Skip to main content

Advertisement

Log in

Meloxicam Inhibits Apoptosis in Neurons by Deactivating Tumor Necrosis Factor Receptor Superfamily Member 25, Leading to the Decreased Cleavage of DNA Fragmentation Factor Subunit α in Alzheimer’s Disease

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract  

Neuronal apoptosis is considered to be a critical cause of Alzheimer’s disease (AD). Recently, meloxicam has shown neuroprotective effects; however, the inherent mechanisms are highly overlooked. Using APP/PS1 transgenic (Tg) mice as in vivo animal models, we found that meloxicam inhibits apoptosis in neurons by deactivating tumor necrosis factor receptor superfamily member 25 (TNFRSF25), leading to the suppression of the expression of fas-associated protein with death domain (FADD) and the cleavage of DNA fragmentation factor subunit α (DFFA) and cysteine aspartic acid protease-3 (caspase 3) via β-amyloid protein (Aβ)-depressing mechanisms. Moreover, the meloxicam treatment blocked the effects of β-amyloid protein oligomers (Aβo) on stimulating the synthesis of tumor necrosis factor α (TNF-α) and TNF-like ligand 1A (TL1A) in neuroblastoma (N) 2a cells. TNF-α and TL1A induce apoptosis in neurons via TNFR- and TNFRSF25-dependent caspase 3-activating mechanisms, respectively. Knocking down the expression of TNFRSF25 blocked the effects of TL1A on inducing apoptosis in neurons by deactivating the signaling cascades of FADD, caspase 3, and DFFA. Consistently, TNFRSF25 shRNA blocked the effects of Aβo on inducing neuronal apoptosis, which was corroborated by the efficacy of meloxicam in inhibiting Aβo-induced neuronal apoptosis. By ameliorating neuronal apoptosis, meloxicam improved memory loss in APP/PS1 Tg mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The datasets generated and/or analyzed during the current study are available from the corresponding author upon reasonable request.

References

  1. Andreasen N, Sjogren M, Blennow K (2015) CSF markers for Alzheimer’s disease: total tau, phospho-tau and Abeta42. World Journal of Biological Psychiatry 4(4):147–155

    Article  Google Scholar 

  2. Duijn C, Clayton DG, Chandra V, Fratiglioni L, Graves AB, Heyman A, Jorm AF, Kokmen E, Kondo K, Mortimer JA (1994) Interaction between genetic and environmental risk factors for Alzheimer’s disease: a reanalysis of case-control studies. Genet Epidemiol 11(6):539–551

    Article  Google Scholar 

  3. Knobloch M, Mansuy IM (2008) Dendritic spine loss and synaptic alterations in Alzheimer’s disease. Mol Neurobiol 37(1):73–82

    Article  CAS  Google Scholar 

  4. Liang WS, Reiman EM, Valla J, Dunckley T, Beach TG, Grover A, Niedzielko TL, Schneider LE, Mastroeni D, Caselli R (2008) Alzheimer’s disease is associated with reduced expression of energy metabolism genes in posterior cingulate neurons. Proc Natl Acad Sci USA 105(11):4441–4446

    Article  CAS  Google Scholar 

  5. Markesbery WR (1997) Oxidative stress hypothesis in Alzheimer’s disease. Free Radical Biol Med 23(1):134–147

    Article  CAS  Google Scholar 

  6. Siegel GJ, Chauhan NB (2000) Neurotrophic factors in Alzheimer’s and Parkinson’s disease brain. Brain Res Brain Res Rev 33(2–3):199–227

    Article  CAS  Google Scholar 

  7. Kril JJ, Patel S, Harding AJ, Halliday GM (2002) Neuron loss from the hippocampus of Alzheimer’s disease exceeds extracellular neurofibrillary tangle formation. Acta Neuropathol 103(4):370–376

    Article  Google Scholar 

  8. Schmitz C, Rutten B, Pielen A, Schfer S, Bayer TA (2004) Hippocampal neuron loss exceeds amyloid plaque load in a transgenic mouse model of Alzheimer’s disease. Am J Pathol 164(4):1495–1502

    Article  Google Scholar 

  9. Zhu C, Wang X, Huang Z, Qiu L, Xu F, Vahsen N, Nilsson M, Eriksson PS, Hagberg H, Culmsee C (2007) Apoptosis-inducing factor is a major contributor to neuronal loss induced by neonatal cerebral hypoxia-ischemia. Cell Death Differ 14(4):775–784

