Skip to main content

Advertisement

Log in

The Interaction Between NF-κB and Estrogen in Alzheimer’s Disease

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Post-menopausal women are at a higher risk of developing Alzheimer’s disease (AD) than males. The higher rates of AD in women are associated with the sharp decline in the estrogen levels after menopause. Estrogen has been shown to downregulate inflammatory cytokines in the central nervous system (CNS), which has a neuroprotective role against neurodegenerative diseases including AD. Sustained neuroinflammation is associated with neurodegeneration and contributes to AD. Nuclear factor kappa-B (NF-κB) is a transcription factor involved with the modulation of inflammation and interacts with estrogen to influence the progression of AD. Application of 17β-estradiol (E2) has been shown to inhibit NF-κB, thereby reducing transcription of NF-κB target genes. Despite accumulating evidence showing that estrogens have beneficial effects in pre-clinical AD studies, there are mixed results with hormone replacement therapy in clinical trials. Furthering our understanding of how NF-κB interacts with estrogen and alters the progression of neurodegenerative disorders including AD, should be beneficial and result in the development of novel therapeutics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

This is a review paper and no data was collected for this manuscript. However, the material supporting this paper is available in the article or is available from the corresponding author upon request.

References

  1. Gatz M et al (2006) Role of genes and environments for explaining Alzheimer disease. Arch Gen Psychiatry 63(2):168–174

    Article  Google Scholar 

  2. Djordjevic J, Sabbir MG, Albensi BC (2016) Traumatic brain injury as a risk factor for Alzheimer’s disease: is inflammatory signaling a key player?. Curr Alzheimer Res 13(7):730–738

    Article  CAS  Google Scholar 

  3. Bendlin BB et al (2010) Midlife predictors of Alzheimer’s disease. Maturitas 65(2):131–137

    Article  CAS  Google Scholar 

  4. James BD et al (2011) Life space and risk of Alzheimer disease, mild cognitive impairment, and cognitive decline in old age. Am J Geriatr Psychiatry 19(11):961–969

    Article  Google Scholar 

  5. Marwit SJ, Meuser TM (2002) Development and initial validation of an inventory to assess grief in caregivers of persons with Alzheimer’s disease. Gerontologist 42(6):751–765

    Article  Google Scholar 

  6. Glabe CC (2005) Amyloid accumulation and pathogensis of Alzheimer’s disease: significance of monomeric, oligomeric and fibrillar Abeta. Subcell Biochem 38:167–177

    Article  CAS  Google Scholar 

  7. Hardy J, Selkoe DJ (2002) The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 297(5580):353–356

    Article  CAS  Google Scholar 

  8. Muralidar S et al (2020) Role of tau protein in Alzheimer’s disease: the prime pathological player. Int J Biol Macromol

  9. Adlimoghaddam A et al (2019) Regional hypometabolism in the 3xTg mouse model of Alzheimer’s disease. Neurobiol Dis 127:264–277

    Article  CAS  Google Scholar 

  10. Goedert M, Spillantini MG (2006) A century of Alzheimer’s disease. Sci 314(5800):777–781

    Article  CAS  Google Scholar 

  11. Shoghi-Jadid K et al (2002) Localization of neurofibrillary tangles and beta-amyloid plaques in the brains of living patients with Alzheimer disease. Am J Geriatr Psychiatry 10(1):24–35

    Article  Google Scholar 

  12. Ellis RJ et al (1996) Cerebral amyloid angiopathy in the brains of patients with Alzheimer’s disease: the CERAD experience Part XV. Neurol 46(6):1592–1596

    Article  CAS  Google Scholar 

  13. Price JL et al (2001) Neuron number in the entorhinal cortex and CA1 in preclinical Alzheimer disease. Arch Neurol 58(9):1395–1402

    Article  CAS  Google Scholar 

  14. Doody RS et al (2014) Phase 3 trials of solanezumab for mild-to-moderate Alzheimer’s disease. N Engl J Med 370(4):311–321

    Article  CAS  Google Scholar 

  15. Abushouk AI et al (2017) Bapineuzumab for mild to moderate Alzheimer’s disease: a meta-analysis of randomized controlled trials. BMC Neurol 17(1):66

    Article  Google Scholar 

  16. Sabbagh MN, Cummings J (2021) open peer commentary to “failure to demonstrate efficacy of aducanumab: an analysis of the EMERGE and ENGAGE trials as reported by biogen December 2019”. Alzheimers Dement 17(4):702–703

    Article  Google Scholar 

  17. Fuentes N and Silveyra P (2019) Chapter three - estrogen receptor signaling mechanisms, in advances in protein chemistry and structural biology, R. Donev, Editor. Academic Press 135–170

  18. Paterni I et al (2014) Estrogen receptors alpha (ERalpha) and beta (ERbeta): subtype-selective ligands and clinical potential. Steroids 90:13–29

    Article  CAS  Google Scholar 

  19. Paterni I et al (2014) Estrogen receptors alpha (ERα) and beta (ERβ): subtype-selective ligands and clinical potential. Steroids 90:13–29

