Skip to main content

Advertisement

Log in

Inflammatory Milieu Induces Mitochondrial Alterations and Neuronal Activations in Hypothalamic POMC Neurons in a Time-Dependent Manner

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Inflammation has been associated with numerous neurological disorders. Inflammatory environments trigger a series of cellular and physiological alterations in the brain. However, how inflammatory milieu affects neuronal physiology and how neuronal alterations progress in the inflammatory environments are not fully understood. In this study, we examined the effects of pro-inflammatory milieu on mitochondrial functions and neuronal activities in the hypothalamic POMC neurons. Treating mHypoA-POMC/GFP1 with the conditioned medium collected from LPS activated macrophage were employed to mimic the inflammatory milieu during hypothalamic inflammation. After a 24-h treatment, intracellular ROS/RNS levels were elevated, and the antioxidant enzymes were reduced. Mitochondrial respiration and mitochondrial functions, including basal respiratory rate, spared respiration capacity, and maximal respiration, were all significantly compromised by inflammatory milieu. Moreover, pro-inflammatory cytokines altered mitochondrial dynamics in a time-dependent manner, resulting in the elongation of mitochondria in POMC neurons after a 24-h treatment. Additionally, the increase of C-Fos and Pomc genes expression indicated that the neurons were activated upon the stimulation of inflammatory environment. This neuronal activation of were confirmed on the LPS-challenged mice. Collectively, a short-term to midterm exposure to inflammatory milieu stimulated metabolic switch and neuronal activation, whereas chronic exposure triggered the elevation of oxidative stress, the decrease of the mitochondrial respiration, and the alterations of mitochondrial dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The data used and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Lurie DI (2018) An integrative approach to neuroinflammation in psychiatric disorders and neuropathic pain. J Exp Neurosci 12:1–11

    Article  Google Scholar 

  2. Guzman-Martinez L, Maccioni RB, Andrade V, Navarrete LP, Pastor MG, Ramos-Escobar N (2019) Neuroinflammation as a common feature of neurodegenerative disorders. Front Pharmacol 10:1008

    Article  CAS  Google Scholar 

  3. DiSabato DJ, Quan N, Godbout JP (2016) Neuroinflammation: the devil is in the details. J Neurochem 139(Suppl 2):136–153

    Article  CAS  Google Scholar 

  4. del Rey A, Balschun D, Wetzel W, Randolf A, Besedovsky HO (2013) A cytokine network involving brain-borne IL-1beta, IL-1ra, IL-18, IL-6, and TNFalpha operates during long-term potentiation and learning. Brain Behav Immun 33:15–23

    Article  Google Scholar 

  5. Janelidze S, Mattei D, Westrin A, Traskman-Bendz L, Brundin L (2011) Cytokine levels in the blood may distinguish suicide attempters from depressed patients. Brain Behav Immun 25:335–339

    Article  CAS  Google Scholar 

  6. Schnieder TP, Trencevska I, Rosoklija G, Stankov A, Mann JJ, Smiley J, Dwork AJ (2014) Microglia of prefrontal white matter in suicide. J Neuropathol Exp Neurol 73:880–890

    Article  Google Scholar 

  7. Timper K, Bruning JC (2017) Hypothalamic circuits regulating appetite and energy homeostasis: pathways to obesity. Dis Model Mech 10:679–689

    Article  CAS  Google Scholar 

  8. Roh E, Song DK, Kim MS (2016) Emerging role of the brain in the homeostatic regulation of energy and glucose metabolism. Exp Mol Med 48:e216

    Article  CAS  Google Scholar 

  9. Roth J, Harre EM, Rummel C, Gerstberger R, Hubschle T (2004) Signaling the brain in systemic inflammation: role of sensory circumventricular organs. Front Biosci 9:290–300

    Article  CAS  Google Scholar 

  10. Süß P, Hoffmann A, Rothe T, Ouyang Z, Baum W, Staszewski O, Schett G, Prinz M et al (2020) Chronic peripheral inflammation causes a region-specific myeloid response in the central nervous system. Cell Rep 30(12):4082–4095

    Article  Google Scholar 

  11. Thaler JP, Choi SJ, Schwartz MW, Wisse BE (2010) Hypothalamic inflammation and energy homeostasis: resolving the paradox. Front Neuroendocrinol 31:79–84

