the spinal dorsal horn in CPSP. However, the underlying mechanisms remain unclear. In this study, rats were subjected to thalamic hemorrhage to investigate the role of spinal monocyte chemoattractant protein-1 (MCP-1) and C-C motif chemokine receptor 2 (CCR2) in the development of CPSP. Immunohistochemical staining and ELISA were used to assess the expression changes of c-Fos, Iba-1, GFAP, MCP-1, and CCR2 in the dorsal horn of the lumbar spinal cord following thalamic hemorrhage, and the involvement of spinal MCP-1 in CPSP was examined by performing intrathecal anti-MCP-1 mAb injection to neutralize the spinal extracellular MCP-1. We demonstrated that intra-thalamic collagenase microinjection induced persistent bilateral mechanical pain hypersensitivity and facilitated the spontaneous pain behaviors evoked by intraplantar bee venom injection. Accompanying CPSP, the expression of c-Fos, Iba-1, and GFAP in the lumbar spinal dorsal horn was significantly increased up to 28 days post-intra-thalamic collagenase microinjection. Intrathecal injection of minocycline and fluorocitrate dramatically reverses the bilateral mechanical pain hypersensitivity. Moreover, intra-thalamic collagenase microinjection dramatically induced the up-regulation of MCP-1 but had no effect on the expression of CCR2 in the bilateral lumbar spinal dorsal horn, and MCP-1 was primarily localized in the neuron. Intrathecal injection of anti-MCP-1 mAb was also able to reverse CPSP and reduce the expression of c-Fos, Iba-1, and GFAP in the lumbar spinal dorsal horn. These findings indicated that spinal MCP-1 contributes to CPSP by mediating the activation of spinal neurons and glial cells following thalamic hemorrhage stroke, which may provide insights into pharmacologic treatment for CPSP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

All relevant data supporting the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Urits I, Gress K, Charipova K, Orhurhu V, Freeman JA, Kaye RJ, Kaye AD, Cornett E, Delahoussaye PJ, Viswanath O (2020) Diagnosis, treatment, and management of dejerine-roussy syndrome: a comprehensive review. Curr Pain Headache Rep 24(9):48. https://doi.org/10.1007/s11916-020-00887-3

    Article  PubMed  Google Scholar 

  2. Sahin-Onat S, Unsal-Delialioglu S, Kulakli F, Ozel S (2016) The effects of central post-stroke pain on quality of life and depression in patients with stroke. J Phys Ther Sci 28(1):96–101. https://doi.org/10.1589/jpts.28.96

    Article  PubMed  PubMed Central  Google Scholar 

  3. Paolucci S, Iosa M, Toni D, Barbanti P, Bovi P, Cavallini A, Candeloro E, Mancini A, Mancuso M, Monaco S, Pieroni A, Recchia S, Sessa M, Strambo D, Tinazzi M, Cruccu G, Truini A, Neuropathic pain special interest group of the Italian Neurological S (2016) Prevalence and time course of post-stroke pain: a multicenter prospective hospital-based study. Pain Med 17(5):924–930. https://doi.org/10.1093/pm/pnv019

    Article  PubMed  Google Scholar 

  4. Hosomi K, Seymour B, Saitoh Y (2015) Modulating the pain network – neurostimulation for central poststroke pain. Nat Rev Neurol 11(5):290–299. https://doi.org/10.1038/nrneurol.2015.58

    Article  PubMed  Google Scholar 

  5. Choi HR, Aktas A, Bottros MM (2021) Pharmacotherapy to manage central post-stroke pain. CNS Drugs 35(2):151–160. https://doi.org/10.1007/s40263-021-00791-3

    Article  PubMed  Google Scholar 

  6. Plecash AR, Chebini A, Ip A, Lai JJ, Mattar AA, Randhawa J, Field TS (2019) Updates in the treatment of post-stroke pain. Curr Neurol Neurosci Rep 19(11):86. https://doi.org/10.1007/s11910-019-1003-2

    Article  PubMed  Google Scholar 

  7. Shih HC, Kuan YH, Shyu BC (2017) Targeting brain-derived neurotrophic factor in the medial thalamus for the treatment of central poststroke pain in a rodent model. Pain 158(7):1302–1313. https://doi.org/10.1097/j.pain.0000000000000915