    Article  CAS  Google Scholar 

  10. Cosentino M, Colombo C, Mauri M, Fe Rrari M, Corbetta S, Marino F, Bono G, Lecchini S (2009) Expression of apoptosis-related proteins and of mRNA for dopaminergic receptors in peripheral blood mononuclear cells from patients with Alzheimer disease. Alzheimer Dis Assoc Disord 23(1):88–90

    Article  CAS  Google Scholar 

  11. Guo XD, Sun GL, Zhou TT, Wang YY, Xu X, Shi XF, Zhu ZY, Rukachaisirikul V, Hu LH, Shen X (2017) LX2343 alleviates cognitive impairments in AD model rats by inhibiting oxidative stress-induced neuronal apoptosis and tauopathy. Acta Pharmacol Sin 38(008):1104–1119

    Article  CAS  Google Scholar 

  12. Macgibbon GA, Lawlor PA, Sirimanne ES, Walton MR, Dragunow M (1997) Bax expression in mammalian neurons undergoing apoptosis, and in Alzheimer’s disease hippocampus. Brain Res 750(1–2):223–234

    Article  CAS  Google Scholar 

  13. Griffin WS, Sheng JG, Royston MC, Gentleman SM, McKenzie JE, Graham DI, Roberts GW, Mrak RE (2010) Glial-neuronal interactions in Alzheimer’s disease: the potential role of a ‘cytokine cycle’ in disease progression. Brain Pathol 8(1):65–72

    Article  Google Scholar 

  14. Ashkenazi A, Salvesen G (2014) Regulated cell death: signaling and mechanisms. Annu Rev Cell Dev Biol 30(1):337–356

    Article  CAS  Google Scholar 

  15. Steller H (1995) Mechanisms and genes of cellular suicide. Science 267(5203):1445–1449

    Article  CAS  Google Scholar 

  16. Cho YS, Challa S, Moquin D, Genga R, Ray TD, Guildford M, Chan KM (2009) Phosphorylation-driven assembly of the RIP1-RIP3 complex regulates programmed necrosis and virus-induced inflammation. Cell 137(6):1112–1123

    Article  CAS  Google Scholar 

  17. He S, Lai W, Miao L, Tao W, Du F, Zhao L, Wang X (2009) Receptor interacting protein kinase-3 determines cellular necrotic response to TNF-alpha. Cell 137(6):1100–1111

    Article  CAS  Google Scholar 

  18. Zhang DW, Shao J, Lin J, Zhang N, Lu BJ, Lin SC, Dong MQ, Han J (2009) RIP3, an energy metabolism regulator that switches TNF-induced cell death from apoptosis to necrosis. Science 325(5938):332–336

    Article  CAS  Google Scholar 

  19. Migone TS, Zhang J, Luo X, Zhuang L, Wei P (2002) TL1A is a TNF-like ligand for DR3 and TR6/DcR3 and functions as a T cell costimulator. Immunity 16(3):479–492

    Article  CAS  Google Scholar 

  20. Meylan F, Hayes E, T, Gabay, Odile, Richard, Arianne, C, (2015) The TNF-family cytokine TL1A: from lymphocyte costimulator to disease co-conspirator. J Leukoc Biol An Official Publ Reticuloendothel Soc 98(3):333–345

    Google Scholar 

  21. Bittner S, Knoll G, Fullsack S, Kurz M, Wajant H, Ehrenschwender M (2016) Soluble TL1A is sufficient for activation of death receptor 3. FEBS J 283(2):323–336

    Article  CAS  Google Scholar 

  22. Chinnaiyan AM, O’Rourke K, Yu GL, Lyons RH, Garg M, Duan DR, Xing L, Gentz R, Ni J, Dixit VM (1996) Signal transduction by DR3, a death domain-containing receptor related to TNFR-1 and CD95. Science 274(5289):990–992

    Article  CAS  Google Scholar 

  23. Leng W, Zhuang L, Luo X, Ping W (2003) TL1A-induced NF-κB activation and c-IAP2 production prevent DR3-mediated apoptosis in TF-1 cells. J Biol Chem 278(40):39251–39258

    Article  Google Scholar 

  24. Collins FL, Williams JO, Bloom AC, Stone MD, Choy E, Wang ECY, Williams AS (2015) Death receptor 3 (TNFRSF25) increases mineral apposition by osteoblasts and region specific new bone formation in the axial skeleton of male DBA/1 mice. Journal of Immunology Research 2015 (Special):901679

