Skip to main content

Advertisement

Log in

The aOECs Facilitate the Neuronal Differentiation of Neural Stem Cells in the Inflammatory Microenvironment Through Up-Regulation of Bioactive Factors and Activation of Wnt3/β-Catenin Pathway

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

The therapeutic application of neural stem cells (NSCs) in the central nerve system (CNS) injury is a promising strategy for combating irreversible neuronal loss. However, a variety of obvious inflammatory responses following nerve injury rapidly create an unfavorable microenvironment for survival and neuronal differentiation of NSCs in lesion area, limiting the efficacy of NSC-based therapy for CNS injury. It remained unknown how to effectively increase the neuronal differentiation efficiency of NSCs through transplantation. Here, we demonstrated that curcumin (CCM)-activated olfactory ensheathing cells (aOECs) effectively promoted neuronal differentiation of NSCs in the activated microglial inflammatory condition, and co-transplantation of aOECs and NSCs improved neurological recovery of rats after spinal cord injury (SCI), as evidenced by higher expression levels of neuronal markers and lower expression levels of glial markers in the differentiated cells, greater number of Tuj-1-positive cells as well as higher Basso, Beattie, and Bresnahan (BBB) locomotor scale, compared to the corresponding controls. Pathologically, hematoxylin and eosin (HE) staining and immunostaining also showed that aOECs remarkably enhanced the in vivo neuronal differentiation of NSCs and migration, and nerve repair. Further analysis revealed that the underlying mechanisms of aOECs potentiating the neuronal conversion of NSCs under inflammatory environment were tightly associated with up-regulation of anti-inflammatory cytokines and neurotrophic factors in OECs, and importantly, the activation of Wnt3/β-catenin pathway was likely involved in the mechanisms underlying the observed cellular events. Therefore, this study provides a promising strategy for SCI repair by co-transplantation of aOECs and NSCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

All data supporting the conclusions of this article are available from the corresponding author on reasonable request.

References

  1. Badhiwala JH, Ahuja CS, Fehlings MG (2018) Time is spine: a review of translational advances in spinal cord injury. J Neurosurg Spine 30(1):1–18. https://doi.org/10.3171/2018.9.SPINE18682

    Article  Google Scholar 

  2. Dalamagkas K, Tsintou M, Seifalian AM (2018) Stem cells for spinal cord injuries bearing translational potential. Neural Regen Res 13(1):35–42. https://doi.org/10.4103/1673-5374.224360

    Article  Google Scholar 

  3. Grabher BJ (2018) Effects of Alzheimer Disease on Patients and Their Family. J Nucl Med Technol 46(4):335–340. https://doi.org/10.2967/jnmt.118.218057

    Article  Google Scholar 

  4. Yang B, Zhang F, Cheng F, Ying L, Wang C, Shi K, Wang J, Xia K et al (2020) Strategies and prospects of effective neural circuits reconstruction after spinal cord injury. Cell Death Dis 11(6):439. https://doi.org/10.1038/s41419-020-2620-z

    Article  CAS  Google Scholar 

  5. Harris LD, Jasem S, Licchesi J (2020) The Ubiquitin System in Alzheimer’s Disease. Adv Exp Med Biol 1233:195–221. https://doi.org/10.1007/978-3-030-38266-7_8

    Article  CAS  Google Scholar 

  6. Ahuja CS, Wilson JR, Nori S, Kotter M, Druschel C, Curt A, Fehlings MG (2017) Traumatic spinal cord injury. Nat Rev Dis Primers 3:17018. https://doi.org/10.1038/nrdp.2017.18

    Article  Google Scholar 

  7. Yip PK, Malaspina A (2012) Spinal cord trauma and the molecular point of no return. Mol Neurodegener 7:6. https://doi.org/10.1186/1750-1326-7-6

    Article  Google Scholar 

  8. Norenberg MD, Smith J, Marcillo A (2004) The pathology of human spinal cord injury: defining the problems. J Neurotrauma 21(4):429–440. https://doi.org/10.1089/089771504323004575

    Article  Google Scholar 

  9. Chi H, Chang HY, Sang TK (2018) Neuronal cell death mechanisms in major neurodegenerative diseases. Int J Mol Sci 19(10): 3082. https://doi.org/10.3390/ijms19103082