    Article  CAS  Google Scholar 

  20. Zhao C, Dahlman-Wright K, Gustafsson JA (2008) Estrogen receptor beta: an overview and update. Nucl Recept Signal 6:e003

    Article  Google Scholar 

  21. Hadjimarkou MM, Vasudevan N (2018) GPER1/GPR30 in the brain: crosstalk with classical estrogen receptors and implications for behavior. J Steroid Biochem Mol Biol 176:57–64

    Article  CAS  Google Scholar 

  22. Revankar CM et al (2005) A transmembrane intracellular estrogen receptor mediates rapid cell signaling. Sci 307(5715):1625–1630

    Article  CAS  Google Scholar 

  23. Driscoll MD et al (1998) Sequence requirements for estrogen receptor binding to estrogen response elements. J Biol Chem 273(45):29321–29330

    Article  CAS  Google Scholar 

  24. Gruber CJ et al (2004) Anatomy of the estrogen response element. Trends Endocrinol Metab 15(2):73–78

    Article  CAS  Google Scholar 

  25. Gaub MP et al (1990) Activation of the ovalbumin gene by the estrogen receptor involves the fos-jun complex. Cell 63(6):1267–1276

    Article  CAS  Google Scholar 

  26. Webb P et al (1995) Tamoxifen activation of the estrogen receptor/AP-1 pathway: potential origin for the cell-specific estrogen-like effects of antiestrogens. Mol Endocrinol 9(4):443–456

    CAS  Google Scholar 

  27. Sabbah M et al (1999) Estrogen induction of the cyclin D1 promoter: involvement of a cAMP response-like element. Proc Natl Acad Sci U S A 96(20):11217–11222

    Article  CAS  Google Scholar 

  28. Tee MK et al (2004) Estradiol and selective estrogen receptor modulators differentially regulate target genes with estrogen receptors alpha and beta. Mol Biol Cell 15(3):1262–1272

    Article  CAS  Google Scholar 

  29. Almey A, Milner TA, Brake WG (2015) Estrogen receptors in the central nervous system and their implication for dopamine-dependent cognition in females. Horm Behav 74:125–138

    Article  CAS  Google Scholar 

  30. Papka RE, Mowa CN (2003) Estrogen receptors in the spinal cord, sensory ganglia, and pelvic autonomic ganglia. Int Rev Cytol 231:91–127

    Article  CAS  Google Scholar 

  31. Compton J, van Amelsvoort T, Murphy D (2001) HRT and its effect on normal ageing of the brain and dementia. Br J Clin Pharmacol 52(6):647–653

    Article  CAS  Google Scholar 

  32. Bean LA, Ianov L, Foster TC (2014) Estrogen receptors, the hippocampus, and memory. Neuroscientist 20(5):534–545

    Article  Google Scholar 

  33. Pompili A, Iorio C, Gasbarri A (2020) Effects of sex steroid hormones on memory. Acta Neurobiol Exp (Wars) 80(2):117–128

    Article  Google Scholar 

  34. Hara Y et al (2015) Estrogen effects on cognitive and synaptic health over the lifecourse. Physiol Rev 95(3):785–807

    Article  CAS  Google Scholar 

  35. Handa RJ, Mani SK, Uht RM (2012) Estrogen receptors and the regulation of neural stress responses. Neuroendocrinol 96(2):111–118

    Article  CAS  Google Scholar 

  36. Frick KM, Kim J, Koss WA (2018) Estradiol and hippocampal memory in female and male rodents. Curr Opin Behav Sci 23:65–74

    Article  Google Scholar 

  37. Heldring N et al (2007) Estrogen receptors: how do they signal and what are their targets. Physiol Rev 87(3):905–931

    Article  CAS  Google Scholar 

  38. Kim CK, et al (2018) Structural and functional characteristics of oestrogen receptor beta splice variants: implications for the ageing brain. J Neuroendocrinol 30(2)

  39. Ishunina TA, Swaab DF (2008) Estrogen receptor-alpha splice variants in the human brain. Gynecol Endocrinol 24(2):93–98

    Article  CAS  Google Scholar 

  40. Ishunina TA, Fischer DF, Swaab DF (2007) Estrogen receptor alpha and its splice variants in the hippocampus in aging and Alzheimer’s disease. Neurobiol Aging 28(11):1670–1681

    Article  CAS  Google Scholar 

  41. Cui J, Shen Y, Li R (2013) Estrogen synthesis and signaling pathways during aging: from periphery to brain. Trends Mol Med 19(3):197–209

    Article  CAS  Google Scholar 

  42. Zhu D, Montagne A, Zhao Z (2021) Alzheimer’s pathogenic mechanisms and underlying sex difference. Cell Mol Life Sci 78(11):4907–4920

    Article  CAS  Google Scholar 

  43. Baum LW (2005) Sex, hormones, and Alzheimer’s disease. J Gerontol A Biol Sci Med Sci 60(6):736–743

    Article  Google Scholar 

  44. Gandy S, Duff K (2000) Post-menopausal estrogen deprivation and Alzheimer’s disease. Exp Gerontol 35(4):503–511

    Article  CAS  Google Scholar 

  45. Nilsen J et al (2006) Estrogen protects neuronal cells from amyloid beta-induced apoptosis via regulation of mitochondrial proteins and function. BMC Neurosci 7(1):74