  25. Dechant MJ, Fellenberg J, Scheuerpflug CG, Ewerbeck V, Debatin KM (2004) Mutation analysis of the apoptotic “death-receptors” and the adaptors TRADD and FADD/MORT-1 in osteosarcoma tumor samples and osteosarcoma cell lines. Int J Cancer 109(5):661–667

    Article  CAS  Google Scholar 

  26. Chaudhary PM (1997) Death receptor 5, a new member of the TNFR family, and DR4 induce FADD-dependent apoptosis and activate the NF-kappaB pathway. Immunity 7(6):821–830

    Article  CAS  Google Scholar 

  27. Haile M, Boutajangout A, Chung K, Chan J, Wisniewski T (2016) The Cox-2 inhibitor meloxicam ameliorates neuroinflammation and depressive behavior in adult mice after splenectomy. Journal of Neurophysiology & Neurological Disorders 3:101

    Google Scholar 

  28. Li J, Chen X, Dong X, Xu Z, Sun X (2010) Specific COX-2 inhibitor, meloxicam, suppresses proliferation and induces apoptosis in human HepG2 hepatocellular carcinoma cells. J Gastroenterol Hepatol 21(12):1814–1820

    Article  Google Scholar 

  29. Goverdhan P, Sravanthi A, Mamatha T (2014) Neuroprotective effects of meloxicam and selegiline in scopolamine-induced cognitive impairment and oxidative stress. International Journal of Alzheimers Disease 2012:974013

    Google Scholar 

  30. Ianiski FR, Alves CB, Ferreira CF, Rech VC, Savegnago L, Wilhelm EA, Luchese C (2016) Meloxicam-loaded nanocapsules as an alternative to improve memory decline in an Alzheimer’s disease model in mice: involvement of Na(+), K(+)-ATPase. Metab Brain Dis 31(4):793–802

    Article  CAS  Google Scholar 

  31. Teismann P, Ferger B (2001) Inhibition of the cyclooxygenase isoenzymes COX-1 and COX-2 provide neuroprotection in the MPTP-mouse model of Parkinson’s disease. Synapse 39(2):167–174

    Article  CAS  Google Scholar 

  32. Katary MM, Pye C, Elmarakby AA (2016) Meloxicam fails to augment the reno-protective effects of soluble epoxide hydrolase inhibition in streptozotocin-induced diabetic rats via increased 20-HETE levels. Prostaglandins Other Lipid Mediat 132:3–11

    Article  Google Scholar 

  33. Fortin JS, Benoit-Biancamano MO (2016) Inhibition of islet amyloid polypeptide aggregation and associated cytotoxicity by nonsteroidal anti-inflammatory drugs. Can J Physiol Pharmacol 94(1):35–48

    Article  CAS  Google Scholar 

  34. Park JH, Park YS, Lee J, Park K, Paik M, Jeong M, Koh HC (2016) Meloxicam inhibits fipronil-induced apoptosis via modulation of the oxidative stress and inflammatory response in SH-SY5Y cells. J Appl Toxicol 36(1):10–23

    Article  CAS  Google Scholar 

  35. Edfawy M, Hassan MH, Mansour A, Hamed AA, Amin H (2012) Meloxicam modulates oxidative stress status, inhibits prostaglandin E2, and abrogates apoptosis in carbon tetrachloride-induced rat hepatic injury. Int J Toxicol 31(3):276–286

    Article  Google Scholar 

  36. Casas C, Sergeant N, Itier JM, Blanchard V, Pradier L (2004) Massive CA1/2 neuronal loss with intraneuronal and N-terminal truncated Aβ42 accumulation in a novel Alzheimer transgenic model. Am J Pathol 165(4):1289–1300

    Article  CAS  Google Scholar 

  37. Uetsuki T, Takemoto K, Nishimura I, Okamoto M, Niinobe M, Momoi T, Miura M, Yoshikawa K (1999) Activation of neuronal caspase-3 by intracellular accumulation of wild-type Alzheimer amyloid precursor protein. J Neurosci 19(16):6955–6964

    Article  CAS  Google Scholar 

  38. Li W, Li B, Giacalone NJ, Torossian A, Sun Y, Niu K, Lin-Tsai O, Lu B (2011) BV6, an IAP antagonist, activates apoptosis and enhances radiosensitization of non-small cell lung carcinoma in vitro. Journal of Thoracic Oncology Official Publication of the International Association for the Study of Lung Cancer 6(11):1801–1809