    Article  PubMed  PubMed Central  Google Scholar 

  8. Liu T, Li T, Chen X, Li Z, Feng M, Yao W, Wan L, Zhang C, Zhang Y (2021) EETs/sEHi alleviates nociception by blocking the crosslink between endoplasmic reticulum stress and neuroinflammation in a central poststroke pain model. J Neuroinflammation 18(1):211. https://doi.org/10.1186/s12974-021-02255-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lu J, Guo X, Yan M, Yuan X, Chen S, Wang Y, Zhu J, Huang S, Shen H, Li H, Xue Q, Fang Q, Ni J, Gan L, Zhao H, Lu H, Chen G (2021) P2X4R contributes to central disinhibition via TNF-alpha/TNFR1/GABAaR pathway in post-stroke pain rats. J Pain 22(8):968–980. https://doi.org/10.1016/j.jpain.2021.02.013

    Article  CAS  PubMed  Google Scholar 

  10. Fu G, Du S, Huang T, Cao M, Feng X, Wu S, Albik S, Bekker A, Tao YX (2021) FTO (fat-mass and obesity-associated protein) participates in hemorrhage-induced thalamic pain by stabilizing toll-like receptor 4 expression in thalamic neurons. Stroke 52(7):2393–2403. https://doi.org/10.1161/STROKEAHA.121.034173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. An JX, Shi WR, Zhang JF, Qian XY, Fang QW, Wang Y, Williams JP (2019) A new rat model of thalamic pain produced by administration of cobra venom to the unilateral ventral posterolateral nucleus. Pain Physician 22(6):E635–E647

    PubMed  Google Scholar 

  12. Harada S, Matsuura W, Takano M, Tokuyama S (2016) Proteomic profiling in the spinal cord and sciatic nerve in a global cerebral ischemia-induced mechanical allodynia mouse model. Biol Pharm Bull 39(2):230–238. https://doi.org/10.1248/bpb.b15-00647

    Article  CAS  PubMed  Google Scholar 

  13. Matsuura W, Harada S, Liu K, Nishibori M, Tokuyama S (2018) Evidence of a role for spinal HMGB1 in ischemic stress-induced mechanical allodynia in mice. Brain Res 1687:1–10. https://doi.org/10.1016/j.brainres.2018.02.026

    Article  CAS  PubMed  Google Scholar 

  14. Matsuura W, Nakamoto K, Tokuyama S (2019) The involvement of DDAH1 in the activation of spinal NOS signaling in early stage of mechanical allodynia induced by exposure to ischemic stress in mice. Biol Pharm Bull 42(9):1569–1574. https://doi.org/10.1248/bpb.b19-00371

    Article  CAS  PubMed  Google Scholar 

  15. Yang F, Fu H, Lu YF, Wang XL, Yang Y, Yang F, Yu YQ, Sun W, Wang JS, Costigan M, Chen J (2014) Post-stroke pain hypersensitivity induced by experimental thalamic hemorrhage in rats is region-specific and demonstrates limited efficacy of gabapentin. Neurosci Bull 30(6):887–902. https://doi.org/10.1007/s12264-014-1477-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yang F, Luo WJ, Sun W, Wang Y, Wang JL, Yang F, Li CL, Wei N, Wang XL, Guan SM, Chen J (2017) SDF1-CXCR4 Signaling maintains central post-stroke pain through mediation of glial-neuronal interactions. Front Mol Neurosci 10:226. https://doi.org/10.3389/fnmol.2017.00226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wasserman JK, Koeberle PD (2009) Development and characterization of a hemorrhagic rat model of central post-stroke pain. Neuroscience 161(1):173–183. https://doi.org/10.1016/j.neuroscience.2009.03.042

    Article  CAS  PubMed  Google Scholar 

  18. Castel A, Helie P, Beaudry F, Vachon P (2013) Bilateral central pain sensitization in rats following a unilateral thalamic lesion may be treated with high doses of ketamine. BMC Vet Res 9:59. https://doi.org/10.1186/1746-6148-9-59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. De Vloo P, Morlion B, van Loon J, Nuttin B (2017) Animal models for central poststroke pain: a critical comprehensive review. Pain 158(1):17–29. https://doi.org/10.1097/j.pain.0000000000000722

