Skip to main content
Log in

Neuroplasticity-Related Genes and Dopamine Receptors Associated with Regional Cortical Thickness Increase Following Electroconvulsive Therapy for Major Depressive Disorder

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Electroconvulsive therapy (ECT) is an effective neuromodulatory therapy for major depressive disorder (MDD). Treatment is associated with regional changes in brain structure and function, indicating activation of neuroplastic processes. To investigate the underlying neurobiological mechanism of macroscopic reorganization following ECT, we longitudinally (before and after ECT in two centers) collected magnetic resonance images for 96 MDD patients. Similar patterns of cortical thickness (CT) changes following ECT were observed in two centers. These CT changes were spatially colocalized with a weighted combination of genes enriched for neuroplasticity-related ontology terms and pathways (e.g., synaptic pruning) as well as with a higher density of D2/3 dopamine receptors. A multiple linear regression model indicated that the region-specific gene expression and receptor density patterns explained 40% of the variance in CT changes after ECT. In conclusion, these findings suggested that dopamine signaling and neuroplasticity-related genes are associated with the ECT-induced morphological reorganization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available on request from the corresponding authors.

References

  1. Oltedal L, Narr KL, Abbott C, Anand A, Argyelan M, Bartsch H, Dannlowski U, Dols A et al (2018) Volume of the human hippocampus and clinical response following electroconvulsive therapy. Biol Psychiat 84(8):574–581. https://doi.org/10.1016/j.biopsych.2018.05.017

    Article  Google Scholar 

  2. Pirnia T, Joshi SH, Leaver AM, Vasavada M, Njau S, Woods RP, Espinoza R, Narr KL (2016) Electroconvulsive therapy and structural neuroplasticity in neocortical, limbic and paralimbic cortex. Transl Psychiatry 6(6):e832. https://doi.org/10.1038/tp.2016.102

    Article  CAS  Google Scholar 

  3. Benson-Martin JJ, Stein DJ, Baldwin DS, Domschke K (2016) Genetic mechanisms of electroconvulsive therapy response in depression. Hum Psychopharmacol 31(3):247–251. https://doi.org/10.1002/hup.2531

    Article  Google Scholar 

  4. Viikki ML, Jarventausta K, Leinonen E, Huuhka M, Mononen N, Lehtimaki T, Kampman O (2013) BDNF polymorphism rs11030101 is associated with the efficacy of electroconvulsive therapy in treatment-resistant depression. Psychiatr Genet 23(3):134–136. https://doi.org/10.1097/YPG.0b013e328360c894

    Article  CAS  Google Scholar 

  5. van Buel EM, Patas K, Peters M, Bosker FJ, Eisel UL, Klein HC (2015) Immune and neurotrophin stimulation by electroconvulsive therapy: is some inflammation needed after all? Transl Psychiatry 5:e609. https://doi.org/10.1038/tp.2015.100

    Article  CAS  Google Scholar 

  6. Wittenberg GM, Greene J, Vertes PE, Drevets WC, Bullmore ET (2020) Major depressive disorder is associated with differential expression of innate immune and neutrophil-related gene networks in peripheral blood: a quantitative review of whole-genome transcriptional data from case-control studies. Biol Psychiat 88(8):625–637. https://doi.org/10.1016/j.biopsych.2020.05.006

    Article  CAS  Google Scholar 

  7. Galts CPC, Bettio LEB, Jewett DC, Yang CC, Brocardo PS, Rodrigues ALS, Thacker JS, Gil-Mohapel J (2019) Depression in neurodegenerative diseases: common mechanisms and current treatment options. Neurosci Biobehav Rev 102:56–84. https://doi.org/10.1016/j.neubiorev.2019.04.002

    Article  Google Scholar 

  8. Undurraga J, Baldessarini RJ (2012) Randomized, placebo-controlled trials of antidepressants for acute major depression: thirty-year meta-analytic review. Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology 37(4):851–864. https://doi.org/10.1038/npp.2011.306

    Article  CAS  Google Scholar 

  9. Baldinger P, Lotan A, Frey R, Kasper S, Lerer B, Lanzenberger R (2014) Neurotransmitters and electroconvulsive therapy. J ECT 30(2):116–121. https://doi.org/10.1097/YCT.0000000000000138

    Article  CAS  Google Scholar 

  10. Goodwin GM, De Souza RJ, Green AR (1987) Attenuation by electroconvulsive shock and antidepressant drugs of the 5-HT1A receptor-mediated hypothermia and serotonin syndrome produced by 8-OH-DPAT in the rat. Psychopharmacology 91(4):500–505. https://doi.org/10.1007/BF00216018