  10. Maniatis S, Aijo T, Vickovic S, Braine C, Kang K, Mollbrink A, Fagegaltier D, Andrusivova Z et al (2019) Spatiotemporal dynamics of molecular pathology in amyotrophic lateral sclerosis. Science 364(6435):89–93. https://doi.org/10.1126/science.aav9776

    Article  CAS  Google Scholar 

  11. Hsu JM, Kang Y, Corty MM, Mathieson D, Peters OM, Freeman MR (2021) Injury-Induced Inhibition of Bystander Neurons Requires dSarm and Signaling from Glia. Neuron 109(3):473–487. https://doi.org/10.1016/j.neuron.2020.11.012

    Article  CAS  Google Scholar 

  12. Xie J, Li Y, Dai J, He Y, Sun D, Dai C, Xu H, Yin ZQ (2019) Olfactory Ensheathing Cells Grafted Into the Retina of RCS Rats Suppress Inflammation by Down-Regulating the JAK/STAT Pathway. Front Cell Neurosci 13:341. https://doi.org/10.3389/fncel.2019.00341

    Article  CAS  Google Scholar 

  13. Doi D, Magotani H, Kikuchi T, Ikeda M, Hiramatsu S, Yoshida K, Amano N, Nomura M et al (2020) Pre-clinical study of induced pluripotent stem cell-derived dopaminergic progenitor cells for Parkinson’s disease. Nat Commun 11(1):3369. https://doi.org/10.1038/s41467-020-17165-w

    Article  CAS  Google Scholar 

  14. Grochowski C, Radzikowska E, Maciejewski R (2018) Neural stem cell therapy-Brief review. Clin Neurol Neurosurg 173:8–14. https://doi.org/10.1016/j.clineuro.2018.07.013

    Article  Google Scholar 

  15. Zhai W, Gao L, Qu L, Li Y, Zeng Y, Li Q, Xu H, Yin ZQ (2020) Combined Transplantation of Olfactory Ensheathing Cells With Rat Neural Stem Cells Enhanced the Therapeutic Effect in the Retina of RCS Rats. Front Cell Neurosci 14:52. https://doi.org/10.3389/fncel.2020.00052

    Article  CAS  Google Scholar 

  16. Wang X, Kuang N, Chen Y, Liu G, Wang N, Kong F, Yue S, Zheng Z (2021) Transplantation of olfactory ensheathing cells promotes the therapeutic effect of neural stem cells on spinal cord injury by inhibiting necrioptosis. Aging Albany NY 13(6):9056–9070. https://doi.org/10.18632/aging.202758

    Article  CAS  Google Scholar 

  17. Luo ML, Pan L, Wang L, Wang HY, Li S, Long ZY, Zeng L, Liu Y (2019) Transplantation of NSCs Promotes the Recovery of Cognitive Functions by Regulating Neurotransmitters in Rats with Traumatic Brain Injury. Neurochem Res 44(12):2765–2775. https://doi.org/10.1007/s11064-019-02897-z

    Article  CAS  Google Scholar 

  18. Yang Y, Fan Y, Zhang H, Zhang Q, Zhao Y, Xiao Z, Liu W, Chen B et al (2021) Small molecules combined with collagen hydrogel direct neurogenesis and migration of neural stem cells after spinal cord injury. Biomaterials 269:120479. https://doi.org/10.1016/j.biomaterials.2020.120479

    Article  CAS  Google Scholar 

  19. Zhu Q, Zhang N, Hu N, Jiang R, Lu H, Xuan A, Long D, Chen Y (2020) Neural stem cell transplantation improves learning and memory by protecting cholinergic neurons and restoring synaptic impairment in an amyloid precursor protein/presenilin 1 transgenic mouse model of Alzheimer’s disease. Mol Med Rep 21(3):1172–1180. https://doi.org/10.3892/mmr.2020.10918

    Article  CAS  Google Scholar 

  20. Cheng Z, Zhu W, Cao K, Wu F, Li J, Wang G, Li H, Lu M et al (2016) Anti-inflammatory mechanism of neural stem cell transplantation in spinal cord injury. Int J Mol Sci 17(9):1380. https://doi.org/10.3390/ijms17091380