    Article  PubMed  Google Scholar 

  20. Yang Y, Yang F, Yang F, Li CL, Wang Y, Li Z, Lu YF, Yu YQ, Fu H, He T, Sun W, Wang RR, Chen J (2016) Gabapentinoid insensitivity after repeated administration is associated with down-regulation of the alpha(2)delta-1 subunit in rats with central post-stroke pain hypersensitivity. Neurosci Bull 32(1):41–50. https://doi.org/10.1007/s12264-015-0008-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Liang T, Chen XF, Yang Y, Yang F, Yu Y, Yang F, Wang XL, Wang JL, Sun W, Chen J (2022) Secondary damage and neuroinflammation in the spinal dorsal horn mediate post-thalamic hemorrhagic stroke pain hypersensitivity: SDF1-CXCR4 signaling mediation. Front Mol Neurosci 15:911476. https://doi.org/10.3389/fnmol.2022.911476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sandhir R, Puri V, Klein RM, Berman NE (2004) Differential expression of cytokines and chemokines during secondary neuron death following brain injury in old and young mice. Neurosci Lett 369(1):28–32. https://doi.org/10.1016/j.neulet.2004.07.032

    Article  CAS  PubMed  Google Scholar 

  23. Muessel MJ, Klein RM, Wilson AM, Berman NE (2002) Ablation of the chemokine monocyte chemoattractant protein-1 delays retrograde neuronal degeneration, attenuates microglial activation, and alters expression of cell death molecules. Brain Res Mol Brain Res 103(1-2):12–27. https://doi.org/10.1016/s0169-328x(02)00158-4

    Article  CAS  PubMed  Google Scholar 

  24. Muessel MJ, Berman NE, Klein RM (2000) Early and specific expression of monocyte chemoattractant protein-1 in the thalamus induced by cortical injury. Brain Res 870(1-2):211–221. https://doi.org/10.1016/s0006-8993(00)02450-1

    Article  CAS  PubMed  Google Scholar 

  25. Zhang ZJ, Jiang BC, Gao YJ (2017) Chemokines in neuron-glial cell interaction and pathogenesis of neuropathic pain. Cell Mol Life Sci 74(18):3275–3291. https://doi.org/10.1007/s00018-017-2513-1

    Article  CAS  PubMed  Google Scholar 

  26. Zhang H, Ma SB, Gao YJ, Xing JL, Xian H, Li ZZ, Shen SN, Wu SX, Luo C, Xie RG (2020) Spinal CCL2 promotes pain sensitization by rapid enhancement of NMDA-induced currents through the ERK-GluN2B pathway in mouse lamina II neurons. Neurosci Bull 36(11):1344–1354. https://doi.org/10.1007/s12264-020-00557-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Jiang H, Cui H, Wang T, Shimada SG, Sun R, Tan Z, Ma C, LaMotte RH (2019) CCL2/CCR2 signaling elicits itch- and pain-like behavior in a murine model of allergic contact dermatitis. Brain Behav Immun 80:464–473. https://doi.org/10.1016/j.bbi.2019.04.026

    Article  CAS  PubMed  Google Scholar 

  28. Gao YJ, Zhang L, Samad OA, Suter MR, Yasuhiko K, Xu ZZ, Park JY, Lind AL, Ma Q, Ji RR (2009) JNK-induced MCP-1 production in spinal cord astrocytes contributes to central sensitization and neuropathic pain. J Neurosci 29(13):4096–4108. https://doi.org/10.1523/JNEUROSCI.3623-08.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ma SB, Xian H, Wu WB, Ma SY, Liu YK, Liang YT, Guo H, Kang JJ, Liu YY, Zhang H, Wu SX, Luo C, Xie RG (2020) CCL2 facilitates spinal synaptic transmission and pain via interaction with presynaptic CCR2 in spinal nociceptor terminals. Mol Brain 13(1):161. https://doi.org/10.1186/s13041-020-00701-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Xie RG, Gao YJ, Park CK, Lu N, Luo C, Wang WT, Wu SX, Ji RR (2018) Spinal CCL2 promotes central sensitization, long-term potentiation, and inflammatory pain via CCR2: further insights into molecular, synaptic, and cellular mechanisms. Neurosci Bull 34(1):13–21. https://doi.org/10.1007/s12264-017-0106-5