    Article  CAS  Google Scholar 

  11. Pinna M, Manchia M, Oppo R, Scano F, Pillai G, Loche AP, Salis P, Minnai GP (2018) Clinical and biological predictors of response to electroconvulsive therapy (ECT): a review. Neurosci Lett 669:32–42. https://doi.org/10.1016/j.neulet.2016.10.047

    Article  CAS  Google Scholar 

  12. Masuoka T, Tateno A, Sakayori T, Tiger M, Kim W, Moriya H, Ueda S, Arakawa R et al (2020) Electroconvulsive therapy decreases striatal dopamine transporter binding in patients with depression: a positron emission tomography study with [(18)F]FE-PE2I. Psychiatry research Neuroimaging 301:111086. https://doi.org/10.1016/j.pscychresns.2020.111086

    Article  Google Scholar 

  13. Gbyl K, Videbech P (2018) Electroconvulsive therapy increases brain volume in major depression: a systematic review and meta-analysis. Acta Psychiatr Scand 138(3):180–195. https://doi.org/10.1111/acps.12884

    Article  CAS  Google Scholar 

  14. Reuter M, Rosas HD, Fischl B (2010) Highly accurate inverse consistent registration: a robust approach. Neuroimage 53(4):1181–1196. https://doi.org/10.1016/j.neuroimage.2010.07.020

    Article  Google Scholar 

  15. Reuter M, Fischl B (2011) Avoiding asymmetry-induced bias in longitudinal image processing. Neuroimage 57(1):19–21. https://doi.org/10.1016/j.neuroimage.2011.02.076

    Article  Google Scholar 

  16. Reuter M, Schmansky NJ, Rosas HD, Fischl B (2012) Within-subject template estimation for unbiased longitudinal image analysis. Neuroimage 61(4):1402–1418. https://doi.org/10.1016/j.neuroimage.2012.02.084

    Article  Google Scholar 

  17. Glasser MF, Coalson TS, Robinson EC, Hacker CD, Harwell J, Yacoub E, Ugurbil K, Andersson J et al (2016) A multi-modal parcellation of human cerebral cortex. Nature 536(7615):171–178. https://doi.org/10.1038/nature18933

    Article  CAS  Google Scholar 

  18. Hawrylycz MJ, Lein ES, Guillozet-Bongaarts AL, Shen EH, Ng L, Miller JA, van de Lagemaat LN, Smith KA et al (2012) An anatomically comprehensive atlas of the adult human brain transcriptome. Nature 489(7416):391–399. https://doi.org/10.1038/nature11405

    Article  CAS  Google Scholar 

  19. Arnatkeviciute A, Fulcher BD, Fornito A (2019) A practical guide to linking brain-wide gene expression and neuroimaging data. Neuroimage 189:353–367. https://doi.org/10.1016/j.neuroimage.2019.01.011

    Article  Google Scholar 

  20. Arloth J, Bader DM, Roh S, Altmann A (2015) Re-annotator: annotation pipeline for microarray probe sequences. PLoS ONE 10(10):e0139516. https://doi.org/10.1371/journal.pone.0139516

    Article  CAS  Google Scholar 

  21. Krishnan A, Williams LJ, McIntosh AR, Abdi H (2011) Partial least squares (PLS) methods for neuroimaging: a tutorial and review. Neuroimage 56(2):455–475. https://doi.org/10.1016/j.neuroimage.2010.07.034

    Article  Google Scholar 

  22. Zhou Y, Zhou B, Pache L, Chang M, Khodabakhshi AH, Tanaseichuk O, Benner C, Chanda SK (2019) Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat Commun 10(1):1523. https://doi.org/10.1038/s41467-019-09234-6

    Article  CAS  Google Scholar 

  23. Grecchi E, Doyle OM, Bertoldo A, Pavese N, Turkheimer FE (2014) Brain shaving: adaptive detection for brain PET data. Phys Med Biol 59(10):2517–2534. https://doi.org/10.1088/0031-9155/59/10/2517

    Article  Google Scholar 

  24. Rizzo G, Veronese M, Expert P, Turkheimer FE, Bertoldo A (2016) MENGA: a new comprehensive tool for the integration of neuroimaging Data and the Allen Human Brain Transcriptome Atlas. PLoS ONE 11(2):e0148744. https://doi.org/10.1371/journal.pone.0148744