    Article  CAS  Google Scholar 

  39. Listed N (1999) Dementia and Alzheimer’s disease. Postgrad Med 106(5):161–162

    Article  Google Scholar 

  40. Fang J, Wang L, Wu T, Yang C, Gao L, Cai H, Liu J, Fang S, Chen Y, Tan W (2016) Network pharmacology-based study on the mechanism of action for herbal medicines in Alzheimer treatment. J Ethnopharmacol 196:281–292

    Article  Google Scholar 

  41. Tramutola A, Domenico FD, Barone E, Giorgi A, Francesco LD, Schinina E, Coccia R, Arena A, Head E, Butterfield DA (2017) Polyubiquitinylation profile in down syndrome brain before and after the development of Alzheimer neuropathology. Antioxid Redox Signal 26(7):280–298

    Article  CAS  Google Scholar 

  42. Verhulsdonk S, Lange-Asschenfeldt C, Hoft B, Schwender H, Kalbe E (2017) Repressive coping does not contribute to anosognosia in first-diagnosis patients with Alzheimer disease. Alzheimer Dis Assoc Disord 31(3):249–255

    Article  Google Scholar 

  43. Yong S, Ping H, Zhong Z, McAllister C, Lindholm K (2006) Distinct destructive signal pathways of neuronal death in Alzheimer’s disease. Trends Mol Med 12(12):574–579

    Article  Google Scholar 

  44. Degterev A, Linkermann A (2016) Generation of small molecules to interfere with regulated necrosis. Cellular & Molecular Life Sciences Cmls 73(11–12):1–17

    Google Scholar 

  45. Li H, Ying L, Ying X, Yang L, Hu C, Chen Q, Yang Y, Jie M, Zhang J, Hui X (2018) Meloxicam improves cognitive impairment of diabetic rats through COX2-PGE2-EPs-cAMP/pPKA pathway. Mol Pharm 15(9):4121–4131

    Article  CAS  Google Scholar 

  46. Yu L, Jiang R, Su Q, Yu H, Yang J (2014) Hippocampal neuronal metal ion imbalance related oxidative stress in a rat model of chronic aluminum exposure and neuroprotection of meloxicam. Behav Brain Funct 10(1):6

    Article  Google Scholar 

  47. Tasaki Y, Omura T, Yamada T, Ohkubo T, Suno M, Iida S, Sakaguchi T, Asari M, Shimizu K, Matsubara K (2010) Meloxicam protects cell damage from 1-methyl-4-phenyl pyridinium toxicity via the phosphatidylinositol 3-kinase/Akt pathway in human dopaminergic neuroblastoma SH-SY5Y cells. Brain Res 1344(1):25–33

    Article  CAS  Google Scholar 

  48. Novakova I, Subileau EA, Toegel S, Gruber D, Lachmann B, Urban E, Chesne C, Noe CR, Neuhaus W (2014) Transport rankings of non-steroidal antiinflammatory drugs across blood-brain barrier in vitro models. PLoS ONE 9(1):e86806. https://doi.org/10.1371/journal.pone.0086806

    Article  CAS  Google Scholar 

  49. Maslanka T, Jaroszewski JJ, Markiewicz W, Jakubowski P (2010) Evaluation of the influence of meloxicam and flunixin meglumine on the apoptosis of peripheral blood CD4+ and CD8+ T cells in calves. Pol J Vet Sci 13(1):3–12

    CAS  Google Scholar 

  50. Cheng X, Zhao L, Ke T, Wang X, Cao L, Liu S, He J, Rong W (2021) Celecoxib ameliorates diabetic neuropathy by decreasing apoptosis and oxidative stress in dorsal root ganglion neurons via the miR-155/COX-2 axis. Exp Ther Med 22(2):825. https://doi.org/10.3892/etm.2021.10257

    Article  CAS  Google Scholar 

  51. Dehlaghi Jadid K, Davidsson J, Lidin E, Hånell A, Angéria M, Mathiesen T, Risling M, Günther M (2019) COX-2 Inhibition by diclofenac is associated with decreased apoptosis and lesion area after experimental focal penetrating traumatic brain injury in rats. Front Neurol 10:811. https://doi.org/10.3389/fneur.2019.00811

    Article  Google Scholar 

  52. Mazumder MK, Borah A (2014) Piroxicam inhibits NMDA receptor-mediated excitotoxicity through allosteric inhibition of the GluN2B subunit: an in silico study elucidating a novel mechanism of action of the drug. Med Hypotheses 83(6):740–746. https://doi.org/10.1016/j.mehy.2014.09.031