    Article  Google Scholar 

  46. Irwin RW et al (2008) Progesterone and estrogen regulate oxidative metabolism in brain mitochondria. Endocrinol 149(6):3167–3175

    Article  CAS  Google Scholar 

  47. Goodman Y et al (1996) Estrogens attenuate and corticosterone exacerbates excitotoxicity, oxidative injury, and amyloid beta-peptide toxicity in hippocampal neurons. J Neurochem 66(5):1836–1844

    Article  CAS  Google Scholar 

  48. Vincent B, Smith JD (2000) Effect of estradiol on neuronal Swedish-mutated beta-amyloid precursor protein metabolism: reversal by astrocytic cells. Biochem Biophys Res Commun 271(1):82–85

    Article  CAS  Google Scholar 

  49. Jaffe AB et al (1994) Estrogen regulates metabolism of Alzheimer amyloid beta precursor protein. J Biol Chem 269(18):13065–13068

    Article  CAS  Google Scholar 

  50. Xu H et al (1998) Estrogen reduces neuronal generation of Alzheimer beta-amyloid peptides. Nat Med 4(4):447–451

    Article  CAS  Google Scholar 

  51. Green PS, Gridley KE, Simpkins JW (1996) Estradiol protects against beta-amyloid (25–35)-induced toxicity in SK-N-SH human neuroblastoma cells. Neurosci Lett 218(3):165–168

    Article  CAS  Google Scholar 

  52. Li R et al (2000) Estrogen enhances uptake of amyloid beta-protein by microglia derived from the human cortex. J Neurochem 75(4):1447–1454

    Article  CAS  Google Scholar 

  53. Stephan A, Laroche S, Davis S (2001) Generation of aggregated beta-amyloid in the rat hippocampus impairs synaptic transmission and plasticity and causes memory deficits. J Neurosci 21(15):5703–5714

    Article  CAS  Google Scholar 

  54. Parent A et al (1999) Synaptic transmission and hippocampal long-term potentiation in transgenic mice expressing FAD-linked presenilin 1. Neurobiol Dis 6(1):56–62

    Article  CAS  Google Scholar 

  55. Zaman SH et al (2000) Enhanced synaptic potentiation in transgenic mice expressing presenilin 1 familial Alzheimer’s disease mutation is normalized with a benzodiazepine. Neurobiol Dis 7(1):54–63

    Article  CAS  Google Scholar 

  56. Wong M, Moss RL (1992) Long-term and short-term electrophysiological effects of estrogen on the synaptic properties of hippocampal CA1 neurons. J Neurosci 12(8):3217–3225

    Article  CAS  Google Scholar 

  57. CordobaMontoya DA, Carrer HF (1997) Estrogen facilitates induction of long term potentiation in the hippocampus of awake rats. Brain Res 778(2):430–8

    CAS  Google Scholar 

  58. Chavez C et al (2010) The effect of estrogen on dopamine and serotonin receptor and transporter levels in the brain: an autoradiography study. Brain Res 1321:51–59

    Article  CAS  Google Scholar 

  59. Gross KS, Mermelstein PG (2020) Estrogen receptor signaling through metabotropic glutamate receptors. Vitam Horm 114:211–232

    Article  CAS  Google Scholar 

  60. Del Rio JP et al (2018) Steroid hormones and their action in women’s brains: the importance of hormonal balance. Front Public Health 6:141

    Article  Google Scholar 

  61. Jamshed N et al (2014) Alzheimer disease in post-menopausal women: intervene in the critical window period. J Midlife Health 5(1):38–40

    Google Scholar 

  62. Honjo H et al (1989) In vivo effects by estrone sulfate on the central nervous system-senile dementia (Alzheimer’s type). J Steroid Biochem 34(1–6):521–525

    CAS  Google Scholar 

  63. Ohkura T et al (1995) Long-term estrogen replacement therapy in female patients with dementia of the Alzheimer type: 7 case reports. Dementia 6(2):99–107

    CAS  Google Scholar 

  64. Cholerton B et al (2002) Estrogen and Alzheimer’s disease: the story so far. Drugs Aging 19(6):405–427

    Article  CAS  Google Scholar 

  65. Zhou C et al (2020) The effect of hormone replacement therapy on cognitive function in female patients with Alzheimer’s disease: a meta-analysis. Am J Alzheimers Dis Other Demen 35:1533317520938585

    Article  Google Scholar 

  66. Singh M, Su C (2013) Progesterone and neuroprotection. Horm Behav 63(2):284–290

    Article  CAS  Google Scholar 

  67. Hong Y et al (2016) Progesterone exerts neuroprotective effects against Abeta-induced neuroinflammation by attenuating ER stress in astrocytes. Int Immunopharmacol 33:83–89

    Article  CAS  Google Scholar 

  68. Hong Y et al (2019) The neuroprotection of progesterone against Abeta-induced NLRP3-Caspase-1 inflammasome activation via enhancing autophagy in astrocytes. Int Immunopharmacol 74:105669