    Article  CAS  PubMed  Google Scholar 

  31. Niu X, Bai L, Sun Y, Wang Y, Bai G, Yin B, Wang S, Gan S, Jia X, Liu H (2020) Mild traumatic brain injury is associated with effect of inflammation on structural changes of default mode network in those developing chronic pain. J Headache Pain 21(1):135. https://doi.org/10.1186/s10194-020-01201-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sawicki CM, Kim JK, Weber MD, Faw TD, McKim DB, Madalena KM, Lerch JK, Basso DM, Humeidan ML, Godbout JP, Sheridan JF (2019) Microglia promote increased pain behavior through enhanced inflammation in the spinal cord during repeated social defeat stress. J Neurosci 39(7):1139–1149. https://doi.org/10.1523/JNEUROSCI.2785-18.2018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Chen J, Luo C, Li H, Chen H (1999) Primary hyperalgesia to mechanical and heat stimuli following subcutaneous bee venom injection into the plantar surface of hindpaw in the conscious rat: a comparative study with the formalin test. Pain 83(1):67–76. https://doi.org/10.1016/s0304-3959(99)00075-5

    Article  CAS  PubMed  Google Scholar 

  34. Yang CL, Jing JJ, Fu SY, Zhong YL, Su XZ, Shi ZM, Wu XZ, Yang F, Chen GZ (2022) Ropivacaine-induced seizures evoked pain sensitization in rats: participation of 5-HT/5-HT3R. Neurotoxicology 93:173–185. https://doi.org/10.1016/j.neuro.2022.10.001

    Article  CAS  PubMed  Google Scholar 

  35. Zhu X, Cao S, Zhu MD, Liu JQ, Chen JJ, Gao YJ (2014) Contribution of chemokine CCL2/CCR2 signaling in the dorsal root ganglion and spinal cord to the maintenance of neuropathic pain in a rat model of lumbar disc herniation. J Pain 15(5):516–526. https://doi.org/10.1016/j.jpain.2014.01.492

    Article  CAS  PubMed  Google Scholar 

  36. Ren LY, Lu ZM, Liu MG, Yu YQ, Li Z, Shang GW, Chen J (2008) Distinct roles of the anterior cingulate cortex in spinal and supraspinal bee venom-induced pain behaviors. Neuroscience 153(1):268–278. https://doi.org/10.1016/j.neuroscience.2008.01.067

    Article  CAS  PubMed  Google Scholar 

  37. Klit H, Finnerup NB, Jensen TS (2009) Central post-stroke pain: clinical characteristics, pathophysiology, and management. Lancet Neurol 8(9):857–868. https://doi.org/10.1016/S1474-4422(09)70176-0

    Article  PubMed  Google Scholar 

  38. Xu W, Zhang C, Sun B, Li D (2020) Sustainable effects of 8-year intermittent spinal cord stimulation in a patient with thalamic post-stroke pain. World Neurosurg 143:223–227. https://doi.org/10.1016/j.wneu.2020.07.195

    Article  PubMed  Google Scholar 

  39. Feierabend D, Frank S, Kalff R, Reichart R (2016) Spinal cord stimulation for thalamic pain: case report and review of the current literature. Schmerz 30(2):152–157. https://doi.org/10.1007/s00482-015-0073-6

    Article  CAS  PubMed  Google Scholar 

  40. Lopez JA, Torres LM, Gala F, Iglesias I (2009) Spinal cord stimulation and thalamic pain: long-term results of eight cases. Neuromodulation 12(3):240–243. https://doi.org/10.1111/j.1525-1403.2009.00221.x

    Article  PubMed  Google Scholar 

  41. Vierck C (2006) Animal models of pain. In, vol 45:1–11. https://doi.org/10.1016/B0-443-07287-6/50015-1

    Article  Google Scholar 

  42. Dum RP, Levinthal DJ, Strick PL (2009) The spinothalamic system targets motor and sensory areas in the cerebral cortex of monkeys. J Neurosci 29(45):14223–14235. https://doi.org/10.1523/JNEUROSCI.3398-09.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Donahue RR, LaGraize SC, Fuchs PN (2001) Electrolytic lesion of the anterior cingulate cortex decreases inflammatory, but not neuropathic nociceptive behavior in rats. Brain Res 897(1-2):131–138. https://doi.org/10.1016/s0006-8993(01)02103-5