    Article  CAS  Google Scholar 

  12. Borges BC, Garcia-Galiano D, Rorato R, Elias LLK, Elias CF (2016) PI3K p110 beta subunit in leptin receptor expressing cells is required for the acute hypophagia induced by endotoxemia. Mol Metab 5:379–391

    Article  CAS  Google Scholar 

  13. Lee CH, Suk K, Yu R, Kim MS (2020) Cellular contributors to hypothalamic inflammation in obesity. Mol Cells 43:431–437

    CAS  Google Scholar 

  14. Seong J, Kang JY, Sun JS, Kim KW (2019) Hypothalamic inflammation and obesity: a mechanistic review. Arch Pharm Res 42:383–392

    Article  CAS  Google Scholar 

  15. Jais A, Bruning JC (2017) Hypothalamic inflammation in obesity and metabolic disease. J Clin Invest 127:24–32

    Article  Google Scholar 

  16. Timper K, Paeger L, Sánchez-Lasheras C, Varela L, Jais A, Nolte H, Vogt MC, Hausen AC et al (2018) Mild impairment of mitochondrial OXPHOS promotes fatty acid utilization in POMC neurons and improves glucose homeostasis in obesity. Cell Rep 25(2):383-397 e10

    Article  CAS  Google Scholar 

  17. Leloup C, Magnan C, Benani A, Bonnet E, Alquier T, Offer G, Carriere A, Périquet A et al (2006) Mitochondrial reactive oxygen species are required for hypothalamic glucose sensing. Diabetes 55(7):2084–2090

    Article  CAS  Google Scholar 

  18. Drougard A, Fournel A, Valet P, Knauf C (2015) Impact of hypothalamic reactive oxygen species in the regulation of energy metabolism and food intake. Front Neurosci 9:56

    Article  Google Scholar 

  19. Dietrich MO, Liu ZW, Horvath TL (2013) Mitochondrial dynamics controlled by mitofusins regulate Agrp neuronal activity and diet-induced obesity. Cell 155:188–199

    Article  CAS  Google Scholar 

  20. Santoro A, Campolo M, Liu C, Sesaki H, Meli R, Liu ZW, Kim JD, Diano S (2017) DRP1 suppresses leptin and glucose sensing of POMC neurons. Cell Metab 25(3):647–660

    Article  CAS  Google Scholar 

  21. Schneeberger M, Dietrich MO, Sebastián D, Imbernón M, Castaño C, Garcia A, Esteban Y, Gonzalez-Franquesa A et al (2013) Mitofusin 2 in POMC neurons connects ER stress with leptin resistance and energy imbalance. Cell 155(1):172–187

    Article  CAS  Google Scholar 

  22. Ramírez S, Gómez-Valadés AG, Schneeberger M, Varela L, Haddad-Tóvolli R, Altirriba J, Noguera E, Drougard A et al (2017) Mitochondrial dynamics mediated by mitofusin 1 is required for POMC neuron glucose-sensing and insulin release control. Cell Metab 25(6):1390-1399 e6

    Article  Google Scholar 

  23. Michael NJ, Simonds SE, van den Top M, Cowley MA, Spanswick D (2017) Mitochondrial uncoupling in the melanocortin system differentially regulates NPY and POMC neurons to promote weight-loss. Mol Metab 6:1103–1112

    Article  CAS  Google Scholar 

  24. Vezzani A, Viviani B (2015) Neuromodulatory properties of inflammatory cytokines and their impact on neuronal excitability. Neuropharmacol 96:70–82

    Article  CAS  Google Scholar 

  25. Rizzo FR, Musella A, De Vito F, Fresegna D, Bullitta S, Vanni V, Guadalupi L, StampanoniBassi M et al (2018) Tumor necrosis factor and interleukin-1 beta modulate synaptic plasticity during neuroinflammation. Neural Plast 2018:8430123

    Article  Google Scholar 

  26. Park SY, Kang MJ, Han JS (2018) Interleukin-1 beta promotes neuronal differentiation through the Wnt5a/RhoA/JNK pathway in cortical neural precursor cells. Mol Brain 11:39