    Article  CAS  Google Scholar 

  69. Hong Y et al (2018) Progesterone suppresses Abeta42-induced neuroinflammation by enhancing autophagy in astrocytes. Int Immunopharmacol 54:336–343

    Article  CAS  Google Scholar 

  70. Carroll JC et al (2007) Progesterone and estrogen regulate Alzheimer-like neuropathology in female 3xTg-AD mice. J Neurosci 27(48):13357–13365

    Article  CAS  Google Scholar 

  71. Wang JM et al (2010) Allopregnanolone reverses neurogenic and cognitive deficits in mouse model of Alzheimer’s disease. Proc Natl Acad Sci USA 107(14):6498–6503

    Article  CAS  Google Scholar 

  72. Singh C et al (2012) Allopregnanolone restores hippocampal-dependent learning and memory and neural progenitor survival in aging 3xTgAD and nonTg mice. Neurobiol Aging 33(8):1493–1506

    Article  CAS  Google Scholar 

  73. Kinney JW et al (2018) Inflammation as a central mechanism in Alzheimer’s disease. Alzheimers Dement (N Y) 4:575–590

    Article  Google Scholar 

  74. Luchetti S, Huitinga I, Swaab D (2011) Neurosteroid and GABA-A receptor alterations in Alzheimer’s disease Parkinson’s disease and multiple sclerosis. Neurosci 191:6–21

    Article  CAS  Google Scholar 

  75. Naylor JC et al (1801) 2010 Allopregnanolone levels are reduced in temporal cortex in patients with Alzheimer’s disease compared to cognitively intact control subjects. Biochimica et Biophysica Acta (BBA)-Mol Cell Biol Lipids 8:951–959

    Google Scholar 

  76. Yilmaz C et al (2019) Neurosteroids as regulators of neuroinflammation. Front Neuroendocrinol 55:100788

    Article  Google Scholar 

  77. Ito A et al (2001) Estrogen treatment down-regulates TNF-alpha production and reduces the severity of experimental autoimmune encephalomyelitis in cytokine knockout mice. J Immunol 167(1):542–552

    Article  CAS  Google Scholar 

  78. Bebo BF Jr et al (2001) Low-dose estrogen therapy ameliorates experimental autoimmune encephalomyelitis in two different inbred mouse strains. J Immunol 166(3):2080–2089

    Article  CAS  Google Scholar 

  79. Garidou L et al (2004) Estrogen receptor alpha signaling in inflammatory leukocytes is dispensable for 17beta-estradiol-mediated inhibition of experimental autoimmune encephalomyelitis. J Immunol 173(4):2435–2442

    Article  CAS  Google Scholar 

  80. Benedek G et al (2017) Novel feedback loop between M2 macrophages/microglia and regulatory B cells in estrogen-protected EAE mice. J Neuroimmunol 305:59–67

    Article  CAS  Google Scholar 

  81. Matejuk A et al (2001) 17 beta-estradiol inhibits cytokine, chemokine, and chemokine receptor mRNA expression in the central nervous system of female mice with experimental autoimmune encephalomyelitis. J Neurosci Res 65(6):529–542

    Article  CAS  Google Scholar 

  82. Saijo K et al (2011) An ADIOL-ERbeta-CtBP transrepression pathway negatively regulates microglia-mediated inflammation. Cell 145(4):584–595

    Article  CAS  Google Scholar 

  83. Spence RD et al (2013) Estrogen mediates neuroprotection and anti-inflammatory effects during EAE through ERalpha signaling on astrocytes but not through ERbeta signaling on astrocytes or neurons. J Neurosci 33(26):10924–10933

    Article  CAS  Google Scholar 

  84. Spence RD et al (2011) Neuroprotection mediated through estrogen receptor-alpha in astrocytes. Proc Natl Acad Sci U S A 108(21):8867–8872

    Article  CAS  Google Scholar 

  85. Gadani SP et al (2015) Dealing with danger in the CNS: the response of the immune system to injury. Neuron 87(1):47–62

    Article  CAS  Google Scholar 

  86. Yao X et al (2014) Estrogen-provided cardiac protection following burn trauma is mediated through a reduction in mitochondria-derived DAMPs. Am J Physiol-Heart Circ Physiol 306(6):H882–H894

    Article  CAS  Google Scholar 

  87. Yun J et al (2018) Estrogen deficiency exacerbates Abeta-induced memory impairment through enhancement of neuroinflammation, amyloidogenesis and NF-kB activation in ovariectomized mice. Brain Behav Immun 73:282–293

    Article  CAS  Google Scholar 

  88. Vegeto E et al (2006) The endogenous estrogen status regulates microglia reactivity in animal models of neuroinflammation. Endocrinol 147(5):2263–2272

    Article  CAS  Google Scholar 

  89. Slowik A et al (2018) Impact of steroid hormones E2 and P on the NLRP3/ASC/Casp1 axis in primary mouse astroglia and BV-2 cells after in vitro hypoxia. J Steroid Biochem Mol Biol 183:18–26