    Article  CAS  Google Scholar 

  53. Holler N, Zaru R, Micheau O, Thome M, Tschopp J (2000) Fas triggers an alternative, caspase-8-independent cell death pathway using the kinase RIP as effector molecule. Nat Immunol 1(6):489–495

    Article  CAS  Google Scholar 

  54. Laster SM, Wood JG, Gooding LR (1988) Tumor necrosis factor can induce both apoptic and necrotic forms of cell-lysis. J Immunol 141(8):2629–2634

    CAS  Google Scholar 

  55. Burne MJ, Elghandour A, Haq M, Saba SR, Norman J, Condon T, Bennett F, Rabb H (2001) IL-1 and TNF independent pathways mediate ICAM-1/VCAM-1 up-regulation in ischemia reperfusion injury. J Leukoc Biol 70(2):192–198

    Article  CAS  Google Scholar 

  56. Perry RT, Collins JS, Wiener H, Acton R, Go RC (2001) The role of TNF and its receptors in Alzheimer’s disease. Neurobiol Aging 22(6):873–883. https://doi.org/10.1016/s0197-4580(01)00291-3

    Article  CAS  Google Scholar 

  57. Samidurai M, Ramasamy VS, Jo J (2018) β-amyloid inhibits hippocampal LTP through TNFR/IKK/NF-κB pathway. Neurol Res 40(4):268–276. https://doi.org/10.1080/01616412.2018.1436872

    Article  CAS  Google Scholar 

  58. Zhao A, Li Y, Deng Y (2020) TNF receptors are associated with tau pathology and conversion to Alzheimer’s dementia in subjects with mild cognitive impairment. Neurosci Lett 738:135392. https://doi.org/10.1016/j.neulet.2020.135392

    Article  CAS  Google Scholar 

  59. Edgünlü TG, Ozge A, Yalın O, Kul S, Erdal ME (2013) A study of the impact of death receptor 4 (DR4) gene polymorphisms in Alzheimer’s disease. Balkan Med J 30(3):268–272. https://doi.org/10.5152/balkanmedj.2013.7455

    Article  CAS  Google Scholar 

  60. Fossati S, Ghiso J, Rostagno A (2012) TRAIL death receptors DR4 and DR5 mediate cerebral microvascular endothelial cell apoptosis induced by oligomeric Alzheimer’s Aβ. Cell Death Dis 3(6):e321. https://doi.org/10.1038/cddis.2012.55

    Article  CAS  Google Scholar 

  61. Dik B, Coskun D, Bahcivan E, Er A (2019) Doxycycline and meloxicam can treat neuroinflammation by increasing activity of antioxidant enzymes in rat brain. Pak J Pharm Sci 32(1):391–396

    CAS  Google Scholar 

  62. Kamer AR, Galoyan SM, Haile M, Kline R, Boutajangout A, Li YS, Bekker A (2012) Meloxicam improves object recognition memory and modulates glial activation after splenectomy in mice. Europ J Anaesthesiol EJA 29(7):332–337

    Article  CAS  Google Scholar 

  63. Mehlhorn G, Hollborn M, Schliebs R (2000) Induction of cytokines in glial cells surrounding cortical β-amyloid plaques in transgenic Tg2576 mice with Alzheimer pathology. Int J Dev Neurosci 18(4–5):423–431

    Article  CAS  Google Scholar 

  64. Khotib J, Utami NW, Gani MA, Ardianto C (2019) The change of proinflammatory cytokine tumor necrosis factor 伪 level in the use of meloxicam in rat model of osteoarthritis. J Basic Clin Physiol Pharmacol 30(6):185–193

    Article  Google Scholar 

  65. Taha NF, Mahmoud KM, Soliman A, Emara LH (2021) Anti-inflammatory and cytoprotective potentials of meloxicam solid dispersions prepared by different techniques on lipopolysaccharide-stimulated RAW 264.7 macrophages. Journal of Drug Delivery Science and Technology 63(3):102507

    Article  CAS  Google Scholar 

  66. Huang Y, Xu W, Zhou R (2021) NLRP3 inflammasome activation and cell death. Cell Mol Immunol 18(9):2114–2127. https://doi.org/10.1038/s41423-021-00740-6