    Article  CAS  PubMed  Google Scholar 

  44. Gao YJ, Ji RR (2009) c-Fos and pERK, which is a better marker for neuronal activation and central sensitization after noxious stimulation and tissue injury? Open Pain J 2:11–17. https://doi.org/10.2174/1876386300902010011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ji RR, Nackley A, Huh Y, Terrando N, Maixner W (2018) Neuroinflammation and central sensitization in chronic and widespread pain. Anesthesiology 129(2):343–366. https://doi.org/10.1097/ALN.0000000000002130

    Article  PubMed  Google Scholar 

  46. Kawasaki Y, Zhang L, Cheng JK, Ji RR (2008) Cytokine mechanisms of central sensitization: distinct and overlapping role of interleukin-1beta, interleukin-6, and tumor necrosis factor-alpha in regulating synaptic and neuronal activity in the superficial spinal cord. J Neurosci 28(20):5189–5194. https://doi.org/10.1523/JNEUROSCI.3338-07.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zhang SH, Yu J, Lou GD, Tang YY, Wang RR, Hou WW, Chen Z (2016) Widespread pain sensitization after partial infraorbital nerve transection in MRL/MPJ mice. Pain 157(3):740–749. https://doi.org/10.1097/j.pain.0000000000000432

    Article  PubMed  Google Scholar 

  48. Hiraga SI, Itokazu T, Hoshiko M, Takaya H, Nishibe M, Yamashita T (2020) Microglial depletion under thalamic hemorrhage ameliorates mechanical allodynia and suppresses aberrant axonal sprouting. JCI Insight 5(3). https://doi.org/10.1172/jci.insight.131801

  49. Dansereau MA, Midavaine E, Begin-Lavallee V, Belkouch M, Beaudet N, Longpre JM, Melik-Parsadaniantz S, Sarret P (2021) Mechanistic insights into the role of the chemokine CCL2/CCR2 axis in dorsal root ganglia to peripheral inflammation and pain hypersensitivity. J Neuroinflammation 18(1):79. https://doi.org/10.1186/s12974-021-02125-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Luo P, Shao J, Jiao Y, Yu W, Rong W (2018) CC chemokine ligand 2 (CCL2) enhances TTX-sensitive sodium channel activity of primary afferent neurons in the complete Freud adjuvant-induced inflammatory pain model. Acta Biochim Biophys Sin (Shanghai) 50(12):1219–1226. https://doi.org/10.1093/abbs/gmy123

    Article  CAS  PubMed  Google Scholar 

  51. Kao DJ, Li AH, Chen JC, Luo RS, Chen YL, Lu JC, Wang HL (2012) CC chemokine ligand 2 upregulates the current density and expression of TRPV1 channels and Nav1.8 sodium channels in dorsal root ganglion neurons. J Neuroinflammation 9:189. https://doi.org/10.1186/1742-2094-9-189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Xian H, Jiang Y, Zhang H, Ma SB, Zhao R, Cong R (2020) CCL2-CCR2 axis potentiates NMDA receptor signaling to aggravate neuropathic pain induced by brachial plexus avulsion. Neuroscience 425:29–38. https://doi.org/10.1016/j.neuroscience.2019.11.012

    Article  CAS  PubMed  Google Scholar 

  53. Wu XB, Jing PB, Zhang ZJ, Cao DL, Gao MH, Jiang BC, Gao YJ (2018) Chemokine receptor CCR2 contributes to neuropathic pain and the associated depression via increasing NR2B-mediated currents in both D1 and D2 dopamine receptor-containing medium spiny neurons in the nucleus accumbens shell. Neuropsychopharmacology 43(11):2320–2330. https://doi.org/10.1038/s41386-018-0115-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Knerlich-Lukoschus F, Juraschek M, Blomer U, Lucius R, Mehdorn HM, Held-Feindt J (2008) Force-dependent development of neuropathic central pain and time-related CCL2/CCR2 expression after graded spinal cord contusion injuries of the rat. J Neurotrauma 25(5):427–448. https://doi.org/10.1089/neu.2007.0431