    Article  CAS  Google Scholar 

  90. Reed JL et al (2004) Estrogen increases proteasome activity in murine microglial cells. Neurosci Lett 367(1):60–65

    Article  CAS  Google Scholar 

  91. Farrer LA et al (1997) Effects of age, sex, and ethnicity on the association between apolipoprotein E genotype and Alzheimer disease A meta-analysis APOE and Alzheimer disease meta analysis consortium. JAMA 278(16):1349–56

    Article  CAS  Google Scholar 

  92. Davignon J, Gregg RE, Sing CF (1988) Apolipoprotein E polymorphism and atherosclerosis. Arteriosclerosis 8(1):1–21

    Article  CAS  Google Scholar 

  93. Safieh M, Korczyn AD, Michaelson DM (2019) ApoE4: an emerging therapeutic target for Alzheimer’s disease. BMC Med 17(1):64

    Article  Google Scholar 

  94. Mahley RW, Rall SC Jr (2000) Apolipoprotein E: far more than a lipid transport protein. Annu Rev Genomics Hum Genet 1:507–537

    Article  CAS  Google Scholar 

  95. Villa A et al (2016) Estrogens, Neuroinflammation, and Neurodegeneration. Endocr Rev 37(4):372–402

    Article  CAS  Google Scholar 

  96. Davies DA (2021) The role of APOE and NF-κB in Alzheimer’s disease. Immuno 1(4):391–399

    Article  Google Scholar 

  97. Querfurth HW, LaFerla FM (2010) Alzheimer’s disease. N Engl J Med 362(4):329–344

    Article  CAS  Google Scholar 

  98. Newcombe EA et al (2018) Inflammation: the link between comorbidities, genetics, and Alzheimer’s disease. J Neuroinflammation 15(1):276

    Article  Google Scholar 

  99. Bertram L, Tanzi RE (2008) Thirty years of Alzheimer’s disease genetics: the implications of systematic meta-analyses. Nat Rev Neurosci 9(10):768–778

    Article  CAS  Google Scholar 

  100. Gale SC et al (2014) APOepsilon4 is associated with enhanced in vivo innate immune responses in human subjects. J Allergy Clin Immunol 134(1):127–134

    Article  CAS  Google Scholar 

  101. Olgiati P et al (2010) APOE epsilon-4 allele and cytokine production in Alzheimer’s disease. Int J Geriatr Psychiatry 25(4):338–344

    Article  Google Scholar 

  102. Jacobs EG et al (2013) Accelerated cell aging in female APOE-epsilon4 carriers: implications for hormone therapy use. PLoS One 8(2):e54713

    Article  CAS  Google Scholar 

  103. Kantarci K et al (2016) Early postmenopausal transdermal 17β-estradiol therapy and amyloid-β deposition. J Alzheimer’s Dis 53:547–556

    Article  CAS  Google Scholar 

  104. Brown CM et al (2008) The APOE4 genotype alters the response of microglia and macrophages to 17beta-estradiol. Neurobiol Aging 29(12):1783–1794

    Article  CAS  Google Scholar 

  105. Wang JM, Irwin RW, Brinton RD (2006) Activation of estrogen receptor α increases and estrogen receptor β decreases apolipoprotein E expression in hippocampus in vitro and in vivo. Proc Natl Acad Sci 103(45):16983–16988

    Article  CAS  Google Scholar 

  106. Lawrence T (2009) The nuclear factor NF-kappaB pathway in inflammation. Cold Spring Harb Perspect Biol 1(6):a001651

    Article  Google Scholar 

  107. Eshraghi M et al (2021) Alzheimer’s disease pathogenesis: role of autophagy and mitophagy focusing in microglia. Int J Mol Sci 22(7)

  108. Hayden MS, Ghosh S (2004) Signaling to NF-kappaB. Genes Dev 18(18):2195–2224

    Article  CAS  Google Scholar 

  109. Albensi BC (2019) What is nuclear factor kappa B (NF-kappaB) doing in and to the mitochondrion? Front Cell Dev Biol 7:154

    Article  Google Scholar 

  110. Li Q, Verma IM (2002) NF-kappaB regulation in the immune system. Nat Rev Immunol 2(10):725–734

    Article  CAS  Google Scholar 

  111. Kaltschmidt B et al (2022) NF-κB in neurodegenerative diseases: recent evidence from human genetics. Front Mol Neurosci 15:954541

    Article  CAS  Google Scholar 

  112. O’Neill LA, Kaltschmidt C (1997) NF-kappa B: a crucial transcription factor for glial and neuronal cell function. Trends Neurosci 20(6):252–258

    Article  Google Scholar 

  113. Granic I et al (2009) Inflammation and NF-kappaB in Alzheimer’s disease and diabetes. J Alzheimers Dis 16(4):809–821

    Article  Google Scholar 

  114. Goel D, Vohora D (2021) Liver X receptors and skeleton: current state-of-knowledge. Bone 144:115807

    Article  CAS  Google Scholar 

  115. Kaltschmidt B et al (1997) Transcription factor NF-kappaB is activated in primary neurons by amyloid beta peptides and in neurons surrounding early plaques from patients with Alzheimer disease. Proc Natl Acad Sci USA 94(6):2642–2647