    Article  CAS  Google Scholar 

  25. Savli M, Bauer A, Mitterhauser M, Ding YS, Hahn A, Kroll T, Neumeister A, Haeusler D et al (2012) Normative database of the serotonergic system in healthy subjects using multi-tracer PET. Neuroimage 63(1):447–459. https://doi.org/10.1016/j.neuroimage.2012.07.001

    Article  CAS  Google Scholar 

  26. Vasa F, Seidlitz J, Romero-Garcia R, Whitaker KJ, Rosenthal G, Vertes PE, Shinn M, Alexander-Bloch A et al (2018) Adolescent tuning of association cortex in human structural brain networks. Cereb Cortex 28(1):281–294. https://doi.org/10.1093/cercor/bhx249

    Article  Google Scholar 

  27. Mandal AS, Romero-Garcia R, Hart MG, Suckling J (2020) Genetic, cellular, and connectomic characterization of the brain regions commonly plagued by glioma. Brain : a journal of neurology 143(11):3294–3307. https://doi.org/10.1093/brain/awaa277

    Article  Google Scholar 

  28. Yang S, Wagstyl K, Meng Y, Zhao X, Li J, Zhong P, Li B, Fan YS, Chen H, Liao W (2021) Cortical patterning of morphometric similarity gradient reveals diverged hierarchical organization in sensory-motor cortices. Cell Rep 36(8):109582. https://doi.org/10.1016/j.celrep.2021.109582

    Article  CAS  Google Scholar 

  29. Morgan SE, Seidlitz J, Whitaker KJ, Romero-Garcia R, Clifton NE, Scarpazza C, van Amelsvoort T, Marcelis M, van Os J et al (2019) Cortical patterning of abnormal morphometric similarity in psychosis is associated with brain expression of schizophrenia-related genes. Proc Natl Acad Sci USA 116(19):9604–9609. https://doi.org/10.1073/pnas.1820754116

    Article  CAS  Google Scholar 

  30. Janouschek H, Camilleri JA, Peterson Z, Sharkey RJ, Eickhoff CR, Grozinger M, Eickhoff SB, Nickl-Jockschat T (2021) Meta-analytic evidence for volume increases in the medial temporal lobe after electroconvulsive therapy. Biol Psychiat. https://doi.org/10.1016/j.biopsych.2021.03.024

    Article  Google Scholar 

  31. Ousdal OT, Argyelan M, Narr KL, Abbott C, Wade B, Vandenbulcke M, Urretavizcaya M, Tendolkar I et al (2020) Brain changes induced by electroconvulsive therapy are broadly distributed. Biol Psychiat 87(5):451–461. https://doi.org/10.1016/j.biopsych.2019.07.010

    Article  Google Scholar 

  32. Sartorius A, Demirakca T, Bohringer A, Clemm von Hohenberg C, Aksay SS, Bumb JM, Kranaster L, Ende G (2016) Electroconvulsive therapy increases temporal gray matter volume and cortical thickness. Eur Neuropsychopharmacol 26(3):506–517. https://doi.org/10.1016/j.euroneuro.2015.12.036

    Article  CAS  Google Scholar 

  33. van Eijndhoven P, Mulders P, Kwekkeboom L, van Oostrom I, van Beek M, Janzing J, Schene A, Tendolkar I (2016) Bilateral ECT induces bilateral increases in regional cortical thickness. Transl Psychiatry 6(8):e874. https://doi.org/10.1038/tp.2016.139

    Article  Google Scholar 

  34. Gryglewski G, Baldinger-Melich P, Seiger R, Godbersen GM, Michenthaler P, Klobl M, Spurny B, Kautzky A et al (2019) Structural changes in amygdala nuclei, hippocampal subfields and cortical thickness following electroconvulsive therapy in treatment-resistant depression: longitudinal analysis. The British J Psychiatry : the J Mental Sci 214(3):159–167. https://doi.org/10.1192/bjp.2018.224

    Article  Google Scholar 

  35. Gbyl K, Rostrup E, Raghava JM, Carlsen JF, Schmidt LS, Lindberg U, Ashraf A, Jorgensen MB et al (2019) Cortical thickness following electroconvulsive therapy in patients with depression: a longitudinal MRI study. Acta Psychiatr Scand 140(3):205–216. https://doi.org/10.1111/acps.13068

    Article  CAS  Google Scholar 

  36. Xu J, Wang J, Bai T, Zhang X, Li T, Hu Q, Li H, Zhang L, Wei Q, Tian Y, Wang K (2019) Electroconvulsive therapy induces cortical morphological alterations in major depressive disorder revealed with surface-based morphometry analysis. Int J Neural Syst 29(7):1950005. https://doi.org/10.1142/S0129065719500059