  21. Ricci-Vitiani L, Casalbore P, Petrucci G, Lauretti L, Montano N, Larocca LM, Falchetti ML, Lombardi DG et al (2006) Influence of local environment on the differentiation of neural stem cells engrafted onto the injured spinal cord. Neurol Res 28(5):488–492. https://doi.org/10.1179/016164106X115134

    Article  Google Scholar 

  22. Coutts M, Keirstead HS (2008) Stem cells for the treatment of spinal cord injury. Exp Neurol 209(2):368–377. https://doi.org/10.1016/j.expneurol.2007.09.002

    Article  CAS  Google Scholar 

  23. Fan L, Liu C, Chen X, Zou Y, Zhou Z, Lin C, Tan G, Zhou L et al (2018) Directing Induced Pluripotent Stem Cell Derived Neural Stem Cell Fate with a Three-Dimensional Biomimetic Hydrogel for Spinal Cord Injury Repair. ACS Appl Mater Interfaces 10(21):17742–17755. https://doi.org/10.1021/acsami.8b05293

    Article  CAS  Google Scholar 

  24. Selvaraj V, Jiang P, Chechneva O, Lo UG, Deng W (2012) Differentiating human stem cells into neurons and glial cells for neural repair. Front Biosci (Landmark Ed) 17(1):65–89. https://doi.org/10.2741/3916

    Article  CAS  Google Scholar 

  25. Li Y, Huo S, Fang Y, Zou T, Gu X, Tao Q, Xu H (2018) ROCK Inhibitor Y27632 Induced Morphological Shift and Enhanced Neurite Outgrowth-Promoting Property of Olfactory Ensheathing Cells via YAP-Dependent Up-Regulation of L1-CAM. Front Cell Neurosci 12:489. https://doi.org/10.3389/fncel.2018.00489

    Article  CAS  Google Scholar 

  26. Zhang L, Zhuang X, Kotitalo P, Keller T, Krzyczmonik A, Haaparanta-Solin M, Solin O, Forsback S et al (2021) Intravenous transplantation of olfactory ensheathing cells reduces neuroinflammation after spinal cord injury via interleukin-1 receptor antagonist. Theranostics 11(3):1147–1161. https://doi.org/10.7150/thno.52197

    Article  CAS  Google Scholar 

  27. Giordano A, Tommonaro G (2019) Curcumin and cancer. Nutrients 11(10):2376. https://doi.org/10.3390/nu11102376

  28. Tomeh MA, Hadianamrei R, Zhao X (2019) A review of curcumin and its derivatives as anticancer agents. Int J Mol Sci 20(5):1033. https://doi.org/10.3390/ijms20051033

  29. Tsuda T (2018) Curcumin as a functional food-derived factor: degradation products, metabolites, bioactivity, and future perspectives. Food Funct 9(2):705–714. https://doi.org/10.1039/c7fo01242j

    Article  CAS  Google Scholar 

  30. Hao DJ, Liu C, Zhang L, Chen B, Zhang Q, Zhang R, An J, Zhao J et al (2017) Lipopolysaccharide and Curcumin Co-Stimulation Potentiates Olfactory Ensheathing Cell Phagocytosis Via Enhancing Their Activation. Neurotherapeutics 14(2):502–518. https://doi.org/10.1007/s13311-016-0485-8

    Article  CAS  Google Scholar 

  31. Guo J, Cao G, Yang G, Zhang Y, Wang Y, Song W, Xu Y, Ma T et al (2020) Transplantation of activated olfactory ensheathing cells by curcumin strengthens regeneration and recovery of function after spinal cord injury in rats. Cytotherapy 22(6):301–312. https://doi.org/10.1016/j.jcyt.2020.03.002

    Article  CAS  Google Scholar 

  32. He BR, Xie ST, Wu MM, Hao DJ, Yang H (2014) Phagocytic removal of neuronal debris by olfactory ensheathing cells enhances neuronal survival and neurite outgrowth via p38MAPK activity. Mol Neurobiol 49(3):1501–1512. https://doi.org/10.1007/s12035-013-8588-2