    Article  CAS  Google Scholar 

  116. Huang P et al (2020) Curcumin inhibits BACE1 expression through the interaction between ERbeta and NFkappaB signaling pathway in SH-SY5Y cells. Mol Cell Biochem 463(1–2):161–173

    Article  CAS  Google Scholar 

  117. Zheng N et al (2015) Luteolin reduces BACE1 expression through NF-kappaB and through estrogen receptor mediated pathways in HEK293 and SH-SY5Y Cells. J Alzheimers Dis 45(2):659–671

    Article  CAS  Google Scholar 

  118. Hwang CJ et al (2016) Acceleration of amyloidogenesis and memory impairment by estrogen deficiency through NF-kappaB dependent beta-secretase activation in presenilin 2 mutant mice. Brain Behav Immun 53:113–122

    Article  CAS  Google Scholar 

  119. Dodel RC et al (1999) Sodium salicylate and 17beta-estradiol attenuate nuclear transcription factor NF-kappaB translocation in cultured rat astroglial cultures following exposure to amyloid A beta(1–40) and lipopolysaccharides. J Neurochem 73(4):1453–1460

    Article  CAS  Google Scholar 

  120. Vegeto E, Benedusi V, Maggi A (2008) Estrogen anti-inflammatory activity in brain: a therapeutic opportunity for menopause and neurodegenerative diseases. Front Neuroendocrinol 29(4):507–519

    Article  CAS  Google Scholar 

  121. Ghisletti S et al (2005) 17beta-estradiol inhibits inflammatory gene expression by controlling NF-kappaB intracellular localization. Mol Cell Biol 25(8):2957–2968

    Article  CAS  Google Scholar 

  122. Jung YJ et al (2003) Microtubule disruption utilizes an NFkappa B-dependent pathway to stabilize HIF-1alpha protein. J Biol Chem 278(9):7445–7452

    Article  CAS  Google Scholar 

  123. Rosette C, Karin M (1995) Cytoskeletal control of gene expression: depolymerization of microtubules activates NF-kappa B. J Cell Biol 128(6):1111–1119

    Article  CAS  Google Scholar 

  124. Snezhkina AV et al (2019) ROS generation and antioxidant defense systems in normal and malignant cells. Oxid Med Cell Longev 2019:6175804

    Article  Google Scholar 

  125. Ma Q (2013) Role of nrf2 in oxidative stress and toxicity. Annu Rev Pharmacol Toxicol 53:401–426

    Article  CAS  Google Scholar 

  126. Cullinan SB et al (2004) The Keap1-BTB protein is an adaptor that bridges Nrf2 to a Cul3-based E3 ligase: oxidative stress sensing by a Cul3-Keap1 ligase. Mol Cell Biol 24(19):8477–8486

    Article  CAS  Google Scholar 

  127. Kobayashi A et al (2004) Oxidative stress sensor Keap1 functions as an adaptor for Cul3-based E3 ligase to regulate proteasomal degradation of Nrf2. Mol Cell Biol 24(16):7130–7139

    Article  CAS  Google Scholar 

  128. Zhang DD et al (2004) Keap1 is a redox-regulated substrate adaptor protein for a Cul3-dependent ubiquitin ligase complex. Mol Cell Biol 24(24):10941–10953

    Article  CAS  Google Scholar 

  129. Furukawa M, Xiong Y (2005) BTB protein Keap1 targets antioxidant transcription factor Nrf2 for ubiquitination by the Cullin 3-Roc1 ligase. Mol Cell Biol 25(1):162–171

    Article  CAS  Google Scholar 

  130. Wakabayashi N et al (2004) Protection against electrophile and oxidant stress by induction of the phase 2 response: fate of cysteines of the Keap1 sensor modified by inducers. Proc Natl Acad Sci U S A 101(7):2040–2045

    Article  CAS  Google Scholar 

  131. Dinkova-Kostova AT et al (2002) Direct evidence that sulfhydryl groups of Keap1 are the sensors regulating induction of phase 2 enzymes that protect against carcinogens and oxidants. Proc Natl Acad Sci U S A 99(18):11908–11913

    Article  CAS  Google Scholar 

  132. Dinkova-Kostova AT, Holtzclaw WD, Wakabayashi N (2005) Keap1, the sensor for electrophiles and oxidants that regulates the phase 2 response, is a zinc metalloprotein. Biochem 44(18):6889–6899

    Article  CAS  Google Scholar 

  133. Eggler AL et al (2005) Modifying specific cysteines of the electrophile-sensing human Keap1 protein is insufficient to disrupt binding to the Nrf2 domain Neh2. Proc Natl Acad Sci USA 102(29):10070–10075

    Article  CAS  Google Scholar 

  134. Tong KI et al (2006) Two-site substrate recognition model for the Keap1-Nrf2 system: a hinge and latch mechanism. Biol Chem 387(10–11):1311–1320