    Article  Google Scholar 

  37. Yrondi A, Nemmi F, Billoux S, Giron A, Sporer M, Taib S, Salles J, Pierre D et al (2019) Grey matter changes in treatment-resistant depression during electroconvulsive therapy. J Affect Disord 258:42–49. https://doi.org/10.1016/j.jad.2019.07.075

    Article  Google Scholar 

  38. Kassem MS, Lagopoulos J, Stait-Gardner T, Price WS, Chohan TW, Arnold JC, Hatton SN, Bennett MR (2013) Stress-induced grey matter loss determined by MRI is primarily due to loss of dendrites and their synapses. Mol Neurobiol 47(2):645–661. https://doi.org/10.1007/s12035-012-8365-7

    Article  CAS  Google Scholar 

  39. Keifer OP Jr, Hurt RC, Gutman DA, Keilholz SD, Gourley SL, Ressler KJ (2015) Voxel-based morphometry predicts shifts in dendritic spine density and morphology with auditory fear conditioning. Nat Commun 6:7582. https://doi.org/10.1038/ncomms8582

    Article  Google Scholar 

  40. Maynard KR, Hobbs JW, Rajpurohit SK, Martinowich K (2018) Electroconvulsive seizures influence dendritic spine morphology and BDNF expression in a neuroendocrine model of depression. Brain Stimul 11(4):856–859. https://doi.org/10.1016/j.brs.2018.04.003

    Article  Google Scholar 

  41. Ongur D, Pohlman J, Dow AL, Eisch AJ, Edwin F, Heckers S, Cohen BM, Patel TB et al (2007) Electroconvulsive seizures stimulate glial proliferation and reduce expression of Sprouty2 within the prefrontal cortex of rats. Biol Psychiat 62(5):505–512. https://doi.org/10.1016/j.biopsych.2006.11.014

    Article  CAS  Google Scholar 

  42. Wang J, Wei Q, Wang L, Zhang H, Bai T, Cheng L, Tian Y, Wang K (2018) Functional reorganization of intra- and internetwork connectivity in major depressive disorder after electroconvulsive therapy. Hum Brain Mapp 39(3):1403–1411. https://doi.org/10.1002/hbm.23928

    Article  Google Scholar 

  43. Xu J, Wei Q, Bai T, Wang L, Li X, He Z, Wu J, Hu Q et al (2020) Electroconvulsive therapy modulates functional interactions between submodules of the emotion regulation network in major depressive disorder. Transl Psychiatry 10(1):271. https://doi.org/10.1038/s41398-020-00961-9

    Article  Google Scholar 

  44. Giacobbe J, Pariante CM, Borsini A (2020) The innate immune system and neurogenesis as modulating mechanisms of electroconvulsive therapy in pre-clinical studies. J Psychopharmacol 34(10):1086–1097. https://doi.org/10.1177/0269881120936538

    Article  CAS  Google Scholar 

  45. Xiang X, Yu Y, Tang X, Chen M, Zheng Y, Zhu S (2019) Transcriptome profile in hippocampus during acute inflammatory response to surgery: toward early stage of PND. Front Immunol 10:149. https://doi.org/10.3389/fimmu.2019.00149

  46. Li J, Seidlitz J, Suckling J, Fan F, Ji GJ, Meng Y, Yang S, Wang K et al (2021) Cortical structural differences in major depressive disorder correlate with cell type-specific transcriptional signatures. Nat Commun 12(1):1647. https://doi.org/10.1038/s41467-021-21943-5

    Article  CAS  Google Scholar 

  47. Yrondi A, Sporer M, Peran P, Schmitt L, Arbus C, Sauvaget A (2018) Electroconvulsive therapy, depression, the immune system and inflammation: a systematic review. Brain Stimul 11(1):29–51. https://doi.org/10.1016/j.brs.2017.10.013

    Article  Google Scholar 

  48. Robertson RM, Money TG (2012) Temperature and neuronal circuit function: compensation, tuning and tolerance. Curr Opin Neurobiol 22(4):724–734. https://doi.org/10.1016/j.conb.2012.01.008

    Article  CAS  Google Scholar 

  49. Faini G, Del Bene F, Albadri S (2021) Reelin functions beyond neuronal migration: from synaptogenesis to network activity modulation. Curr Opin Neurobiol 66:135–143. https://doi.org/10.1016/j.conb.2020.10.009

    Article  CAS  Google Scholar 

  50. Flavell SW, Greenberg ME (2008) Signaling mechanisms linking neuronal activity to gene expression and plasticity of the nervous system. Annu Rev Neurosci 31:563–590. https://doi.org/10.1146/annurev.neuro.31.060407.125631