    Article  CAS  Google Scholar 

  33. Koss K, Churchward MA, Tsui C, Todd KG (2019) In Vitro Priming and Hyper-Activation of Brain Microglia: an Assessment of Phenotypes. Mol Neurobiol 56(9):6409–6425. https://doi.org/10.1007/s12035-019-1529-y

    Article  CAS  Google Scholar 

  34. Pulido-Salgado M, Vidal-Taboada JM, Barriga GG, Sola C, Saura J (2018) RNA-Seq transcriptomic profiling of primary murine microglia treated with LPS or LPS + IFNgamma. Sci Rep 8(1):16096. https://doi.org/10.1038/s41598-018-34412-9

    Article  CAS  Google Scholar 

  35. Zhang X, Zhu XL, Ji BY, Cao X, Yu LJ, Zhang Y, Bao XY, Xu Y et al (2019) LncRNA-1810034E14Rik reduces microglia activation in experimental ischemic stroke. J Neuroinflammation 16(1):75. https://doi.org/10.1186/s12974-019-1464-x

    Article  Google Scholar 

  36. Yang H, Liu C, Fan H, Chen B, Huang D, Zhang L, Zhang Q, An J et al (2019) Sonic Hedgehog Effectively Improves Oct4-Mediated Reprogramming of Astrocytes into Neural Stem Cells. Mol Ther 27(8):1467–1482. https://doi.org/10.1016/j.ymthe.2019.05.006

    Article  CAS  Google Scholar 

  37. Kong G, Huang Z, Zhu Q, Wan Y (2020) Comparison of two modified methods of intrathecal catheterization in rats. Exp Anim 69(2):219–223. https://doi.org/10.1538/expanim.19-0108

    Article  CAS  Google Scholar 

  38. Yang W, Sun P (2020) Promoting functions of microRNA-29a/199B in neurological recovery in rats with spinal cord injury through inhibition of the RGMA/STAT3 axis. J Orthop Surg Res 15(1):427. https://doi.org/10.1186/s13018-020-01956-4

    Article  CAS  Google Scholar 

  39. Zhou Q, Guo D, Li X, Wang Y, Ye X, Xue S, Wang X (2020) Anti-inflammatory effects of vinpocetine in LPS-stimulated microglia via activation of AMPK. An Acad Bras Cienc 92(4):e20200241. https://doi.org/10.1590/0001-3765202020200241

    Article  CAS  Google Scholar 

  40. An J, Chen B, Kang X, Zhang R, Guo Y, Zhao J, Yang H (2020) Neuroprotective effects of natural compounds on LPS-induced inflammatory responses in microglia. Am J Transl Res 12(6):2353–2378

    CAS  Google Scholar 

  41. Sharma M, Arbabzada N, Flood PM (2019) Mechanism underlying beta2-AR agonist-mediated phenotypic conversion of LPS-activated microglial cells. J Neuroimmunol 332:37–48. https://doi.org/10.1016/j.jneuroim.2019.03.017

    Article  CAS  Google Scholar 

  42. Yu J, Guo M, Li Y, Zhang H, Chai Z, Wang Q, Yan Y, Yu J et al (2019) Astragaloside IV protects neurons from microglia-mediated cell damage through promoting microglia polarization. Folia Neuropathol 57(2):170–181. https://doi.org/10.5114/fn.2019.86299

    Article  Google Scholar 

  43. Farhood B, Mortezaee K, Goradel NH, Khanlarkhani N, Salehi E, Nashtaei MS, Najafi M, Sahebkar A (2019) Curcumin as an anti-inflammatory agent: Implications to radiotherapy and chemotherapy. J Cell Physiol 234(5):5728–5740. https://doi.org/10.1002/jcp.27442

    Article  CAS  Google Scholar 

  44. Wang Q, Ye C, Sun S, Li R, Shi X, Wang S, Zeng X, Kuang N et al (2019) Curcumin attenuates collagen-induced rat arthritis via anti-inflammatory and apoptotic effects. Int Immunopharmacol 72:292–300. https://doi.org/10.1016/j.intimp.2019.04.027