    CAS  Google Scholar 

  135. Kobayashi A et al (2006) Oxidative and electrophilic stresses activate Nrf2 through inhibition of ubiquitination activity of Keap1. Mol Cell Biol 26(1):221–229

    Article  CAS  Google Scholar 

  136. Yamamoto M, Kensler TW, Motohashi H (2018) The KEAP1-NRF2 system: a thiol-based sensor-effector apparatus for maintaining redox homeostasis. Physiol Rev 98(3):1169–1203

    Article  CAS  Google Scholar 

  137. Davies DA, A Adlimoghaddam, BC Albensi (2021) Role of Nrf2 in synaptic plasticity and memory in Alzheimer’s disease. Cells 10(8)

  138. Khan I et al (2021) 17-Beta estradiol rescued immature rat brain against glutamate-induced oxidative stress and neurodegeneration via regulating Nrf2/HO-1 and MAP-kinase signaling pathway. Antioxidants (Basel) 10(6)

  139. Khan M et al (2019) 17-Beta-estradiol modulates SIRT1 and halts oxidative stress-mediated cognitive impairment in a male aging mouse model. Cells 8(8)

  140. Wu J et al (2014) Estrogen increases Nrf2 activity through activation of the PI3K pathway in MCF-7 breast cancer cells. Exp Cell Res 328(2):351–360

    Article  CAS  Google Scholar 

  141. Song CH et al (2019) 17-beta estradiol exerts anti-inflammatory effects through activation of Nrf2 in mouse embryonic fibroblasts. PLoS ONE 14(8):e0221650

    Article  CAS  Google Scholar 

  142. Kong D et al (2019) Effects of resveratrol on the mechanisms of antioxidants and estrogen in Alzheimer’s disease. Biomed Res Int 2019:8983752

    Article  Google Scholar 

  143. Jantaratnotai N et al (2013) Phytoestrogens mediated anti-inflammatory effect through suppression of IRF-1 and pSTAT1 expressions in lipopolysaccharide-activated microglia. Int Immunopharmacol 17(2):483–488

    Article  CAS  Google Scholar 

  144. Kaplan MH (2013) STAT signaling in inflammation. JAKSTAT 2(1):e24198

    Google Scholar 

  145. Platanitis E, Decker T (2018) Regulatory networks involving STATs, IRFs, and NFkappaB in inflammation. Front Immunol 9:2542

    Article  Google Scholar 

  146. Wong CK et al (2012) Estrogen controls embryonic stem cell proliferation via store-operated calcium entry and the nuclear factor of activated T-cells (NFAT). J Cell Physiol 227(6):2519–2530

    Article  CAS  Google Scholar 

  147. Abdul HM et al (2010) NFATs and Alzheimer’s disease. Mol Cell Pharmacol 2(1):7–14

    CAS  Google Scholar 

  148. Maiese K (2016) Forkhead transcription factors: new considerations for Alzheimer’s disease and dementia. J Transl Sci 2(4):241–247

    Article  Google Scholar 

  149. Tower J, Pomatto LCD, Davies KJA (2020) Sex differences in the response to oxidative and proteolytic stress. Redox Biol 31:101488

    Article  CAS  Google Scholar 

  150. Webster KM et al (2015) Progesterone treatment reduces neuroinflammation, oxidative stress and brain damage and improves long-term outcomes in a rat model of repeated mild traumatic brain injury. J Neuroinflammation 12(1):238

    Article  Google Scholar 

  151. Feng R et al (2022) Progesterone regulates inflammation and receptivity of cells via the NF-kappaB and LIF/STAT3 pathways. Theriogenol 186:50–59

    Article  CAS  Google Scholar 

  152. Hardy DB et al (2006) Progesterone receptor plays a major antiinflammatory role in human myometrial cells by antagonism of nuclear factor-kappaB activation of cyclooxygenase 2 expression. Mol Endocrinol 20(11):2724–2733

    Article  CAS  Google Scholar 

  153. Kalkhoven E et al (1996) Negative interaction between the RelA(p65) subunit of NF-kappaB and the progesterone receptor. J Biol Chem 271(11):6217–6224

    Article  CAS  Google Scholar 

  154. Cui L et al (2022) Anti-inflammatory effects of progesterone through NF-kappaB and MAPK pathway in lipopolysaccharide- or Escherichia coli-stimulated bovine endometrial stromal cells. PLoS One 17(4):e0266144

    Article  CAS  Google Scholar 

  155. Abdi F et al (2016) Hormone therapy for relieving postmenopausal vasomotor symptoms: a systematic review. Archives of Iranian Medicine 19(2): 0–0.