    Article  CAS  Google Scholar 

  51. van Bergeijk P, Hoogenraad CC, Kapitein LC (2016) Right time, right place: probing the functions of organelle positioning. Trends Cell Biol 26(2):121–134. https://doi.org/10.1016/j.tcb.2015.10.001

    Article  Google Scholar 

  52. Chechik G, Meilijson I, Ruppin E (1998) Synaptic pruning in development: a computational account. Neural Comput 10(7):1759–1777. https://doi.org/10.1162/089976698300017124

    Article  CAS  Google Scholar 

  53. Vose LR, Stanton PK (2017) Synaptic plasticity, metaplasticity and depression. Curr Neuropharmacol 15(1):71–86. https://doi.org/10.2174/1570159x14666160202121111

    Article  CAS  Google Scholar 

  54. Hirschfeld RM (2000) History and evolution of the monoamine hypothesis of depression. J Clin Psychiatry 61(Suppl 6):4–6

    CAS  Google Scholar 

  55. Savitz JB, Drevets WC (2013) Neuroreceptor imaging in depression. Neurobiol Dis 52:49–65. https://doi.org/10.1016/j.nbd.2012.06.001

    Article  CAS  Google Scholar 

  56. Robinson JE, Gradinaru V (2018) Dopaminergic dysfunction in neurodevelopmental disorders: recent advances and synergistic technologies to aid basic research. Curr Opin Neurobiol 48:17–29. https://doi.org/10.1016/j.conb.2017.08.003

    Article  CAS  Google Scholar 

  57. Daubert EA, Condron BG (2010) Serotonin: a regulator of neuronal morphology and circuitry. Trends Neurosci 33(9):424–434. https://doi.org/10.1016/j.tins.2010.05.005

    Article  CAS  Google Scholar 

  58. Woodward ND, Zald DH, Ding Z, Riccardi P, Ansari MS, Baldwin RM, Cowan RL, Li R et al (2009) Cerebral morphology and dopamine D2/D3 receptor distribution in humans: a combined [18F]fallypride and voxel-based morphometry study. Neuroimage 46(1):31–38. https://doi.org/10.1016/j.neuroimage.2009.01.049

    Article  Google Scholar 

  59. Dannlowski U, Domschke K, Birosova E, Lawford B, Young R, Voisey J, Morris CP, Suslow T et al (2013) Dopamine D(3) receptor gene variation: impact on electroconvulsive therapy response and ventral striatum responsiveness in depression. Int J Neuropsychopharmacol 16(7):1443–1459. https://doi.org/10.1017/S1461145711001659

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Thanks are due to all the participants.

Funding

This study was funded by the National Natural Science Foundation of China (Grant Numbers 81971689 (J.J.), 81771456 (C.Z.), 82090034 (K.W.), 32071054 (Y.T.), 31571149 (K.W.), 82001429 (T.B.) and 31970979 (K.W.)); Excellent Youth Foundation of Sichuan Scientific Committee (2020JDJQ0016); the China Postdoctoral Science Foundation (BX2021057); the Science Fund for Distinguished Young Scholars of Anhui Province (Grant Number 1808085J23); the Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health of Anhui Province; and the Youth Top-notch Talent Support Program of Anhui Medical University.

Author information

Authors and Affiliations

Authors

Contributions

Study design: Y. T. and K. W.; data acquisition and analysis: G. J., J. L., W. L., L. Z., T. B., T. Z., W. X., Y. W., and K. H.; data interpretation: Y. W., W. X., K. H., C. Z., and J. D.; manuscript draft: G. J., J. L., W. L., J. D., and C. B.; manuscript revision: Y. W., J. D., C. B.Y. T. and K. W. All authors have read and approved the submitted manuscript.

Corresponding authors

Correspondence to Gong-Jun Ji, Yanghua Tian or Kai Wang.

Ethics declarations

Ethics Approval and Consent to Participate

This study was approved by the local ethics committee in Anhui Medical University. Informed consent to participate in the study was obtained from all participants included in the study.

Consent for Publication

Informed consent for publication was obtained from all participants included in the study.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1296 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ji, GJ., Li, J., Liao, W. et al. Neuroplasticity-Related Genes and Dopamine Receptors Associated with Regional Cortical Thickness Increase Following Electroconvulsive Therapy for Major Depressive Disorder. Mol Neurobiol 60, 1465–1475 (2023). https://doi.org/10.1007/s12035-022-03132-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-022-03132-7

Keywords

Navigation