    Article  CAS  Google Scholar 

  45. Orr MB, Gensel JC (2018) Spinal Cord Injury Scarring and Inflammation: Therapies Targeting Glial and Inflammatory Responses. Neurotherapeutics 15(3):541–553. https://doi.org/10.1007/s13311-018-0631-6

    Article  CAS  Google Scholar 

  46. Uezono N, Zhu Y, Fujimoto Y, Yasui T, Matsuda T, Nakajo M, Abematsu M, Setoguchi T et al (2018) Prior Treatment with Anti-High Mobility Group Box-1 Antibody Boosts Human Neural Stem Cell Transplantation-Mediated Functional Recovery After Spinal Cord Injury. Stem Cells 36(5):737–750. https://doi.org/10.1002/stem.2802

    Article  CAS  Google Scholar 

  47. Urban N, Blomfield IM, Guillemot F (2019) Quiescence of Adult Mammalian Neural Stem Cells: A Highly Regulated Rest. Neuron 104(5):834–848. https://doi.org/10.1016/j.neuron.2019.09.026

    Article  CAS  Google Scholar 

  48. Parr AM, Kulbatski I, Zahir T, Wang X, Yue C, Keating A, Tator CH (2008) Transplanted adult spinal cord-derived neural stem/progenitor cells promote early functional recovery after rat spinal cord injury. Neuroscience 155(3):760–770. https://doi.org/10.1016/j.neuroscience.2008.05.042

    Article  CAS  Google Scholar 

  49. Zhu Y, Uezono N, Yasui T, Nakashima K (2018) Neural stem cell therapy aiming at better functional recovery after spinal cord injury. Dev Dyn 247(1):75–84. https://doi.org/10.1002/dvdy.24558

    Article  Google Scholar 

  50. Grade S, Gotz M (2017) Neuronal replacement therapy: previous achievements and challenges ahead. NPJ Regen Med 2:29. https://doi.org/10.1038/s41536-017-0033-0

    Article  Google Scholar 

  51. Chen S, Ye J, Chen X, Shi J, Wu W, Lin W, Lin W, Li Y et al (2018) Valproic acid attenuates traumatic spinal cord injury-induced inflammation via STAT1 and NF-kappaB pathway dependent of HDAC3. J Neuroinflammation 15(1):150. https://doi.org/10.1186/s12974-018-1193-6

    Article  CAS  Google Scholar 

  52. Lee E, Hwang I, Park S, Hong S, Hwang B, Cho Y, Son J, Yu JW (2019) MPTP-driven NLRP3 inflammasome activation in microglia plays a central role in dopaminergic neurodegeneration. Cell Death Differ 26(2):213–228. https://doi.org/10.1038/s41418-018-0124-5

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge Jing An, Xiaohui Wang, and Lingling Zhang for the excellent technical assistance. We would like to thank Dr. Huiming Xu for critical reading of the manuscript.

Funding

This work was supported by the National Natural Science Foundation of China (grant no. 82071551, 82060238, and 81830077), the Natural Science Foundation of Shaanxi province (grant no. 2020JM-686), the key research and development program in Ning xia Hui Autonomous Region (grant no. 2022BEG02032).

Author information

Authors and Affiliations

Authors

Contributions

HY and JL conceived the study and designed the work. YH, YJ, LD, and LZ performed the experiments. YJ, LD, and CJ collected and analyzed the data. YH, JL, and HY performed data analysis and interpretation. YH and HY wrote the manuscript. All authors read and approved the final version of the manuscript.

Corresponding authors

Correspondence to Hao Yang or Juan Liu.

Ethics declarations

Ethics approval and consent to participate

All animal procedures were performed in agreement with the National Institutes of Health guidelines and were approved by the Institutional Ethical Review Committee of Hong Hui Hospital affiliated by Xi’an Jiaotong University (No. 201712004). Written informed consent was obtained from all participants involved in this study.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, Y., Jiang, Y., Dong, L. et al. The aOECs Facilitate the Neuronal Differentiation of Neural Stem Cells in the Inflammatory Microenvironment Through Up-Regulation of Bioactive Factors and Activation of Wnt3/β-Catenin Pathway. Mol Neurobiol 60, 789–806 (2023). https://doi.org/10.1007/s12035-022-03113-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-022-03113-w

Keywords

Navigation