  156. Sturdee D, Panay NA (2010) Recommendations for the management of postmenopausal vaginal atrophy. Climacteric 13(6):509–522

    Article  CAS  Google Scholar 

  157. Gambacciani M, Levancini M (2014) Hormone replacement therapy and the prevention of postmenopausal osteoporosis. Prz Menopauzalny 13(4):213–220

    Google Scholar 

  158. Asthana S et al (1999) Cognitive and neuroendocrine response to transdermal estrogen in postmenopausal women with Alzheimer’s disease: results of a placebo-controlled, double-blind, pilot study. Psychoneuroendocrinol 24(6):657–677

    Article  CAS  Google Scholar 

  159. Wharton W et al (2011) Short-term hormone therapy with transdermal estradiol improves cognition for postmenopausal women with Alzheimer’s disease: results of a randomized controlled trial. J Alzheimers Dis 26(3):495–505

    Article  CAS  Google Scholar 

  160. Zandi PP et al (2002) Hormone replacement therapy and incidence of Alzheimer disease in older women: the Cache County Study. JAMA 288(17):2123–2129

    Article  CAS  Google Scholar 

  161. Waring SC et al (1999) Postmenopausal estrogen replacement therapy and risk of AD: a population-based study. Neurol 52(5):965–970

    Article  CAS  Google Scholar 

  162. Tang MX et al (1996) Effect of oestrogen during menopause on risk and age at onset of Alzheimer’s disease. Lancet 348(9025):429–432

    Article  CAS  Google Scholar 

  163. Verma E et al (2021) Potential of baicalein in the prevention and treatment of cancer: a scientometric analyses based review. J Funct Foods 86:104660

    Article  CAS  Google Scholar 

  164. Vinogradova Y et al (2021) Use of menopausal hormone therapy and risk of dementia: nested case-control studies using QResearch and CPRD databases. BMJ 374:n2182

    Article  Google Scholar 

  165. Song YJ et al (2020) The effect of estrogen replacement therapy on Alzheimer’s disease and Parkinson’s disease in postmenopausal women: a meta-analysis. Front Neurosci 14:157

    Article  Google Scholar 

  166. Mulnard RA et al (2000) Estrogen replacement therapy for treatment of mild to moderate Alzheimer disease: a randomized controlled trial Alzheimer’s disease cooperative study. JAMA 283(8):1007–15

    Article  CAS  Google Scholar 

  167. Shumaker SA et al (2004) Conjugated equine estrogens and incidence of probable dementia and mild cognitive impairment in postmenopausal women: Women’s Health Initiative Memory Study. JAMA 291(24):2947–2958

    Article  CAS  Google Scholar 

  168. Shumaker SA et al (2003) Estrogen plus progestin and the incidence of dementia and mild cognitive impairment in postmenopausal women: the Women’s Health Initiative Memory Study: a randomized controlled trial. JAMA 289(20):2651–2662

    Article  CAS  Google Scholar 

  169. Savolainen-Peltonen H et al (2019) Use of postmenopausal hormone therapy and risk of Alzheimer’s disease in Finland: nationwide case-control study. BMJ 364:l665

    Article  Google Scholar 

  170. Shao H et al (2012) Hormone therapy and Alzheimer disease dementia: new findings from the Cache County Study. Neurol 79(18):1846–1852

    Article  CAS  Google Scholar 

  171. Kunzler J et al (2014) APOE modulates the effect of estrogen therapy on Abeta accumulation EFAD-Tg mice. Neurosci Lett 560:131–136

    Article  CAS  Google Scholar 

  172. Maki PM (2013) Critical window hypothesis of hormone therapy and cognition: a scientific update on clinical studies. Menopause 20(6):695–709

    Article  Google Scholar 

  173. Zhang QG et al (2011) C terminus of Hsc70-interacting protein (CHIP)-mediated degradation of hippocampal estrogen receptor-alpha and the critical period hypothesis of estrogen neuroprotection. Proc Natl Acad Sci U S A 108(35):E617–E624

    Article  CAS  Google Scholar 

Download references

Acknowledgements

B.C.A. previously held the Manitoba Dementia Research Chair (funded by the Alzheimer’s Soc. of Manitoba and Research Manitoba) and the Honourable Douglas and Patricia Everett, Royal Canadian Properties Limited Endowment Chair.

Funding

We gratefully acknowledge the support from the St. Boniface Hospital Research Foundation (Grant Nos. 1406–3216 and 1410–3216), the Canadian Institute of Health Research (CIHR; Grant No. PJT-162144) to B.C.A., the Alzheimer’s Society of Manitoba, the Honourable Douglas and Patricia Everett, Royal Canadian Properties Limited Endowment Fund (Grant No. 1403–3131) to B.C.A. B.C.A. previously held the Manitoba Dementia Research Chair (funded by the Alzheimer’s Soc. of Manitoba and Research Manitoba).

Author information

Authors and Affiliations

Authors

Contributions

Pranav Mishra and Don Davies created the outline and wrote much of the paper. Benedict C. Albensi supervised the writing, edited the manuscript, provided additional text and references when necessary.

Corresponding author

Correspondence to Benedict C. Albensi.

Ethics declarations

Ethics Approval and Consent to Participate

Not applicable.

Consent for Publication

Authors consent to publish identifiable details within the text in the journal of molecular neurobiology.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Pranav Mishra and Don a. Davies are co-first authors.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mishra, P., Davies, D.A. & Albensi, B.C. The Interaction Between NF-κB and Estrogen in Alzheimer’s Disease. Mol Neurobiol 60, 1515–1526 (2023). https://doi.org/10.1007/s12035-022-03152-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-022-03152-3

Keywords

Navigation