    Article  CAS  Google Scholar 

  67. Muhammad T, Ikram M, Ullah R, Rehman SU, Kim MO (2019) Hesperetin, a citrus flavonoid, attenuates LPS-induced neuroinflammation, Apoptosis and Memory Impairments by Modulating TLR4/NF-κB Signaling. Nutrients 11(3):648. https://doi.org/10.3390/nu11030648

    Article  CAS  Google Scholar 

  68. Zhang YY, Dong LX, Bao HL, Liu Y, An FM, Zhang GW (2021) Inhibition of interleukin-1β plays a protective role in Alzheimer’s disease by promoting microRNA-9-5p and downregulating targeting protein for xenopus kinesin-like protein 2. Int Immunopharmacol 97:107578. https://doi.org/10.1016/j.intimp.2021.107578

    Article  CAS  Google Scholar 

  69. Suryawanshi A, Rouse BT, Niki T, Hirashima M, Podack ER (2012) TNFRSF25 Agonistic antibody and galectin-9 combination therapy controls herpes simplex virus-induced immunoinflammatory lesions. J Virol 86(19):10606–10620

    Article  Google Scholar 

  70. Al-Lamki RS, Wang J, Tolkovsky AM, Bradley JA, Griffin JL, Thiru S, Wang EC, Bolton E, Min W, Moore P, Pober JS, Bradley JR (2008) TL1A both promotes and protects from renal inflammation and injury. J Am Soc Nephrol 19(5):953–960. https://doi.org/10.1681/ASN.2007060706 (ASN.2007060706 [pii])

    Article  CAS  Google Scholar 

  71. Nilsson S (2004) Mutations in the N-terminal domain of DFF45 in a primary germ cell tumor and in neuroblastoma tumors. Int J Oncol 25(5):1297–1302

    Google Scholar 

  72. McCarty JS, Shen YT, Peng L (1999) Multiple domains of DFF45 bind synergistically to DFF40: roles of caspase cleavage and sequestration of activator domain of DFF40. Biochem Biophys Res Commun 264(1):181–185

    Article  CAS  Google Scholar 

  73. Brustmann H (2006) DNA fragmentation factor (DFF45): Expression and prognostic value in serous ovarian cancer. Pathology - Research and Practice 202(10):713–720

    Article  CAS  Google Scholar 

  74. Mukae N, Enari M, Sakahira H, Fukuda Y, Inazawa J, Toh H, Nagata S (1998) Molecular cloning and characterization of human caspase-activated DNase. Proc Natl Acad Sci USA 95(16):9123–9128

    Article  CAS  Google Scholar 

  75. McCarty JS, Shen YT, Peng L (1999) Study of DFF45 in its role of chaperone and inhibitor: two independent inhibitory domains of DFF40 nuclease activity. Biochem Biophys Res Commun 264(1):176–180

    Article  CAS  Google Scholar 

  76. Zhou P, Lugovskoy AA, McCarty JS, Li P, Wagner G (2001) Solution structure of DFF40 and DFF45 N-terminal domain complex and mutual chaperone activity of DFF40 and DFF45. Proc Natl Acad Sci USA 98(11):6051–6055. https://doi.org/10.1073/pnas.111145098

    Article  CAS  Google Scholar 

  77. Eui-Jeon, Woo, and, Yeon-Gil, Kim, and, Min-Sung, Kim, and, Won-Deok (2004) Structural mechanism for inactivation and activation of CAD/DFF40 in the apoptotic pathway. Mol Cell 14(4):31–539

  78. Behl C (2000) Apoptosis and Alzheimer’s disease. J Neural Transm 107(11):1325–1344. https://doi.org/10.1007/s007020070021

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported, in part or in whole, by the National Natural Science Foundation of China (CN) (81870840).

Author information

Authors and Affiliations

Authors

Contributions

P.P.G. and D.Z. conceived and performed all of the experiments and participated in the design of the study. P.W. interpreted the data and wrote the manuscript of this study.

Corresponding author

Correspondence to Pu Wang.

Ethics declarations

Ethics Approval

The study was conducted in accordance with the guidelines of the laboratory animal ethical standards and approved by the Ethics Committee of Northeastern University.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guan, P., Zhu, D. & Wang, P. Meloxicam Inhibits Apoptosis in Neurons by Deactivating Tumor Necrosis Factor Receptor Superfamily Member 25, Leading to the Decreased Cleavage of DNA Fragmentation Factor Subunit α in Alzheimer’s Disease. Mol Neurobiol 60, 395–412 (2023). https://doi.org/10.1007/s12035-022-03091-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-022-03091-z

Keywords

Navigation