    Article  Google Scholar 

  27. Storer MA, Gallagher D, Fatt MP, Simonetta JV, Kaplan DR, Miller FD (2018) Interleukin-6 regulates adult neural stem cell numbers during normal and abnormal post-natal development. Stem Cell Reports 10(5):1464–1480

    Article  CAS  Google Scholar 

  28. Erta M, Quintana A, Hidalgo J (2012) Interleukin-6, a major cytokine in the central nervous system. Int J Biol Sci 8:1254–1266

    Article  CAS  Google Scholar 

  29. Gruol DL (2015) IL-6 regulation of synaptic function in the CNS. Neuropharmacology 96:42–54

    Article  CAS  Google Scholar 

  30. Weischenfeldt J, Porse B (2008) Bone marrow-derived macrophages (BMM): isolation and applications. CSH Protoc 2008:pdb prot5080

  31. Nazarians-Armavil A, Chalmers JA, Lee CB, Ye W, Belsham DD (2014) Cellular insulin resistance disrupts hypothalamic mHypoA-POMC/GFP neuronal signaling pathways. J Endocrinol 220:13–24

    Article  CAS  Google Scholar 

  32. Varela L, Horvath TL (2012) Leptin and insulin pathways in POMC and AgRP neurons that modulate energy balance and glucose homeostasis. EMBO Rep 13:1079–1086

    Article  CAS  Google Scholar 

  33. Blanque R, Meakin C, Millet S, Gardner CR (1998) Selective enhancement of LPS-induced serum TNF-alpha production by carrageenan pretreatment in mice. Gen Pharmacol 31:301–306

    Article  CAS  Google Scholar 

  34. Dalvi PS, Chalmers JA, Luo V, Han DY, Wellhauser L, Liu Y, Tran DQ, Castel J et al (2017) High fat induces acute and chronic inflammation in the hypothalamus: effect of high-fat diet, palmitate and TNF-alpha on appetite-regulating NPY neurons. Int J Obes (Lond) 41(1):149–158

    Article  CAS  Google Scholar 

  35. Liu F, Zhang G, Sheng X, Liu S, Cui M, Guo H, Xue J, Zhang L (2018) Effects of hereditary moderate high fat diet on metabolic performance and physical endurance capacity in C57BL/6 offspring. Mol Med Rep 17(3):4672–4680

    CAS  Google Scholar 

  36. Zhao RZ, Jiang S, Zhang L, Yu ZB (2019) Mitochondrial electron transport chain, ROS generation and uncoupling (Review). Int J Mol Med 44:3–15

    CAS  Google Scholar 

  37. Busiello RA, Savarese S, Lombardi A (2015) Mitochondrial uncoupling proteins and energy metabolism. Front Physiol 6:36

    Article  Google Scholar 

  38. Chouchani ET, Kazak L, Spiegelman BM (2019) New advances in adaptive thermogenesis: UCP1 and beyond. Cell Metab 29:27–37

    Article  CAS  Google Scholar 

  39. Villarroya F, Peyrou M, Giralt M (2017) Transcriptional regulation of the uncoupling protein-1 gene. Biochimie 134:86–92

    Article  CAS  Google Scholar 

  40. Degan D, Ornello R, Tiseo C, Carolei A, Sacco S, Pistoia F (2018) The role of inflammation in neurological disorders. Curr Pharm Des 24(14):1485–1501

    Article  CAS  Google Scholar 

  41. Jeon SW, Yoon HK, Kim YK (2019) Role of inflammation in psychiatric disorders. Adv Exp Med Biol 1192:491–501

    Article  CAS  Google Scholar 

  42. Becher B, Spath S, Goverman J (2017) Cytokine networks in neuroinflammation. Nat Rev Immunol 17:49–59

    Article  CAS  Google Scholar 

  43. Choi SS, Lee HJ, Lim I, Satoh J, Kim SU (2014) Human astrocytes: secretome profiles of cytokines and chemokines. PLoS ONE 9(4):e92325