    Article  PubMed  Google Scholar 

  55. Rong Y, Ji C, Wang Z, Ge X, Wang J, Ye W, Tang P, Jiang D, Fan J, Yin G, Liu W, Cai W (2021) Small extracellular vesicles encapsulating CCL2 from activated astrocytes induce microglial activation and neuronal apoptosis after traumatic spinal cord injury. J Neuroinflammation 18(1):196. https://doi.org/10.1186/s12974-021-02268-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Komiya H, Takeuchi H, Ogawa Y, Hatooka Y, Takahashi K, Katsumoto A, Kubota S, Nakamura H, Kunii M, Tada M, Doi H, Tanaka F (2020) CCR2 is localized in microglia and neurons, as well as infiltrating monocytes, in the lumbar spinal cord of ALS mice. Mol Brain 13(1):64. https://doi.org/10.1186/s13041-020-00607-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Wang Y, Ni H, Li H, Deng H, Xu LS, Xu S, Zhen Y, Shen H, Pan H, Yao M (2018) Nuclear factor kappa B regulated monocyte chemoattractant protein-1/chemokine CC motif receptor-2 expressing in spinal cord contributes to the maintenance of cancer-induced bone pain in rats. Mol Pain 14:1744806918788681. https://doi.org/10.1177/1744806918788681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Piotrowska A, Kwiatkowski K, Rojewska E, Slusarczyk J, Makuch W, Basta-Kaim A, Przewlocka B, Mika J (2016) Direct and indirect pharmacological modulation of CCL2/CCR2 pathway results in attenuation of neuropathic pain – in vivo and in vitro evidence. J Neuroimmunol 297:9–19. https://doi.org/10.1016/j.jneuroim.2016.04.017

    Article  CAS  PubMed  Google Scholar 

  59. Pevida M, Gonzalez-Rodriguez S, Lastra A, Garcia-Suarez O, Hidalgo A, Menendez L, Baamonde A (2014) Involvement of spinal chemokine CCL2 in the hyperalgesia evoked by bone cancer in mice: a role for astroglia and microglia. Cell Mol Neurobiol 34(1):143–156. https://doi.org/10.1007/s10571-013-9995-7

    Article  CAS  PubMed  Google Scholar 

  60. Pevida M, Lastra A, Hidalgo A, Baamonde A, Menendez L (2013) Spinal CCL2 and microglial activation are involved in paclitaxel-evoked cold hyperalgesia. Brain Res Bull 95:21–27. https://doi.org/10.1016/j.brainresbull.2013.03.005

    Article  CAS  PubMed  Google Scholar 

  61. Chun S, Kwon YB (2019) The CCL2 elevation in primary afferent fibers produces zymosan-induced hyperalgesia through microglia-mediated neuronal activation in the spinal dorsal horn. Brain Res Bull 149:53–59. https://doi.org/10.1016/j.brainresbull.2019.04.014

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by grants from the National Natural Science Foundation of China (No. 81801101), the Joint Funds for the Innovation of Science and Technology of Fujian Province (No. 2020Y9043), the Natural Science Foundation of Fujian Province of China (No. 2021J011264, No. 2020J011130 and No. 2022J01490), and the Army’s Youth Cultivation Program (No. 20QNPY073). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors have contributed significantly to this work. FY, YQZ, XZW, and JJJ conceived and designed the experiments; FY and SYF performed most of the experiments; XZS, YLZ, and DSC contributed to data collection and provided experimental support; DSC, YQZ, and FY analyzed and interpreted the data; FY wrote the manuscript; YQZ and XZW revised and edited the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Dong-Sheng Chen, Xiao-Zhi Wu or Yi-Qing Zou.

Ethics declarations

Ethics Approval

All animal experiments were approved by the Experimental Animal Care and Use Committee of 900th Hospital, Fujian Medical University.

Consent to Participate

Not applicable.

Consent for Publication

All authors consent to the publication of this manuscript.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, F., Jing, JJ., Fu, SY. et al. Spinal MCP-1 Contributes to Central Post-stroke Pain by Inducing Central Sensitization in Rats. Mol Neurobiol 60, 2086–2098 (2023). https://doi.org/10.1007/s12035-022-03184-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-022-03184-9

Keywords

Navigation