    Article  Google Scholar 

  44. Chitnis T, Weiner HL (2017) CNS inflammation and neurodegeneration. J Clin Invest 127:3577–3587

    Article  Google Scholar 

  45. Tang YY, Holzel BK, Posner MI (2015) The neuroscience of mindfulness meditation. Nat Rev Neurosci 16:213–225

    Article  CAS  Google Scholar 

  46. Lumeng CN, Saltiel AR (2011) Inflammatory links between obesity and metabolic disease. J Clin Invest 121:2111–2117

    Article  CAS  Google Scholar 

  47. Cai D, Liu T (2011) Hypothalamic inflammation: a double-edged sword to nutritional diseases. Ann N Y Acad Sci 1243:E1-39

    Article  Google Scholar 

  48. De Souza CT, Araujo EP, Bordin S, Ashimine R, Zollner RL, Boschero AC, Saad MJ, Velloso LA (2005) Consumption of a fat-rich diet activates a proinflammatory response and induces insulin resistance in the hypothalamus. Endocrinol 146(10):4192–4199

    Article  Google Scholar 

  49. Jung CH, Kim MS (2013) Molecular mechanisms of central leptin resistance in obesity. Arch Pharm Res 36:201–207

    Article  CAS  Google Scholar 

  50. Lee I, Huttemann M (2014) Energy crisis: the role of oxidative phosphorylation in acute inflammation and sepsis. Biochim Biophys Acta 1842:1579–1586

    Article  CAS  Google Scholar 

  51. Suliman HB, Welty-Wolf KE, Carraway M, Tatro L, Piantadosi CA (2004) Lipopolysaccharide induces oxidative cardiac mitochondrial damage and biogenesis. Cardiovasc Res 64:279–288

    Article  CAS  Google Scholar 

  52. Zuo H, Wan Y (2019) Metabolic reprogramming in mitochondria of myeloid cells. Cells 9(1):5

    Article  Google Scholar 

  53. Doll DN, Rellick SL, Barr TL, Ren X, Simpkins JW (2015) Rapid mitochondrial dysfunction mediates TNF-alpha-induced neurotoxicity. J Neurochem 132:443–451

    Article  CAS  Google Scholar 

  54. Russell AE, Doll DN, Sarkar SN, Simpkins JW (2016) TNF-alpha and beyond: rapid mitochondrial dysfunction mediates TNF-alpha-induced neurotoxicity. J Clin Cell Immunol 7(6):467

    Article  Google Scholar 

  55. Parton LE, Ye CP, Coppari R, Enriori PJ, Choi B, Zhang CY, Xu C, Vianna CR et al (2007) Glucose sensing by POMC neurons regulates glucose homeostasis and is impaired in obesity. Nature 449(7159):228–232

    Article  CAS  Google Scholar 

  56. Diano S, Horvath TL (2012) Mitochondrial uncoupling protein 2 (UCP2) in glucose and lipid metabolism. Trends Mol Med 18:52–58

    Article  CAS  Google Scholar 

  57. Andrews ZB, Liu ZW, Walllingford N, Erion DM, Borok E, Friedman JM, Tschöp MH, Shanabrough M et al (2008) UCP2 mediates ghrelin’s action on NPY/AgRP neurons by lowering free radicals. Nature 454(7206):846–851

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge Mr. Clement Lee for his excellent technical support for TEM at Taipei Medical University Core Facility.

Funding

This work was supported by the Ministry of Science and Technology, Taiwan (MOST 106–2320-B-004–001).

Author information

Authors and Affiliations

Authors

Contributions

YCL, YSL, and PWC performed the experiments, analyzed data, prepared figures, and participated in manuscript writing; SKC designed experiments, integrated data, supervised, and wrote and reviewed the manuscript. All authors approved the final submission.

Corresponding author

Correspondence to Shau-Kwaun Chen.

Ethics declarations

Ethics Approval

All animal protocols were approved by the Institutional Animal Care and Use Committee (IACUC) of National Chengchi University. All of the animal experiments were performed in compliance with the IACUC regulations and Animal Research Reporting of In Vivo Experiments (ARRIVE) guidelines.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liao, YC., Lim, Y., Chu, PW. et al. Inflammatory Milieu Induces Mitochondrial Alterations and Neuronal Activations in Hypothalamic POMC Neurons in a Time-Dependent Manner. Mol Neurobiol 60, 1164–1178 (2023). https://doi.org/10.1007/s12035-022-03128-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-022-03128-3

Keywords

Navigation